[1] S. Antoci, Quando la Fisica parlava Tedesco, Quaderni del Gruppo Nazionale di Fisica Matematica (GNFM) del CNR, Firenze, 2004.
[2] P. Aschieri, On the Geometry of Inhomogeneous Quantum Groups, Tesi di Perfezionamento, Scuola Normale Superiore (SNS), Pisa, 1999.
[3] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Comp., Reading, Massachusetts, 1969 (tr. it. Introduzione all?Algebra Commutativa, Feltrinelli, Milano, 1981).
[4] A. Baer, Zur Einf? des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199-207.
[5] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation Theory and Quantization I, II, Ann. Physics 111 (1978), 61-110, 111-151.
[6] M. Born and P. Jordan, Zur Quantenmechanik, Zeitschrift f?sik 34 (1925), 858-888.
[7] N. Bourbaki, Alg袲e I, Hermann, Paris, 1970.
[8] W. Brandt, ܢer eine verallgemeineurung des gruppenbegriffes, Math. Ann. 96 (1926), 360-366.
[9] A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, University of California at Berkeley, Berkeley, 1998.
[10] P. Caldirola, R. Cirelli and G. M. Prosperi, Introduzione alla Fisica Teorica, UTET, Torino, 1982.
[11] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1995.
[12] P. M. Cohn, Universal Algebra, Harper and Row, New York, 1965 (tr. it. Algebra Universale, Feltrinelli, Milano, 1971).
[13] A. Connes, Gé¯é´²ie noncommutative, InterEditions, Paris, 1990.
[14] A. Connes, Noncommutative geometry, Symposium on the Current State and Prospects of Mathematics, Barcelona, June, 1991, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1992.
[15] A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.
[16] P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London A 109 (1925), 642-653.
[17] P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon Press, London, 1931.
[18] V. G. Drinfeld, Hopf algebras and quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
[19] V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, 1986, pp. 798-820, American Mathematical Society, Providence, Rod Island, 1987.
[20] C. Eckart, Operator calculus and the solution of the equations of quantum dynamics, Phys. Rev. 28 (1926), 711-726.
[21] C. Ehresmann, Gattungen von lokalen Strukturen, Jahresbericht der Deutschen Math. Vereinigung 60 (1957), 49-77.
[22] S. Eilenberg and S. MacLane, General theory of natural equivalence, Trans. Amer. Math. Soc. 58 (1945), 231-294.
[23] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952.
[24] G. G. Emch, Mathematical and Conceptual Foundations of 20th-Century Physics, North-Holland, Amsterdam, 1984.
[25] L. D. Faddeev, Integrable models in (1+1)-dimensional QFT, Les Houches, 1982, Elsevier Science Publishers, 1984.
[26] L. D. Faddeev, E. K. Sklyanin and L. A. Takhtajan, The quantum inverse problem, Theor. Math. Phys. 40 (1979), 194-220.
[27] L. Faddeev and L. A. Takhtajan, Hamiltonian Approach to Solitons Theory, Springer-Verlag, Berlin, New York, 1987.
[28] B. Ferretti, Le Radici Classiche della Meccanica Quantica, Boringhieri, Torino, 1980.
[29] J. Franck and G. Hertz, Verh. D. Phys. Ges. 16 (1914), 457-512.
[30] E. Giordano, Origini e Sviluppi della Meccanica Ondulatoria e della Meccanica delle Matrici, Istituto di Fisica dell?Università ¤i Parma, Parma, 1974.
[31] S. Golab, ܢer den Begriff der Pseudogrouppe von Transformationen, Math. Ann. 116 (1939), 768-780.
[32] K. Gruenberg, Una Introduzione all?Algebra Omologica, Pitagora Editrice, Bologna, 2002.
[33] M. Born, W. Heisenberg and P. Jordan, Zur Quantenmechanik II, Zeitschrift f?sik 35 (1926), 557-615.
[34] W. Heisenberg, ܢer quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift f?sik 33 (1925), 879-893.
[35] W. Heisenberg, Die Physikalischen Prinzipien der Quantentheorie, S. Hirzel Verlag, Lipsia, 1930 (tr. it. I Principi Fisici della Teoria dei Quanti, Boringhieri, Torino, 1976).
[36] G. Herzberg, Atomspektren und Atomstruktur, Th. Steinkopff, Dresda, 1936 (tr. it. Spettri Atomici e Struttura Atomica, Boringhieri, Torino, 1961).
[37] P. J. Higgins, Categories and Groupoids, D. Van Nostrand Publ. Comp., Amsterdam, 1971.
[38] F. Hund, Geschichte der Quantentheorie, Bibliographishes Institut AG, Zurigo, 1975 (tr. it. Storia della Teoria dei Quanti, Boringhieri, Torino, 1980).
[39] M. Jimbo, A q-difference analogue of and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[40] M. Jimbo, A q-analogue of Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252.
[41] C. Kassel, Quantum Groups, Springer-Verlag, Berlin, 1995.
[42] A. Klimyk and K. Schmudgen, Quantum Groups and their Representations, Springer-Verlag, Berlin, 1997.
[43] P. P. Kulish and N. Y. Reshetikhin, The quantum linear problem for the sine-Gordon equation and highest representations, J. Soviet Math. 23 (1983), 2435-2441.
[44] P. P. Kulish and E. K. Sklyanin, Solutions of the Yang-Baxter equation, J. Soviet Math. 19 (1982), 1596-1620.
[45] N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer, New York, 1998.
[46] P. O. L?n, Group algebra, convolution algebra, and applications to quantum mechanics, Rev. Modern Physics 39(2) (1967), 259-287.
[47] G. Ludwig, Wave Mechanics, Pergamon Press, London, 1968.
[48] C. C. Macduffee, The Theory of Matrices, Chelsea Publ. Company, New York, 1946.
[49] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge University Press, Cambridge, 1987.
[50] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
[51] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, 1970.
[52] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.
[53] Y. I. Manin, Quantum Groups and Non-commutative Geometry, Publications du CRM de l?Universite de Montreal, Montreal, 1988.
[54] W. J. Moore, Physical Chemistry, tr. it. Chimica Fisica, Piccin Editore, Padova, 1980.
[55] A. Nijenhuis, Theory of the geometric object, Amsterdam, 1952.
[56] D. G. Northcott, Ideal Theory, Cambridge University Press, Cambridge, 1953.
[57] B. Pini, Primo Corso di Algebra, Editrice CLUEB, Bologna, 1967.
[58] E. Schr?ger, Annalen der Physik 79 (1926), 361, 489, 734; 80 (1926), 437; 81 (1926), 109.
[59] I. Schur, Sitzungsberichte der Preuss, Akademie der Wissenschaften, Berlin, 1905, pp. 406-432.
[60] F. Strocchi, An Introduction to the Mathematical Structure of Quantum Mechanics, Lecture Notes given at the Scuola Normale Superiore, Pisa, 1996, or: F. Strocchi, An Introduction to the Mathematical Structure of Quantum Mechanics, World Scientific Publishing Company, Singapore, 2005.
[61] A. Vretblad, Fourier Analysis and its Applications, GTM 223, Springer, Berlin, 2003.
[62] W. Waliszewki, Categories, groupoids, pseudogroups and analytic structures, Rozprawy Matematyczne, Instytut Matematyczny Polskiej Akademii Nauk, XLV, Warszawa, 1965.
[63] H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1946.
[64] S. L. Woronowicz, Compact matrix pseudo-groups, Comm. Math. Phys. 111 (1987), 613-665.
|