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Abstract 

The principal objective of this paper was to compare the SURE and 
the GLS estimators with varying sample sizes and correlation. We 
have found that the SURE estimator was better than the GLS 
estimator, where the MSE was concerned, when the correlation 
between equations increased. Real air navigation data from General 
Authority of Civil Aviation in Saudi Arabia was applied. 

1. Introduction 

For a more specific discussion of the seemingly unrelated regression 
equations (SURE) model, we shall consider a set of individual linear multiple 
regression equations, each explaining some economic phenomena. This set of 
regression equations is said to be a simultaneous equation model if one or 
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more of the regressors (explanatory variables) in one or more of the 
equations is itself the dependent (endogenous) variable associated with 
another equation in the full system. On the other hand, supposing that none 
of the variables in the system is simultaneously explanatory and dependent in 
nature, there may still be interactions between the individual equations if the 
random disturbances associated with at least some of the different equations 
are correlated. Zellner [17], who coined the expression “seemingly unrelated 
regression equations” to reflect the fact that the individual equations are in 
fact related to one another, even though they may superficially seem not to 
be discussed this. 

The mathematical details of the SURE model, and the underlying 
assumptions, which will form at least the initial basis of our discussion, are 
given in the next section. Before discussing these details, it is of interest to 
consider some specific examples of economic phenomena and models that 
may give rise to a SURE specification. A better example is the one used by 
Zellner’s [17] to illustrate his proposed SURE estimator, and subsequently 
discussed by Kmenta [6] and Theil [9]. Separate regression equations were 
specified to explain investment on the part of two large corporations, general 
electric and Westinghouse. In each case, real gross investment by the firm is 
supposed to be determined by the value of its outstanding shares at the 
beginning of that period, and by the opening value of the firm’s real capital 
stock. It seems reasonable to suppose that the error terms associated with 
these two investment equations may be contemporaneously correlated, given 
the presence of common market influencing forces. For instance, if the error 
term in the first equation reflects the omission of some unobservable 
variables, then these same variables may be important determinants of the 
variability of the error term in the other equation. Thus, the two equations are 
apparent or “seemingly” unrelated regressions, in the sense described earlier, 
rather than independent relationships. Zellner [15] provided a Bayesian 
analysis for an extension of this problem involving ten corporations. 

A common situation that may suggest a SURE specification is where 
regression equations explaining a certain economic activity in different 
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geographical locations are to be estimated. For instance, Giles and Hampton 
[5] considered Cobb-Douglas production functions for five different regions 
of New Zealand during the period of that country’s industrial development, 
and used a SURE framework to allow for the inter-regional correlated likely 
existing between the regressions’ error term. Similarly, Donnelly [2] used the 
SURE model as the basis for estimating petrol demand equations for six 
different Australian states. White and Hewings [11] used the SURE model to 
estimate employment equations for five multi-county regions within the State 
of Illinois. Giles and Hampton [4] used an extended SURE model to estimate 
demand systems for four expenditure groups across six regions of New 
Zealand. 

Other studies involving the SURE model are abounded see Section 6, but 
these examples should illustrate the wide range of empirical applications for 
which this model is appropriate. 

2. The Model 

The basic model that we are concerned with comprises M multiple 
regression equations as: 

,iiii uxy +β=  (1) 

where iy  is a 1×T  vector of observations on the ith dependent variable, ix  

is a ikT ×  matrix, each column of which comprises the T observations on a 

regressor in the ith equation of the model, iβ  is a 1×ik  vector of coefficients 

in the ith equation, iu  is a 1×T  disturbance vector and ....,,2,1 Mi =  By 

writing (1) as follows: 
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The model may be expressed in compact form as 

,UXY +β=  (2) 

where Y is X,1×TM  is β× ,KTM  is U,1×K  is ,1×TM  and ∑
=

=
M

i
ikK

1
.  

Treating each of the M equations as classical linear regression relationships, 
we make the conventional assumptions about the regressors: 

ix  is fixed with rank ( ) ii kx =R  (3) 

and 

,1lim iiii
T

QxxT =′
∞→

 (4) 

where ( )MiQii ...,,2,1=  is non-singular with fixed and finite elements. 

Further, we assume that the elements of the disturbance vector ,iu  follow 

a multivariate probability distribution with 

( ) ,0=iuE  (5) 

( ) .Tiiii IuuE σ=′  (6) 

Here, iiσ  represents the variance of the random disturbance in the ith 

equation for each observation in the sample, and TI  is an identity matrix of 

order T. Considering the interactions between the equations of the model, it 
is assumed that: 

,1lim ijji
T

QxxT =′
∞→

 (7) 

( ) .Tijji IuuE σ=′  (8) 

Here ijQ  is non-singular with fixed and finite elements, and ijσ  

represents the covariance between the disturbances of the ith and jth 
equations for each observation in the sample. Writing (5), (6), and (8) more 
compactly, we have 
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( ) 0=UE  (9) 

and 
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( )I⊗Σ=  

,Ω=  (10) 

where ⊗  denotes the usual Kronecker product, so that Ω  is ,MTMT ×  and 

[ ]ijσ=Σ  is an MM ×  positive definite symmetric matrix. The definiteness 

of the Σ  precludes the possibility of any linear dependencies among the 
contemporaneous disturbances in the M equations of the model. 

There are many methods of estimating of SURE model. We will consider 
only the most common estimator, feasible generalized least squares (FGLS), 
in the next section and the others will be mentioned in later sections. 

3. The Feasible Generalized Least Squares Estimator 

To take account of the form of the variance covariance matrix of the 
disturbances in (10), we may use the GLS, or Aitken, estimator of :β  

( ) YXXXbG
111 −−− Ω′Ω′=  

( ( ) ) ( ) .111 YIXXIX TT ⊗Σ′⊗Σ′= −−−  (11) 

It is easily verified that 

( ) 0=β−GbE  (12) 

and 

( ) ( ( ) ) .var 11 −− ⊗Σ′= XIXb TG  (13) 
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Indeed, provided that Σ  is non-stochastic and observable, it follows from 
Aitken’s theorem1 that Gb  is the best linear unbiased estimator (BLUE) of β  

in the seemingly unrelated regression equation (SURE) model. 

Looking at the expression for Gb  in (11), it is clear that it is not an 

operational or a feasible estimator of β  because in general ,Σ  and hence ,Ω  

will be unobservable. Recognizing this, Zellner [16] proposed an estimate of 
β  in the SURE model, basing this on (11), but with Σ  replaced by an 

observable MM ×  matrix S. In particular, the elements of S are chosen to be 
estimators of the corresponding elements of .Σ  With this replacement for ,Σ  
and hence for ,Ω  we now have a feasible generalized least square FGLS 
estimator of β  in (2): 

( ( ) ) ( ) .111 YISXXISXb TTF ⊗′⊗′= −−−  (14) 

We are assuming that the matrix [ ]ijsS =  is non-singular, where ijs  is 

some estimator of .ijσ  Although there are many possible choices of S, two 

ways of obtaining the ijs  are popular. Each of these is based on residuals 

obtained by the application of OLS in one way or another: 

The first approach involves the so-called “unrestricted residuals”, 
because the restrictions on the coefficients of the SURE model which 
distinguishes it from the multivariate regression model are ignored when 
obtaining the residuals to be used for constructing the ijs ’s. Let K be the 

total number of distinct regressors in the full model (2) and let Z be the 
corresponding ( )KT ×  observation matrix for these variables. Regressing 

each of the M dependent variables in turn on the columns of Z, we obtain the 
( )1×T  “unrestricted residuals” vectors: 

,~
izi yMu =  (15) 

                                                           
1H. Theil [9]. 
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where 

( ) .1ZZZZIM TZ ′′−= −  (16) 

From these residuals, we may obtain consistent estimators of the ijσ ’s as 

follows: 

jiij uuTs ~~1~ ′=  

,1
jZi yMyT

′=  (17) 

where ....,,2,1, Mji =  Because ix  is a sub-matrix of Z, we have 

,ii ZJx =  (18) 

where iJ  is a selection matrix of order ,iKK ×  ,...,,2,1 Mi =  with 

elements taking the value zero or one, as appropriate. It is easy to see that 

.0=iZ xM  (19) 

Using this result, we have 

.jZijZi uMuyMy ′=′  (20) 

So that, from (17) we get 

( ) zijij MTrTsE σ= 1~  

.1 ijT
K σ⎟
⎠
⎞⎜

⎝
⎛ −=  (21) 

From which it follows that an unbiased estimator of ijσ  is obtained by 

replacing T1  by ( )KT −1  in (17). 

The second approach estimator of ijσ  may be developed by using 

residuals that have been obtained by taking into account the restrictions on 
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the coefficients that effectively distinguish the SURE model from the 
multivariate regression model. The “restricted residuals” vectors are obtained 
by estimating each equation of (1) separately by OLS, yielding 

,ˆ iii yMu =  (22) 

where 

( ) .1
iiiiTi xxxxIM ′′−= −  (23) 

So that, an alternative consistent estimator for ijσ  is 

jiij uuTs ˆˆ1ˆ ′=  

.1
jjii yMMyT

′=  (24) 

If T in the denominator of (24) is replaced by 

(( ) ) (( ) ).11
ijjjjiiijiji xxxxxxxxTrkkTMMTr ′′′′+−−= −−  (25) 

Then, this yields an unbiased estimator of .ijσ  

We now have [ ]ijsS ~~
=  and [ ]ijsS ˆˆ =  as two explicit choices of S to 

estimate Σ  in the construction of an FGLS estimator of β  in the SURE 

model. These two choices lead to the seemingly unrelated unrestricted 
residuals (SUUR) and seemingly unrelated restricted residuals (SURR) 
estimators proposed by Zellner [14, 16 and 17]: 

( ( ) ) ( )YISXXISX TTSU ⊗′⊗′=β −−−− 1111 ~~~  (26) 

and 

( ( ) ) ( ) .ˆˆˆ 111 YISXXISX TTSR ⊗′⊗′=β −−−  (27) 

4. The Simulation 

The main objective of this simulation is to examine the SURE estimators 
with the GLS estimators for small, medium, and large sample size. A 
correlation between the equations will be 0.1, 0.5 and 0.95. We will use the 
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SAS software for simulation to study the behavior of the estimators. We 
repeated each experiment 1000 times to know how the SURE estimators and 
GLS estimators perform for various sample sizes and different degree of the 
correlations between equations. 

We shall consider three equations, each equation has three independent 
variables. We used SAS software to generate the values of the independent 
variables ,ix  and the error term ,2,1, =iei  and 3. We used the coefficients 

3,2,11 =β  for the first equation, and 1,2,32 =β  for the second equation, 

and ,5.2,5.1,5.03 =β  for the third equation. This process is repeated 1000 

times and the mean of Biased and the MSE of GLS estimators and SURE 
estimators is calculated. This experiment is applied for each correlation 
between the equations is 0.1, 0.5 and 0.95; and the sample size is 5, 10, 30, 
50, 100 and 200. The summary of these results is in Tables 1-3 and 
represented in Figures 1-4. 

Table 1. Results of SURE and GLS estimators when 5=n  and 10 and the 
Rho are different 

N Method ρ Equation 1 Equation 2 Equation 3 

  True β 1 2 3 3 2 1 0.5 1.5 2.5 

GLS -0.3220 -0.3069 -0.3094 -0.2904 -0.3511 -0.2911 -0.3252 -0.2882 -0.3203 

0.1 -0.3212 -0.3003 -0.3097 -0.2878 -0.3537 -0.2836 -0.3232 -0.2806 -0.3221 

0.5 -0.3141 -0.2715 -0.3004 -0.2707 -0.3595 -0.2483 -0.3103 -0.2463 -0.3251 

 

Biased  

SURE 

0.95 -0.2280 -0.1606 -0.2034 -0.1521 -0.2972 -0.1277 -0.2023 -0.1294 -0.2672 

GLS 0.9320 0.9087 0.8926 1.1461 1.0469 0.9039 0.9044 0.8364 0.8988 

0.1 0.9245 0.8973 0.8860 1.1357 1.0405 0.8928 0.8959 0.8252 0.8928 

0.5 0.7646 0.7178 0.7285 0.9241 0.8602 0.7217 0.7285 0.6555 0.7345 

 

 

 

5 
 

MSE  

SURE 

0.95 0.3049 0.2537 0.2776 0.3370 0.3437 0.2710 0.2669 0.2270 0.2872 

GLS -0.2850 -0.3168 -0.3127 -0.3112 -0.3036 -0.3081 -0.2949 -0.3137 -0.3100 

0.1 -0.2805 -0.3136 -0.3071 -0.3072 -0.2993 -0.3030 -0.2882 -0.3106 -0.3059 

0.5 -0.2526 -0.2873 -0.2736 -0.2792 -0.2699 -0.2726 -0.2514 -0.2865 -0.2782 

 

 

 

 

Biased  

SURE 

0.95 -0.0934 -0.1244 -0.0997 -0.1132 -0.1026 -0.1047 -0.0846 -0.1258 -0.1086 
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GLS 0.2346 0.2558 0.2567 0.2562 0.2462 0.2489 0.2387 0.2475 0.2455 

0.1 0.2299 0.2516 0.2510 0.2515 0.2414 0.2437 0.2327 0.2435 0.2409 

0.5 0.1738 0.1940 0.1885 0.1924 0.1832 0.1846 0.1721 0.1889 0.1848 

10 
 

MSE  

SURE 

0.95 0.0372 0.0443 0.0394 0.0426 0.0391 0.0395 0.0354 0.0436 0.0398 

Table 2. Results of SURE and GLS estimators when 30=n  and 50 and the 
Rho are different 

N Method ρ Equation (1) Equation (2) Equation (3) 

  True β 1 2 3 3 2 1 0.5 1.5 2.5 

GLS -0.2954 -0.3105 -0.2978 -0.3048 -0.3060 -0.2985 -0.2964 -0.3038 -0.3093 

0.1 -0.2882 -0.3059 -0.2919 -0.2992 -0.3006 -0.2915 -0.2902 -0.2983 -0.3029 

0.5 -0.2453 -0.2700 -0.2524 -0.2602 -0.2623 -0.2489 -0.2503 -0.2601 -0.2619 

 

Biased  

SURE 

0.95 -0.0582 -0.0853 -0.0687 -0.0725 -0.0761 -0.0581 -0.0658 -0.0745 -0.0748 

GLS 0.1220 0.1313 0.1240 0.1295 0.1298 0.1252 0.1226 0.1271 0.1307 

0.1 0.1172 0.1279 0.1199 0.1256 0.1259 0.1205 0.1184 0.1232 0.1261 

0.5 0.0841 0.0970 0.0880 0.0929 0.0937 0.0868 0.0866 0.0916 0.0927 

 

 

 

30 
 

MSE  

SURE 

0.95 0.0091 0.0131 0.0106 0.0113 0.0118 0.0093 0.0101 0.0113 0.0114 

GLS -0.2993 -0.3051 -0.2972 -0.3014 -0.3034 -0.2980 -0.2976 -0.3023 -0.3077 

0.1 -0.2922 -0.2992 -0.2919 -0.2964 -0.2971 -0.2909 -0.2911 -0.2966 -0.3015 

0.5 -0.2488 -0.2590 -0.2534 -0.2584 -0.2560 -0.2473 -0.2498 -0.2567 -0.2601 

 

Biased  

SURE 

0.95 -0.0613 -0.0731 -0.0706 -0.0712 -0.0695 -0.0597 -0.0660 -0.0689 -0.0725 

GLS 0.1091 0.1128 0.1081 0.1110 0.1122 0.1090 0.1081 0.1109 0.1144 

0.1 0.1045 0.1089 0.1047 0.1076 0.1081 0.1045 0.1040 0.1072 0.1102 

0.5 0.0752 0.0806 0.0778 0.0805 0.0793 0.0750 0.0758 0.0792 0.0811 

 

 

 

50 
 

MSE  

SURE 

0.95 0.0069 0.0086 0.0082 0.0084 0.0081 0.0069 0.0076 0.0079 0.0085 
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Table 3. Results of SURE and GLS estimators when 100=n  and 200 and 
the Rho are different 

N Method ρ Equation (1) Equation (2) Equation (3) 

  True β 1 2 3 3 2 1 0.5 1.5 2.5 

GLS -0.2953 -0.3006 -0.3036 -0.2987 -0.3007 -0.3027 -0.2999 -0.3011 -0.3022 

0.1 -0.2886 -0.2944 -0.2975 -0.2930 -0.2944 -0.2956 -0.2929 -0.2953 -0.2959 

0.5 -0.2457 -0.2526 -0.2560 -0.2525 -0.2518 -0.2515 -0.2494 -0.2543 -0.2538 

 

Biased  

SURE 

0.95 -0.0585 -0.0665 -0.0696 -0.0650 -0.0635 -0.0632 -0.0625 -0.0673 -0.0667 

GLS 0.0966 0.0997 0.1016 0.0988 0.1000 0.1012 0.0993 0.1001 0.1007 

0.1 0.0925 0.0959 0.0978 0.0953 0.0961 0.0968 0.0950 0.0964 0.0968 

0.5 0.0668 0.0702 0.0719 0.0703 0.0699 0.0698 0.0685 0.0711 0.0708 

 

 

 

100 
 

MSE  

SURE 

0.95 0.0049 0.0059 0.0064 0.0058 0.0056 0.0055 0.0054 0.0060 0.0060 

GLS -0.2977 -0.3020 -0.3013 -0.3009 -0.3004 -0.3011 -0.3010 -0.2984 -0.3014 

0.1 -0.2911 -0.2954 -0.2952 -0.2948 -0.2938 -0.2944 -0.2943 -0.2922 -0.2951 

0.5 -0.2479 -0.2522 -0.2535 -0.2527 -0.2505 -0.2509 -0.2509 -0.2497 -0.2527 

 

Biased  

SURE 

0.95 -0.0613 -0.0655 -0.0681 -0.0651 -0.0629 -0.0642 -0.0647 -0.0628 -0.0664 

GLS 0.0932 0.0958 0.0954 0.0952 0.0949 0.0954 0.0952 0.0937 0.0954 

0.1 0.0893 0.0918 0.0917 0.0915 0.0909 0.0913 0.0911 0.0899 0.0916 

0.5 0.0646 0.0668 0.0674 0.0670 0.0659 0.0662 0.0661 0.0655 0.0670 

 

 

 

200 
 

MSE  

SURE 

0.95 0.0045 0.0050 0.0054 0.0050 0.0047 0.0049 0.0049 0.0047 0.0051 
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Figure 1. 3D surface plot using distance method of the mean square error vs. 
sample size and Rho of SURE and GLS estimators. 
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Figure 2. 3D surface plot using distance method of the biased vs. sample size 
and Rho of SURE and GLS estimators. 
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Figure 3. The mean square error of SURE and GLS estimators with different 
values of Rho. 

 

Figure 4. The biased of SURE and GLS estimators with different values of 
Rho. 
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5. The Simulation Results 

From Table 3, we can see the biased and the mean square error of SURE 
estimators is closed to GLS estimators when the correlation between the 
equations was weak (0.01) and sample size is getting larger. For example, the 
biased of the GLS estimator, for the first parameter in the first equation and 
sample size 200, is (-0.2977) and the biased of SURE estimator is (-0.2911), 
so the difference between them is almost 0.0066. The same thing on the MSE 
of the first parameter in the first equation. The MSE of GLS estimator is 
(0.0932) and the MSE of SURE estimator is (0.0893), we note that the 
differences are too small. 

When the correlation between the equations became (0.5), it turns out the 
difference between the biased and the mean square error of SURE and GLS 
estimators. We can note that the SURE is better, in the sense of the biased 
and the mean square error. For example, the first parameter in first equation 
when the sample size is 200 the biased of the GLS and SURE estimators are 
(0.2977) and (-0.2479), respectively. Therefore, we have improved the 
quality of the SURE estimator. The MSE of GLS estimator in the first 
parameter at the first equation with sample size 200, is (0.0932), while the 
MSE of the SURE estimator is (0.0646). The difference between the MSE of 
GLS estimator and SURE estimator is getting larger than before. 

From Table 3, where the correlation between the equations was high 
(0.95), it is clear that the biased and mean square error of SURE estimators 
are better than GLS estimators. For example, the first parameter at the first 
equation with sample size 200, the biased of the GLS estimator is (-0.2977) 
and the biased of SURE estimator is (-0.0613). So, the difference between 
them is almost 0.24. The MSE of the first parameter at the first equation with 
sample size 200, the MSE of the GLS estimator is (0.0932) and the MSE of 
the SURE estimator is (0.0045). Therefore, the differences between the MSE 
of GLS and SURE estimators are now clear. 

Finally, we can conclude that, if we have systems of equations, it is 
better to use SURE estimator than the GLS estimator to get less bias and 
MSE. 
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6. An Application 

An application of the air navigation sector, at the General Authority for 
Civil Aviation in Saudi Arabia, is applied in this section. The aircraft 
movements have three types; international flights, domestic flights and 
overfly. Each of them has to pay for air navigation depending on variables; 
the traveled distance, the weight of the airplane and the terminal charge of 
landing for the international flights and the domestic flights. While, overfly 
movements depend only on the traveled distance and the weight of the 
airplane. Air navigation data from January to September 2015 is used in this 
study. The mean square error for SURE and GLS models in the following 
table: 

Mean square error of SURE and GLS 

Equations Method MSE 

GLS 105752.4 
Overfly 

SURE 105752.4 

GLS 243951.4 
International

SURE 243951.4 

GLS 34348.23 
Domestic 

SURE 34348.23 

The correlation between the overflight and international flight was            
-0.00201, and the correlation between the overflight and the domestic flight 
was -0.00436, while the correlation between the international flight and the 
domestic flight was -0.00004. It is clear that the correlations between the 
equations are very weak. From the simulation study, we have that the GLS 
and the SURE estimators are similar in the case of weak correlation between 
equations, see Tables 1-3. From the table above, we can see that the MSE for 
both GLS and SURE are the same. That is because we have a very low 
correlation between the aircraft movements’ equations. 
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