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Abstract 

We establish the convergence of the SBA method for the Volterra 
nonlinear differential equations of second kind. 

1. Introduction 

In this paper, we discuss the convergence of the SBA method 
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(combination of the principle of Picard, Adomian method and the successive 
approximations) for the nonlinear integral equations of Volterra second kind 
of the form: 

( ) ( ) ( ) ( )( )∫ ϕλ+=ϕ
x

a
dttgtxKxfx ,,  

where g is given by ( )( ) ( )( ) ( )( ),tNtltg ϕ+ϕ=ϕ  ,0>λ  ( )( ) ( ),ttl ϕ=ϕ  

xta ≤≤  ∞+<≤ T  and N nonlinear. We get: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∫ ∫ ϕλ+ϕλ+=ϕ
x

a

x

a
dttNtxKdtttxKxfxE .,,:  (1) 

2. Convergence of the SBA Method 

Let us consider the following equation ( ):E  

( ) ( ) ( ) ( )( ) ( ) ( )( )∫ ∫ ϕλ+ϕλ+=ϕ
x

a

x

a
dttNtxKdtttxKxfx .,,  (2) 

The approach equation associated to ( )E  is: for ,1≥k  

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))∫ ∫ −ϕλ+ϕλ+=ϕ
x

a

x

a
kkkk

app dttNtxKdtttxKxfxE 1,,:  (3) 

and so the SBA algorithm associated to ( )appE  is: 

( ) ( ) ( ) ( ( ))

( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=ϕλ=ϕ

=ϕλ+=ϕ

∫
∫

−

−

x

a
k
n

k
n

x

a
kk

ndtttxKx

kdttNtxKxfx

...,,2,1,,

...,2,1,,

1

1
0

 (4) 

where for ( ) ( ).,1 xfxfk k =≥  

Theorem 1. Consider [ ]( )TaCf ,, ∈ϕ  and [ ] [ ]( ).,, TaTaCK ×∈  

Then the following Volterra nonlinear integral equation of second kind is 
given by: 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∫ ∫ ϕλ+ϕλ+=ϕ
x

a

x

a
dttNtxKdtttxKxfxE ,,,:  

where ,0>λ  is approached by: for ,1≥k  

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))∫ ∫ −ϕλ+ϕλ+=ϕ
x

a

x

a
kkk

app dttNtxKdtttxKxfxE 1,,:  

and the SBA algorithm associated to ( )appE  is given by 

( ) ( ) ( ) ( ( ))

( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=ϕλ=ϕ

=ϕλ+=ϕ

∫

∫
+

−

x

a
k
n

k
n

x

a
kk

ndtttxKx

kdttNtxKxfx

....,2,1,0,,

...,2,1,,

1

1
0

 

If, for ...,,2,1=k  then there exists [ ]( )TaCk ,1∈ϕ −  such that ( ) ,01 =ϕ −kN  

and if the SBA algorithm associated to ( )appE  converges at the step ,1=k  

then the solution ( )xϕ  of the equation (E) is unique, and ( ) =ϕ x  

( ).lim xk
k

ϕ
+∞→

 

Proof. When ( ( )) 0,1 0 =ϕ= tNk  and the SBA algorithm is given by 

( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=ϕλ=ϕ

=ϕ

∫ −
x

a nn ndtttxKx

xfx

...,,2,1,,

,

1
1

1

1
0

 

we have [ ]( )TCf ,0∈  and [ ] [ ]( ) 0,0,, >>∃⇒×∈ MmTaTaCK  such 

as [ ]Tax ,∈∀  and ( ) [ ] [ ] ( ) ( ) .,,,,,, MtxKmxfTaTatx ≤≤×∈∀  

Then we have: 

( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=ϕλ≤ϕ

≤=ϕ

∫ −
x

a nn ndtttxKx

mxfx

...,2,1,,

,

1
1

1

1
0
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and we get 

( )

( ) ( )

( ) ( )

( ) ( )⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−λ≤ϕ

−λ≤ϕ

−λ≤ϕ

≤ϕ

!

!2

1

2222
1
2

1
1

1
0

n
axMmx

axMmx

axmMx

mx

nnnn
n

 

( ) ( ) ( )( )∑ ∑
+∞

=

+∞

=

−λ=−λ≤ϕ⇒
0 0

1 exp!
n n

nnnn
n axmMn

axMmx  

which shows that ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ∑

+∞

=0

1

n
n x  is absolutely convergent. 

We suppose for the step ,1≥= pk  ( ( )) 0=ϕ xN p  and we get at the 
step :1+= pk  

( )

( ) ( )

( ) ( )

( ) ( )⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−λ≤ϕ

−λ≤ϕ

−λ≤ϕ

≤ϕ

+

+

+

+

!

!2

1

2222
1

2

1
1

1
0

n
axMmx

axMmx

axmMx

mx

nnnn
p
n

p

p

p

 

( ) ( ) ( )( )∑ ∑
+∞

=

+∞

=

+ −λ=−λ≤ϕ⇒
0 0

1 exp!
n n

nnnn
p
n axmMn

axMmx  

which shows that ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ∑

+∞

=

+

0

1

n

p
n x  is absolutely convergent, and hence 

( ) ( ).lim xx k
k

ϕ=ϕ
+∞→
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Let us suppose that the equation (E) admits two distinct solutions ( )xϕ  

and ( ).xφ  Taking ( ) ( ) ( ),xxx φ−ϕ=δ  and applying the SBA algorithm with 

the preceding hypotheses, we have: 

( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=δλ=δ

==δ

∫ −
x

a
k
n

k
n

k

ndtttxKx

kx

...,2,1;,

...,2,1;0

1

0
 (5) 

the solution of which at each step k is ( ) .0=δ xk  Then ( ) =δ x  

( ) .0lim =δ
+∞→

xk
k

 Hence, for [ ],, xat ∈  ( ) ( ) ( ) ( ) ( ).0 ttttt φ=ϕ⇒=φ−ϕ=δ  

Thus, the solution of the equation (E) is unique. ~ 

3. Numerical Examples 

3.1. Example 1 

Let us consider the following Volterra nonlinear equation of the second 
kind, which is the canonical form of Adomian: 

( ) ( ) ( ) ( ) [ ( ) ( ) ]∫ ∫ ϕ−ϕ−+ϕ−−=ϕ
x x

dtttttxdtttxx
0 0

45 .cos1  (6) 

The SBA algorithm for this equation is the following: 

( ) ( ) ( ( ))

( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

≥ϕ−−=ϕ

≥ϕ−+=ϕ

∫

∫
+

−

x k
n

k
n

x kk

ndtttxx

kdttNtxx

01

0
1

0

,0;

,1;1
 

where  

( )( ) ( ) ( ) .cos45 ttttN ϕ−ϕ=ϕ  

When ,1=k  applying the principle of Picard, for ( ) ,00 =ϕ x  we have 

( ( )) 00 =ϕ xN  and the approached solution is: 
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( )

( )

( )

( ) ( )
( )

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≥−=ϕ

=ϕ

−=ϕ

=ϕ

0;
!2

1

!4

!2

1

2
1

4
1
2

2
1
1

1
0

n
n

xx

xx

xx

x

n
n

n

 

which converges to ( ) ( )
( )∑

+∞

=
−=ϕ

0

2
1 .

!2
1

n

n
n

n
xx  Hence, ( ) .cos1 xx =ϕ  

When ,2=k  we have ( ( )) ,01 =ϕ xN  and the approached solution is: 

( )

( )

( )

( ) ( )
( )

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≥−=ϕ

=ϕ

−=ϕ

=ϕ

0;
!2

1

!4

!2

1

2
2

4
2
2

2
2
1

2
0

n
n

xx

xx

xx

x

n
n

n

 

which converges to ( ) ( )
( )∑

+∞

=
−=ϕ

0

2
2 .

!2
1

n

n
n

n
xx  Hence ( ) .cos2 xx =ϕ  

In the recursive way, ( ) ( ) ( ) .cos21 xxxx k =ϕ==ϕ=ϕ  Therefore, 

we obtain the exact solution of equation (6) as 

( ) ( ) .coslim xxx k
k

=ϕ=ϕ
+∞→

 

3.2. Example 2 

Let us consider the following Volterra nonlinear equation of the second 
kind, which is the canonical form of Adomian: 

( ) ( ) ( ( ) ( ))∫ ∫ ϕ−ϕ+ϕ+−=ϕ
x x

dttttxtdttxtxxx
0 0

434 .
2
1

3
1

 (7) 
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The SBA algorithm for this equation is the following: 

( ) ( ( ))

( ) ( )

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥ϕ=ϕ

ϕ+−=ϕ

≥ϕ+=ϕ

∫
∫

∫

+

−

x k
n

k
n

x kk

x kk

ndttxtx

dttxtxx

kdttxtNxx

01

0 0
4

1

0
1

0

,1;

,
3
1

,1;
2
1

 

where ( )( ) ( ) ( ).43 ttttN ϕ−ϕ=ϕ  

When ,1=k  applying the principle of Picard, for ( ) ,00 =ϕ x  we have 

( ( )) 00 =ϕ xN  and the approached solution is: 

( )

( )

( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥=ϕ

=ϕ

=ϕ

=ϕ

1;0

0

0

1

1
2

1
1

1
0

nx

x

x

xx

n

 

which converges to ( ) ( )∑
+∞

=
ϕ=ϕ

0

11 .
n

n xx  Hence, ( ) .1 xx =ϕ  

When ,2=k  we have ( ( )) ,01 =ϕ xN  and the approached solution is: 

( )

( )

( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥=ϕ

=ϕ

=ϕ

=ϕ

1;0

0

0

2

2
2

2
1

2
0

nx

x

x

xx

n

 

which converges to ( ) ( )∑
+∞

=
ϕ=ϕ

0

22 .
n

n xx  Hence, ( ) .2 xx =ϕ  
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In the recursive way, ( ) ( ) ( ) .21 xxxx k =ϕ==ϕ=ϕ  Therefore, we 

obtain the exact solution of equation (7) as 

( ) ( ) .lim xxx k
k

=ϕ=ϕ
+∞→

 

3.3. Example 3 

Let us consider the following Volterra nonlinear equation of the second 
kind, which is the canonical form of Adomian: 

( ) ( ) ( ) ( ( ) ( ))∫ ∫ ϕ−ϕ−ϕ+−−=ϕ −−x x xtxtxxxx dttteedtteeeex
0 0

232 .4
31  (8) 

The SBA algorithm for this equation is the following: 

( ) ( ( ))

( ) ( ) ( )

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥ϕ=ϕ

ϕ+−−=ϕ

≥ϕ+=ϕ

∫

∫

∫

−
+

−

−−

x k
n

txk
n

x ktxxxk

x ktxxk

ndttex

dtteeex

kdttNeex

01

0 01

0
12

0

,1;

,1

,1;

 

where  

( )( ) ( ) ( ).23 ttetN x ϕ−ϕ=ϕ  

When ,1=k  applying the principle of Picard, for ( ) ,00 =ϕ x  we have 

( ( )) 00 =ϕ xN  and the approached solution is: 

( )

( )

( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥=ϕ

=ϕ

=ϕ

=ϕ

1;0

0

0

1

1
2

1
1

21
0

nx

x

x

ex

n

x
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which converges to  

( ) ( ) ( )∑
+∞

=

=ϕ⇒ϕ=ϕ
0

2111 .
n

x
n exxx  

When ,2=k  we have ( ( )) 01 =ϕ xN  and the approached solution is: 

( )

( )

( )

( )⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≥=ϕ

=ϕ

=ϕ

=ϕ

1;0

0

0

2

2
2

2
1

22
0

nx

x

x

ex

n

x

 

which converges to  

( ) ( ) ( )∑
+∞

=

=ϕ⇒ϕ=ϕ
0

2222 .
n

x
n exxx  

In the recursive way, ( ) ( ) ( ) .221 xk exxx =ϕ==ϕ=ϕ  Therefore, we 

obtain the exact solution of equation (8) as 

( ) ( ) .lim 2xk
k

exx =ϕ=ϕ
+∞→

 

3.4. Example 4 

Let us consider the following Volterra nonlinear equation of the second 
kind, which is the canonical form of Adomian: 

( ) ( ) ( )∫ ϕ+−−=ϕ −x txxxx dtteeeex
0

2 1  

( ( ) ( )) .
4
3

0
23∫ ϕ−ϕ− −x ttx dtttee  (9) 
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The SBA algorithm for this equation is the following: 

( ) ( ( ))

( ) ( ) ( )

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥ϕ=ϕ

ϕ+−−=ϕ

≥ϕ−=ϕ

∫

∫

∫

−
+

−

−−

x k
n

txk
n

x ktxxxk

x ktxxk

ndttex

dtteeex

kdttNeex

01

0 01

0
12

0

,1;

,1

,1;4
3

 

where ( )( ) ( ) ( ).23 ttetN t ϕ−ϕ=ϕ  

When ,1=k  applying the principle of Picard, for ( ) ,00 =ϕ x  we have 

( ( )) 00 =ϕ xN  and the approached solution is: 

( )

( )

( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥=ϕ

=ϕ

=ϕ

=ϕ

1;0

0

0

1

1

1
2

1
1

1
0

nx

x

x

x

n

 

which converges to  

( ) ( ) ( )∑
+∞

=

=ϕ⇒ϕ=ϕ
0

111 .1
n

n xxx  

When ,2=k  we have ( ( )) 01 =ϕ xN  and the approached solution is: 

( )

( )

( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥=ϕ

=ϕ

=ϕ

=ϕ

1;0

0

0

1

2

2
2

2
1

2
0

nx

x

x

x

n
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which converges to  

( ) ( ) ( )∑
+∞

=

=ϕ⇒ϕ=ϕ
0

222 .1
n

n xxx  

In the recursive way, ( ) ( ) ( ) .121 =ϕ==ϕ=ϕ xxx k  Therefore, we 

obtain the exact solution of equation (9) as 

( ) ( ) .1lim =ϕ=ϕ
+∞→

xx k
k
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