Far East Journal of Mathematical Sciences (FJMS)

ON SUBGROUPS OF FINITE INDEX IN QUASI-FREE GROUPS

R. M. S. Mahmood
Department of Mathematics
Irbid National University
P.O. Box 2600, Code 21110
Irbid, Jordan
e-mail: rasheedmsm@yahoo.com

Abstract

A group G is said to be a quasi-free group if G is a free product of a number of infinite cyclic groups and a certain number of cyclic groups of order 2. In this paper, we find the rank, structure, and a formula indicating the number of subgroups of finite index in a finitely generated quasi-free group.

1. Introduction

A group is said to be a quasi-free group if it is a free product of copies of infinite cyclic groups and of cyclic groups of order 2 . So a group G is a quasi-free group if and only if G is a free product of a free group and copies of cyclic groups of order 2. In [6], Mahmood and Khanfar proved that a group G is a quasi-free group if and only if G is a fundamental group of a connected quasi-graph where an edge of the graph equals its inverse is
allowed. Thus, if C_{∞} stands for an infinite cyclic group and C_{2} stands for a finite cyclic group of order 2, then a finitely generated quasi-free group G can be written as a free product $G=\underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p \text {-factors }} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q \text {-factors }}$, where one of the cases $p=0$ or $q=0$ is possible. In this case, G has the presentation $G=\left\langle y_{1}, \ldots, y_{p}, x_{1}, \ldots, x_{q} \mid x_{1}^{2}=1, \ldots, x_{q}^{2}=1\right\rangle$, where all the symbols $y_{1}, \ldots, y_{p}, x_{1}, \ldots, x_{q}$ are distinct. This implies that every free group is a quasi-free group of a free product of a number of infinite cyclic groups and a zero number of cyclic groups of order 2. In view of GrushkoNeumann theorem [5, p. 192], the rank of the quasi-free group G introduced above is $r(G)=p+q$. The aim of this paper is to find the generators and the ranks of subgroups of finite index of finitely generated quasi-free groups by applying the theory of groups acting on trees with inversions introduced in [8], and the structures of subgroups of groups acting on trees with inversions introduced in [7], and then find the number of subgroups of finite index by using the methods of [1]. This paper is divided into 4 sections. In Section 2, we introduce basic concepts of groups acting on trees with inversions. In Section 3, we use the results of [7] and [8] to prove that a group G is a quasi-free group if and only if there exists a tree X such that G acts on X with inversions and the stabilizer of each vertex is trivial. Then we use the results of [7] to show that a subgroup of a quasi-free group is a quasifree and find a formula of the rank of such subgroups. In Section 4, we generalize Theorem 5.2 [3] of Hall to obtain a formula for the number of subgroups of finite index of finitely generated quasi-free groups by using the methods of [1, Theorem 6.10] of Dey.

2. Basic Concepts of Groups Acting on Trees with Inversions

The theory of groups acting on trees without inversions, known BassSerre theory is introduced in [2] and [10] and with inversions is introduced in [8]. We begin a general background. A graph X consists of two disjoint sets $V(X)$ (the set of vertices of X) and $E(X)$ (the set of edges of X),
with $V(X)$ non-empty, together with three functions $\partial_{0}: E(X) \rightarrow V(X)$, $\partial_{1}: E(X) \rightarrow V(X)$, and an involution $\eta: E(X) \rightarrow E(X)$ satisfying the conditions $\partial_{0} \eta=\partial_{1}$ and $\partial_{1} \eta=\partial_{0}$. For simplicity, if $e \in E(X)$, we write $\partial_{0}(e)=o(e), \partial_{1}(e)=t(e)$ and $\eta(e)=\bar{e}$. This implies that $o(\bar{e})=t(e)$, $t(\bar{e})=o(e)$ and $\overline{\bar{e}}=e$. The case $\bar{e}=e$ is allowed. There are obvious definitions of trees, subtrees, morphisms of graphs and $\operatorname{Aut}(X)$, the set of all automorphisms of the graph X which forms a group under the composition of morphisms of graphs. For more details, the interested readers are referred to $[2,8,10]$. We say that a group G acts on a graph X if there is a group homomorphism $\phi: G \rightarrow \operatorname{Aut}(X)$. In this case, if $x \in X$ (vertex or edge) and $g \in G$, we write $g(x)$ for $(\phi(g))(x)$. Thus, if $g \in G$, and $y \in E(X)$, then $g(o(y))=o(g(y)), g(t(y))=t(g(y))$ and $g(\bar{y})=\overline{g(y)}$. The case $g(y)=\bar{y}$ is allowed for some $g \in G$, and $y \in E(X)$.

Convention. If the group G acts on the graph X and $x \in X$ (x is a vertex or edge), then:
(1) The stabilizer of x, denoted G_{x} is the set $G_{x}=\{g \in G: g(x)=x\}$. It is clear that $G_{x} \leq G$, and if $x \in E(x)$ and $u \in\{o(x), t(x)\}$, then $G_{\bar{x}}=G_{x}$ and $G_{x} \leq G_{u}$.
(2) The orbit of x is the set $G(x)=\{g(x): g \in G\} \subseteq X$. It is clear that G acts on the graph X without inversions if and only if $G(\bar{e}) \neq G(e)$ for any $e \in E(X)$. Otherwise, G acts on X with inversions if and only if $G(\bar{e})=G(e)$ for some $e \in E(X)$.

Definition. Let G be a group acting on a tree X with inversions and let T and Y be two subtrees of X such that $T \subseteq Y$ and each edge of Y has at least one end in T. Assume that T and Y satisfy the following:
(i) T contains exactly one vertex from each vertex orbit.
(ii) Y contains exactly one edge y (say) from edge orbit if $G(y) \neq G(\bar{y})$ and exactly one pair x, \bar{x} from each edge orbit if $G(x)=G(\bar{x})$. The pair $(T ; Y)$ is called a fundamental domain for the action of G on X.

For the existence of fundamental domains, we refer the readers to [4].
For the rest of this section, G is a group acting on a tree X with inversions and $(T ; Y)$ is the fundamental domain for the action of G on X. We have the following notation:
(1) For any vertex $v \in V(X)$, there exists a unique vertex denoted v^{*} of T and an element g (not necessarily unique) of G such that $g\left(v^{*}\right)=v$; that is, $G\left(v^{*}\right)=G(v)$. Moreover, if $v \in V(T)$, then $v^{*}=v$.
(2) For each edge $y \in E(Y)$, the value of y is denoted by [y] and is defined to be an element of G satisfying the following:
(a) If $o(y) \in V(T)$, then $[y]\left((t(y))^{*}\right)=t(y),[y]=1$ in case $y \in E(T)$, and $y=\bar{y}$ if $G(y)=G(\bar{y})$.
(b) If $t(y) \in V(T)$, then $[y](o(y))=(o(y))^{*},[y]=[\bar{y}]^{-1}$ if $G(y) \neq G(\bar{y})$ and $[y]=[\bar{y}]$ if $G(y)=G(\bar{y})$.
(3) For each edge $y \in E(Y)$, let $+y$ be the edge $+y=y$ if $o(y) \in$ $V(T)$ and $+y=y$ if $t(y) \in V(T)$. It is clear that $o(+y)=(o(y))^{*}$ and $G_{+y} \leq G_{(o(y))^{*}}$ and if $G(y)=G(\bar{y})$ or $y \in E(T)$, then $G_{+y}=G_{y}$.

In the next two theorems, G is a group acting on a tree X with inversions and $(T ; Y)$ is a fundamental domain for the action of G on X. Furthermore, m, y and x stand for edges of $E(Y)$ such that $m \in E(T), \quad o(y) \in V(T)$, $t(y) \notin V(T), G(y) \neq G(\bar{y})$, and $o(x) \in V(T), t(x) \notin V(T)$ and $G(x)=G(\bar{x})$.

Theorem 2.1. G has the presentation

$$
\begin{aligned}
& \left\langle\operatorname{gen}\left(G_{v}\right), y, x\right| \operatorname{rel}\left(G_{v}\right), G_{m}=G_{\bar{m}}, y \cdot[y]^{-1} G_{y}[y] \cdot y^{-1}=G_{y} \\
& \left.x \cdot G_{x} \cdot x^{-1}=G_{x}, x^{2}=[x]^{2}\right\rangle
\end{aligned}
$$

Proof. See [8, Th. 5.1].
Theorem 2.2. If H is a subgroup of $G, v \in V(T)$ and $e \in E(Y)$, define the following:
(a) D_{v} is a double coset representative system for $G \bmod \left(H, G_{v}\right)$;
(b) for any element $g \in G, D_{e}^{g}$ and $D_{\bar{e}}^{g}$ are any double coset representative systems for $G_{o(e)} \bmod \left(G_{o(e)} \cap g^{-1} H g, G_{e}\right)$ and

$$
G_{(t(e))^{*}} \bmod \left(G_{(t(e))^{*}} \bigcap g^{-1} H g,[e]^{-1} G_{e}[e]\right)
$$

Then for any element $w \in G$, there exist unique elements denoted $\overline{w[e]} \in D_{(t(e))^{*}}, \quad \overline{\overline{w[e]}} \in D_{\bar{e}}^{\bar{g}}$, and an element denoted $g_{e} \in G_{e}$ such that $\delta_{w, e}=w g_{e}[e] \overline{\overline{w[e]}}^{-1} \overline{w[e]}^{-1} \in H$. Then H is generated by the elements of the following forms:
(1) the generators of $H \bigcap a G_{v} a^{-1}$, where $a \in D_{v}$ and $v \in V(T)$;
(2) $\delta_{a b, m}$, where $a \in D_{o(m)}$ and $b \in D_{m}^{a}$ such that $a b \notin D_{t(m)}$;
(3) $\delta_{a b, y}$, where $a \in D_{o(y)}$ and $b \in D_{y}^{a}$ such that $a b[y] \notin D_{(t(y)) *}$;
(4) $\delta_{a b, x}$, where $a \in D_{o(x)}$ and $b \in D_{x}^{a}$ such that $a b[x] \notin D_{o(x)}$ and $H \cap a b[x] G_{x} b^{-1} a^{-1}=\varnothing ;$
(5) $a b[x] b^{-1} a^{-1}$, where $a \in D_{o(x)}$ and $b \in D_{x}^{a}$ such that $a b[x] \notin$ $D_{o(x)}$, and $H \cap a b[x] G_{x} b^{-1} a^{-1} \neq \varnothing$.

Proof. See [7, Th. 3].

3. Quasi-free Groups and Groups Acting on Trees with Inversions

In this section, we find the relations between quasi-free groups and groups acting on trees with inversions. First, we start the following lemma:

Lemma 3.1. A group G is a quasi-free group if and only if there exists a tree X such that G acts on X with inversions and the stabilizer of each vertex is trivial.

Proof. Let the group G act on the tree X with inversions such that the stabilizer of each vertex $v \in V(X)$ of G is trivial. That is, $G_{v}=\{1\}$, where 1 is the identity element of G. Then G has a fundamental domain $(T ; Y)$ for the action of G on X. By Theorem 2.1, G has the presentation

$$
\begin{aligned}
& \left\langle\operatorname{gen}\left(G_{v}\right), y, x\right| \operatorname{rel}\left(G_{v}\right), G_{m}=G_{\bar{m}}, y \cdot[y]^{-1} G_{y}[y] \cdot y^{-1}=G_{y} \\
& \left.x \cdot G_{x} \cdot x^{-1}=G_{x}, x^{2}=[x]^{2}\right\rangle
\end{aligned}
$$

where m, y and x are edges of $E(Y)$ such that $m \in E(T), \quad o(y) \in V(T)$, $t(y) \notin V(T), \quad G(y) \neq G(\bar{y})$, and $o(x) \in V(T), \quad t(x) \notin V(T), \quad G(x)=G(\bar{x})$. The condition that the stabilizer of each vertex is trivial implies that $G_{m}=$ $G_{v}=G_{y}=\{1\}$ and G has the presentation $G=\left\langle y, x \mid x^{2}=1\right\rangle$. This implies that G is a free product of infinite cyclic groups generated by the edges $y \in E(Y)$ and cyclic groups of order 2 generated by the edges $x \in E(Y)$. Now assume that G is a quasi-free group. We need to find a tree X such that G acts on X with inversions and the stabilizer of each vertex $v \in V(X)$ of X is $G_{v}=\{1\}$. Then G is the free product of infinite cyclic groups generated by $t_{i}, i \in I$, and cyclic groups of order 2 generated by $t_{j}, j \in J$. Then G has the presentation $G=\left\langle t_{i}, t_{j} \mid t_{j}^{2}=1\right\rangle$ for $i \in I$ and $j \in J$. Let X be the graph where the set of vertices is $V(X)=\{g: g \in G\}=G$, and the set of edges is $E(X)=\left\{\left(g, t_{i}\right),\left(g, t_{i}^{-1}\right),\left(g, t_{j}\right)\right\}$, where $g \in G, i \in I$ and $j \in J$. For the edges $\left(g, t_{i}\right),\left(g, t_{i}^{-1}\right)$ and $\left(g, t_{j}\right), i \in I, \quad j \in J$, define $o\left(g, t_{i}\right)=$
$o\left(g, t_{i}^{-1}\right)=o\left(g, t_{j}\right)=g, \quad t\left(g, t_{i}\right)=g t_{i}, \quad t\left(g, t_{i}^{-1}\right)=g t_{i}^{-1}, \quad$ and $t\left(g, t_{j}\right)=$ $g t_{j}$, and $\left.\overline{\left(g, t_{i}\right)}=\left(g t_{i}, t_{i}^{-1}\right), \overline{\left(g, t_{i}^{-1}\right.}\right)=\left(g t_{i}^{-1}, t_{i}\right)$, and $\overline{\left(g, t_{j}\right)}=\left(g t_{j}, t_{j}^{-1}\right)=$ ($g t_{j}, t_{j}$) because $t_{j}^{-1}=t_{j}$ on which t_{j} has order 2. G acts on X as follows. Let $f \in G$. Then for the vertex $g \in G$ and the edges $\left(g, t_{i}\right),\left(g, t_{i}^{-1}\right)$ and $\left(g, t_{j}\right)$ of X, define $f(g)=f g, f\left(g, t_{i}\right)=\left(f g, t_{i}\right), f\left(g, t_{i}^{-1}\right)=\left(f g, t_{i}^{-1}\right)$, and $f\left(g, t_{j}\right)=\left(f g, t_{j}\right)$. The action of G on X is with inversions because the element $t_{j} \in G$ maps the edge $\left(1, t_{j}\right)$ to its inverse $\overline{\left(1, t_{j}\right)}$; that is, $t_{j}\left(1, t_{j}\right)=\left(t_{j}, t_{j}\right)=\overline{\left(1, t_{j}\right)}$. The stabilizer of the vertex $v \in g$ is $G_{v}=\{1\}$, the stabilizers of the edges $\left(g, t_{i}\right),\left(g, t_{i}^{-1}\right)$ and $\left(g, t_{j}\right)$ are $\{1\}$. Each element $g \in G, g \neq 1$ can be written uniquely as $g=g_{1} g_{2} \ldots g_{n}$, where $g_{s} \in\left\{t_{i}, t_{j}: i \in I, j \in J\right\}, s=1, \ldots, n$. Then it is clear that

$$
P_{g}:\left(1 ; g_{1}\right),\left(g_{1} ; g_{2}\right),\left(g_{1} g_{2} ; g_{3}\right), \ldots,\left(g_{1} g_{2} \ldots g_{n-1} ; g_{n}\right)
$$

is a reduced path in X joining the vertices 1 and g. Then for any non-identity elements a, b of $G, P_{a}^{-1} P_{b}$ is a path in X joining the vertices a and b. This implies that X is a connected graph. By the normal theorem for free product of groups, we can show that any two vertices of the graph are joined by exactly one reduced path. Consequently, X is a tree. It is clear that T and Y are subtrees of X, where $T=\{1\}, V(Y)=\left\{1, t_{i}, t_{j}: i \in I, j \in J\right\}$ and $E(Y)=\left\{\left(1, t_{i}\right),\left(1, t_{i}^{-1}\right),\left(1, t_{j}\right),\left(t_{j}, t_{j}\right)\right\}$. So $(T ; Y)$ is a fundamental domain for the action of G on X. The structure of $E(Y)$ implies that if $e \in E(Y)$, then the value of e is $[e] \in\left\{t_{i}, t_{i}^{-1}, t_{j}: i \in I, j \in J\right\}$. This completes the proof.

Theorem 3.1. Let G be a quasi-free group of free product of infinite cyclic groups generated by $t_{i}, i \in I$ and finite cyclic groups of order 2 generated by $t_{j}, j \in J$.

Let $A=\left\{t_{i}, t_{j}: i \in I, j \in J\right\}$. Let H be a subgroup of G and B be a right transversal for H in G. Then for each elements $a \in A$ and $b \in B$, there exists a unique element denoted $\overline{b a} \in B$ such that $b a(\overline{b a})^{-1} \in H$. Furthermore, H is a quasi-free group generated by the set $\left\{b a(\overline{b a})^{-1}\right.$: $a \in A, b \in B\}$.

Proof. Lemma 3.1 implies that there exists a tree X such that G acts on X with inversions and the stabilizer of each vertex $v \in E(X)$ under the action of G on X is trivial. That is, $G_{v}=\{1\}$. This implies that H acts on X and the stabilizer of each vertex $v \in E(X)$ under the action of H on X is trivial because $H_{v}=H \cap G_{v}=H \cap\{1\}=\{1\}$. Again, Lemma 3.1 implies that H is a quasi-free group. Since for each edge $x \in E(X)$ of $X, G_{x} \leq G_{u}$, where $u \in\{o(x), t(x)\}$, and G_{u} is trivial, this implies that the stabilizer G_{x} is trivial. Then the elements D_{e}^{g} and $D_{\bar{e}}^{g}$ of Theorem 2.2 are trivial. So, for any element w of G, we have $\overline{\overline{w[e]}}=1$. Furthermore, the double cosets become right cosets. Since $T=\{1\}$ is the tree of representatives for the action of G on X, where T has no edges, H is generated by the elements of forms (2) and (3) of Theorem 2.2. As Y is a transversal for the action of G on X, where $V(Y)=\left\{1, t_{i}, t_{j}: i \in I, j \in J\right\}$,

$$
E(Y)=\left\{\left(1, t_{i}\right),\left(1, t_{i}^{-1}\right),\left(1, t_{j}\right),\left(t_{j}, t_{j}\right)\right\}
$$

and for each $e \in E(Y)$, we have $[e] \in\left\{t_{i}, t_{i}^{-1}, t_{j}: i \in I, j \in J\right\}$. Then H is generated by $\left\{b a(\overline{b a})^{-1}: a \in A, b \in B\right\}$. This completes the proof.

Corollary 3.1. Let H be a non-decomposable subgroup of the quasi-free group

$$
G=\underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p \text {-factors }} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q \text {-factors }} .
$$

Then either $H \cong C_{\infty}$ or $H \cong C_{2}$.

4. The Number of Subgroups of Index n in Quasi-free Groups

Given a finitely generated quasi-free group

$$
G=\underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p \text {-factors }} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q \text {-factors }}
$$

of rank $r=p+q$. In this section, we obtain a formula that calculates the number of subgroups of G of index n. In the symmetric group S_{n}, a transposition is a cycle of length 2 , and any element of S_{n} of order 2 is a product of disjoint transpositions. It is clear that S_{n} has $n(n-1) / 2$ transpositions. Furthermore, in [9, p. 133], Rotman showed that the number D_{k} of sets of k disjoint transpositions in S_{n} is given by the formula

$$
D_{k}=\frac{1}{k!} \frac{1}{2^{k}} n(n-1)(n-2) \cdots(n-2 k+1)
$$

This implies that there are $\sum_{k=0}^{\left[\frac{n}{2}\right]} D_{k}$ elements of order 2 in S_{n}, where $[x]$ is the integer function of the real number x. By taking $D_{0}=1$, we see that in S_{n}, the number of elements E_{n} of order 2 including the identity element of S_{n} is given by the formula $E_{n}=\sum_{k=0}^{\left[\frac{n}{2}\right]} D_{k}$.

The following lemma is needed to prove the main result of this paper.
Lemma 4.1. (1) If d_{∞}^{n} denotes the number of homomorphisms from the infinite cyclic group C_{∞} to the symmetric group S_{n}, then $d_{\infty}^{n}=n!$.
(2) If d_{2}^{n} denotes the number of homomorphisms from the cyclic group C_{2} to the symmetric group S_{n}, then $d_{2}^{n}=E_{n}$.

Proof. (1) Let c be a generator of C_{∞} and g be any element of S_{n}, and $\phi:\{c\} \rightarrow S_{n}$ be the mapping given by $\phi(c)=g . C_{\infty}$ being a free group of base $\{c\}$ implies that there exists a unique homomorphism $\widetilde{\phi}: C_{\infty} \rightarrow S_{n}$ given by the formula $\widetilde{\phi}\left(c^{m}\right)=g^{m}, g$ being an arbitrary element of S_{n} and the order of S_{n} is $\left|S_{n}\right|=n!$ which implies that $d_{\infty}^{n}=n!$.
(2) Any homomorphism from C_{2} to S_{n} takes every element of C_{2} to the identity element of S_{n}, or takes the identity to the identity, and takes the generator of C_{2} to any element of S_{n} of order 2. Consequently, there are E_{n} homomorphisms from C_{2} to S_{n}.

This completes the proof.
Convention. Let $d_{\infty}^{0}=d_{2}^{0}=1$.
The main result of this paper is the following theorem:
Theorem 4.1. The number of subgroups N_{n} of finite index n of the finitely generated quasi-free group

$$
G=\underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p \text {-factors }} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q \text {-factors }}
$$

is given by the formula $N_{1}=1$ if $n=1$, and if $n>1$, then

$$
N_{n}=\frac{(n!)^{p}\left(E_{n}\right)^{q}}{(n-1)!}-\sum_{i=1}^{n-1} \frac{\left[(n!)^{p}\left(E_{n}\right)^{q}\right]^{n-1} N_{i}}{(n-1)!} .
$$

Proof. In [1, Theorem 6.10], Dey proved that if $A=\prod^{*} A_{j}(j \in J)$ is a free product of the groups A_{j}, where J is the finite set $\{1,2, \ldots, k\}$, and $d_{j}^{n}(n>0)$ is the number of homomorphisms of A_{j} into the symmetric group S_{n} on n symbols and $d_{j}^{0}=1$ then the number N_{n} of the subgroups
of A of index n is given by $N_{1}=1$ and if $n>1$, then

$$
N_{n}=\frac{\prod_{j=1}^{k} d_{j}^{n}}{(n-1)!}-\sum_{i=1}^{n-1}\left\{\frac{1}{(n-i)!}\right\} \prod_{j=1}^{k} d_{j}^{n-i} N_{i}
$$

In our case, the product $\prod_{j=1}^{k} d_{j}^{n}$ is replaced by the product

$$
\underbrace{d_{\infty}^{n} \times d_{\infty}^{n} \times \cdots \times d_{\infty}^{n}}_{p \text {-factors }} \times \underbrace{d_{2}^{n} \times d_{2}^{n} \times \cdots \times d_{2}^{n}}_{q \text {-factors }}=\left(d_{\infty}^{n}\right)^{p}\left(d_{2}^{n}\right)^{q}=(n!)^{p}\left(E_{n}\right)^{q}
$$

From above, we see that the number of subgroups N_{n} of finite index n of the group G is given by the formula

$$
N_{n}=\frac{\prod_{j=1}^{k} d_{j}^{n}}{(n-1)!}-\sum_{i=1}^{n-1}\left\{\frac{1}{(n-i)!}\right\} \prod_{j=1}^{k} d_{j}^{n-i} N_{i}
$$

This completes the proof.
We have the following corollaries:
Corollary 1. If G is the finitely generated free group

$$
G=\underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p \text {-factors }}
$$

of rank p, then the number of subgroups N_{n} of finite index n of G is given by the formula $N_{1}=1$ if $n=1$, and if $n>1$, then

$$
N_{n}=\frac{(n!)^{p}}{(n-1)!}-\sum_{i=1}^{n-1} \frac{\left[(n!)^{p}\right]^{n-i} N_{i}}{(n-i)!}
$$

which is the formula of Theorem 5.2 of [3].

Corollary 2. If G is the quasi-free group

$$
G=\underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q \text {-factors }}
$$

of rank q, then the number of subgroups of finite index n of G is given by the formula $N_{1}=1$ if $n=1$, and if $n>1$, then

$$
N_{n}=\frac{\left(E_{n}\right)^{q}}{(n-1)!}-\sum_{i=1}^{n-1} \frac{\left[\left(E_{n}\right)^{q}\right]^{n-1} N_{i}}{(n-1)!} .
$$

Acknowledgement

The author is grateful to the referee for sincere evaluation of the paper.

References

[1] I. M. S. Dey, Schreier system in free products, Proc. Glasgow Math. Soc. 7 (1965), 61-79.
[2] W. Dicks and M. J. Dunwoody, Groups Acting on Graphs, Cambridge University Press, 1989.
[3] M. Hall, Jr., Subgroups of finite index in free groups, Canad. J. Math. 1 (1949), 187-190.
[4] M. I. Khanfar and R. M. S. Mahmud, A note on groups acting on connected graphs, J. Univ. Kuwait Sci. 16(2) (1989), 205-208.
[5] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover Publications Inc., New York, 1976.
[6] R. M. S. Mahmood and M. I. Khanfar, A remark on fundamental groups of connected quasi-graphs, Math. Sci. Res. J. 8 (2004), 205-212.
[7] R. M. S. Mahmood, The subgroup theorem for groups acting on trees, Kuwait J. Sci. Engrg. 25(1) (1998), 17-33.
[8] R. M. S. Mahmud, Presentation of groups acting on trees with inversions, Proc. Roy. Soc. Edinburgh Sect. A 113(3-4) (1989), 235-241.
[9] J. J. Rotman, The Theory of Groups: an Introduction, Allyn and Bacon, 1973.
[10] J.-P. Serre, Trees, Translated by John Stillwell, Springer-Verlag, 1980.

