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Abstract 

A group G is said to be a quasi-free group if G is a free product            
of a number of infinite cyclic groups and a certain number of cyclic 
groups of order 2. In this paper, we find the rank, structure, and a 
formula indicating the number of subgroups of finite index in a finitely 
generated quasi-free group. 

1. Introduction 

A group is said to be a quasi-free group if it is a free product of copies  
of infinite cyclic groups and of cyclic groups of order 2. So a group G is a 
quasi-free group if and only if G is a free product of a free group and copies 
of cyclic groups of order 2. In [6], Mahmood and Khanfar proved that a 
group G is a quasi-free group if and only if G is a fundamental group of         
a connected quasi-graph where an edge of the graph equals its inverse is 
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allowed. Thus, if ∞C  stands for an infinite cyclic group and 2C  stands for a 

finite cyclic group of order 2, then a finitely generated quasi-free group G     
can be written as a free product ,
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where one of the cases 0=p  or 0=q  is possible. In this case, G has        

the presentation ,1...,,1...,,,...,, 22
111 ==|= qqp xxxxyyG  where all 

the symbols qp xxyy ...,,,...,, 11  are distinct. This implies that every free 

group is a quasi-free group of a free product of a number of infinite cyclic 
groups and a zero number of cyclic groups of order 2. In view of Grushko-
Neumann theorem [5, p. 192], the rank of the quasi-free group G introduced 
above is ( ) .qpGr +=  The aim of this paper is to find the generators and 

the ranks of subgroups of finite index of finitely generated quasi-free groups 
by applying the theory of groups acting on trees with inversions introduced 
in [8], and the structures of subgroups of groups acting on trees with 
inversions introduced in [7], and then find the number of subgroups of finite 
index by using the methods of [1]. This paper is divided into 4 sections. In 
Section 2, we introduce basic concepts of groups acting on trees with 
inversions. In Section 3, we use the results of [7] and [8] to prove that a 
group G is a quasi-free group if and only if there exists a tree X such that G 
acts on X with inversions and the stabilizer of each vertex is trivial. Then we 
use the results of [7] to show that a subgroup of a quasi-free group is a quasi-
free and find a formula of the rank of such subgroups. In Section 4, we 
generalize Theorem 5.2 [3] of Hall to obtain a formula for the number of 
subgroups of finite index of finitely generated quasi-free groups by using the 
methods of [1, Theorem 6.10] of Dey. 

2. Basic Concepts of Groups Acting on Trees with Inversions 

The theory of groups acting on trees without inversions, known Bass-
Serre theory is introduced in [2] and [10] and with inversions is introduced  
in [8]. We begin a general background. A graph X consists of two disjoint 
sets ( )XV  (the set of vertices of X) and ( )XE  (the set of edges of X),      
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with ( )XV  non-empty, together with three functions ( ) ( ),:0 XVXE →∂  
( ) ( ),:1 XVXE →∂  and an involution ( ) ( )XEXE →η :  satisfying the 

conditions 10 ∂=η∂  and .01 ∂=η∂  For simplicity, if ( ),XEe ∈  we write 

( ) ( ),0 eoe =∂  ( ) ( )ete =∂1  and ( ) .ee =η  This implies that ( ) ( ),eteo =  

( ) ( )eoet =  and .ee =  The case ee =  is allowed. There are obvious 

definitions of trees, subtrees, morphisms of graphs and ( ),XAut  the set of  

all automorphisms of the graph X which forms a group under the 
composition of morphisms of graphs. For more details, the interested readers 
are referred to [2, 8, 10]. We say that a group G acts on a graph X if there     
is a group homomorphism ( ).: XAutG →φ  In this case, if Xx ∈  (vertex 

or edge) and ,Gg ∈  we write ( )xg  for ( )( ) ( ).xgφ  Thus, if ,Gg ∈  and 

( ),XEy ∈  then ( )( ) ( )( ),ygoyog =  ( )( ) ( )( )ygtytg =  and ( ) ( ).ygyg =  

The case ( ) yyg =  is allowed for some ,Gg ∈  and ( ).XEy ∈  

Convention. If the group G acts on the graph X and Xx ∈  (x is a vertex 
or edge), then: 

(1) The stabilizer of x, denoted xG  is the set ( ){ }.: xxgGgGx =∈=  

It is clear that ,GGx ≤  and if ( )xEx ∈  and ( ) ( ){ },, xtxou ∈  then xx GG =  

and .ux GG ≤  

(2) The orbit of x is the set ( ) ( ){ } .: XGgxgxG ⊆∈=  It is clear         

that G acts on the graph X without inversions if and only if ( ) ( )eGeG ≠    

for any ( ).XEe ∈  Otherwise, G acts on X with inversions if and only if 

( ) ( )eGeG =  for some ( ).XEe ∈  

Definition. Let G be a group acting on a tree X with inversions and let T 
and Y be two subtrees of X such that YT ⊆  and each edge of Y has at least 

one end in T. Assume that T and Y satisfy the following: 

  (i) T contains exactly one vertex from each vertex orbit. 
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(ii) Y contains exactly one edge y (say) from edge orbit if ( ) ( )yGyG ≠  

and exactly one pair x, x  from each edge orbit if ( ) ( ).xGxG =  The pair 

( )YT ;  is called a fundamental domain for the action of G on X. 

For the existence of fundamental domains, we refer the readers to [4]. 

For the rest of this section, G is a group acting on a tree X with 
inversions and ( )YT ;  is the fundamental domain for the action of G on X. 

We have the following notation: 

(1) For any vertex ( ),XVv ∈  there exists a unique vertex denoted ∗v  of 

T and an element g (not necessarily unique) of G such that ( ) ;vvg =∗  that 

is, ( ) ( ).vGvG =∗  Moreover, if ( ),TVv ∈  then .vv =∗  

(2) For each edge ( ),YEy ∈  the value of y is denoted by [ ]y  and is 

defined to be an element of G satisfying the following: 

(a) If ( ) ( ),TVyo ∈  then [ ]( ( )( ) ) ( ),ytyty =∗  [ ] 1=y  in case ( ),TEy ∈  

and [ ]( ) yyy =  if ( ) ( ).yGyG =  

(b) If ( ) ( ),TVyt ∈  then [ ] ( )( ) ( )( ) ,∗= yoyoy  [ ] [ ] 1−= yy  if ( ) ( )yGyG ≠  

and [ ] [ ]yy =  if ( ) ( ).yGyG =  

(3) For each edge ( ),YEy ∈  let y+  be the edge yy =+  if ( ) ∈yo  

( )TV  and [ ]( )yyy =+  if ( ) ( ).TVyt ∈  It is clear that ( ) ( )( )∗=+ yoyo  and 

( )( )∗≤+ yoy GG  and if ( ) ( )yGyG =  or ( ),TEy ∈  then .yy GG =+  

In the next two theorems, G is a group acting on a tree X with inversions 
and ( )YT ;  is a fundamental domain for the action of G on X. Furthermore, 

m, y and x stand for edges of ( )YE  such that ( ),TEm ∈  ( ) ( ),TVyo ∈  

( ) ( ),TVyt ∉  ( ) ( ),yGyG ≠  and ( ) ( ),TVxo ∈  ( ) ( )TVxt ∉  and ( ) ( ).xGxG =  
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Theorem 2.1. G has the presentation 

( ) ( ) ,][][,,,, 11
yymmvv GyyGyyGGGrelxyGgen =⋅⋅=| −−  

.][, 221 xxGxGx xx ==⋅⋅ −  

Proof. See [8, Th. 5.1]. 

Theorem 2.2. If H is a subgroup of G, ( )TVv ∈  and ( ),YEe ∈  define 

the following: 

(a) vD  is a double coset representative system for ( );,mod vGHG  

(b) for any element ,Gg ∈  g
eD  and g

eD  are any double coset 

representative systems for ( ) ( ( ) )eeoeo GHggGG ,mod 1−∩  and 

( )( ) ( ( )( ) ).][][,mod 11 eGeHggGG eetet
−−

∗∗ ∩  

Then for any element ,Gw ∈  there exist unique elements denoted 

( )( ) ,][ ∗∈
et

Dew  [ ] ,g
eDew ∈  and an element denoted ee Gg ∈  such that 

[ ] [ ] [ ] .11
, Hewewewgeew ∈=δ

−−
 Then H is generated by the elements of the 

following forms: 

(1) the generators of ,1−aaGH v∩  where vDa ∈  and ( );TVv ∈  

(2) ,, mabδ  where ( )moDa ∈  and a
mDb ∈  such that ( );mtDab ∉  

(3) ,, yabδ  where ( )yoDa ∈  and a
yDb ∈  such that [ ] ( )( ) ;∗∉ ytDyab  

(4) ,, xabδ  where ( )xoDa ∈  and a
xDb ∈  such that [ ] ( )xoDxab ∉  and 

[ ] ;11 ∅=−− abGxabH x∩  

(5) [ ] ,11 −− abxab  where ( )xoDa ∈  and a
xDb ∈  such that [ ] ∉xab  

( ),xoD  and [ ] .11 ∅≠−− abGxabH x∩  

Proof. See [7, Th. 3]. 
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3. Quasi-free Groups and Groups Acting on Trees with Inversions 

In this section, we find the relations between quasi-free groups and 
groups acting on trees with inversions. First, we start the following lemma: 

Lemma 3.1. A group G is a quasi-free group if and only if there exists a 
tree X such that G acts on X with inversions and the stabilizer of each vertex 
is trivial. 

Proof. Let the group G act on the tree X with inversions such that the 
stabilizer of each vertex ( )XVv ∈  of G is trivial. That is, { },1=vG  where 1 

is the identity element of G. Then G has a fundamental domain ( )YT ;  for 

the action of G on X. By Theorem 2.1, G has the presentation 

( ) ( ) ,][][,,,, 11
yymmvv GyyGyyGGGrelxyGgen =⋅⋅=| −−  

,][, 221 xxGxGx xx ==⋅⋅ −  

where m, y and x are edges of ( )YE  such that ( ),TEm ∈  ( ) ( ),TVyo ∈  
( ) ( ),TVyt ∉  ( ) ( ),yGyG ≠  and ( ) ( ),TVxo ∈  ( ) ( ),TVxt ∉  ( ) ( ).xGxG =  

The condition that the stabilizer of each vertex is trivial implies that =mG  

{ }1== yv GG  and G has the presentation .1, 2 =|= xxyG  This implies 

that G is a free product of infinite cyclic groups generated by the edges 
( )YEy ∈  and cyclic groups of order 2 generated by the edges ( ).YEx ∈  

Now assume that G is a quasi-free group. We need to find a tree X such that 
G acts on X with inversions and the stabilizer of each vertex ( )XVv ∈  of X 

is { }.1=vG  Then G is the free product of infinite cyclic groups generated by 

,, Iiti ∈  and cyclic groups of order 2 generated by ,jt .Jj ∈  Then G has 

the presentation 1, 2 =|= jji tttG  for Ii ∈  and .Jj ∈  Let X be the graph 

where the set of vertices is ( ) { } ,: GGggXV =∈=  and the set of edges        

is ( ) {( ) ( ) ( )},,,,,, 1
jii tgtgtgXE −=  where ,Gg ∈  Ii ∈  and .Jj ∈  For 

the edges ( ),, itg  ( )1, −
itg  and ( ),, jtg  ,Ii ∈  ,Jj ∈  define ( ) =itgo ,  
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( ) ( ) ,,, 1 gtgotgo ji ==−  ( ) ,, ii gttgt =  ( ) ,, 11 −− = ii gttgt  and ( ) =jtgt ,  

,jgt  and ( ) ( ),,, 1−= iii tgttg  ( ) ( ),,, 11
iii tgttg −− =  and ( ) ( ) == −1,, jjj tgttg  

( )jj tgt ,  because jj tt =−1  on which jt  has order 2. G acts on X as follows. 

Let .Gf ∈  Then for the vertex Gg ∈  and the edges ( ),, itg  ( )1, −
itg  and 

( )jtg,  of X, define ( ) ,fggf =  ( ) ( ),,, ii tfgtgf =  ( ) ( ),,, 11 −− = ii tfgtgf  

and ( ) ( ).,, jj tfgtgf =  The action of G on X is with inversions because  

the element Gt j ∈  maps the edge ( )jt,1  to its inverse ( );,1 jt  that is, 

( ) ( ) ( ).,1,,1 jjjjj ttttt ==  The stabilizer of the vertex gv ∈  is { },1=vG  

the stabilizers of the edges ( ),, itg  ( )1, −
itg  and ( )jtg,  are { }.1  Each 

element ,Gg ∈  1≠g  can be written uniquely as ,21 ngggg …=  where 

{ },,:, JjIittg jis ∈∈∈  ....,,1 ns =  Then it is clear that 

( ) ( ) ( ) ( )nng ggggggggggP ;...,,;,;,;1: 121321211 −…  

is a reduced path in X joining the vertices 1 and g. Then for any non-identity 

elements a, b of G, ba PP 1−  is a path in X joining the vertices a and b. This 

implies that X is a connected graph. By the normal theorem for free product 
of groups, we can show that any two vertices of the graph are joined           
by exactly one reduced path. Consequently, X is a tree. It is clear that T           
and Y are subtrees of X, where { },1=T  ( ) { }JjIittYV ji ∈∈= ,:,,1  and 

( ) {( ) ( ) ( ) ( )}.,,,1,,1,,1 1
jjjii tttttYE −=  So ( )YT ;  is a fundamental domain 

for the action of G on X. The structure of ( )YE  implies that if ( ),YEe ∈  

then the value of e is [ ] { }.,:,, 1 JjIittte jii ∈∈∈ −  This completes the 

proof. 

Theorem 3.1. Let G be a quasi-free group of free product of infinite 
cyclic groups generated by ,it Ii ∈  and finite cyclic groups of order 2 

generated by ,jt .Jj ∈  
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Let { }.,:, JjIittA ji ∈∈=  Let H be a subgroup of G and B be a 

right transversal for H in G. Then for each elements Aa ∈  and ,Bb ∈  

there exists a unique element denoted Bba ∈  such that ( ) .1 Hbaba ∈−  

Furthermore, H is a quasi-free group generated by the set { ( ) :1−baba  
}., BbAa ∈∈  

Proof. Lemma 3.1 implies that there exists a tree X such that G acts on X 
with inversions and the stabilizer of each vertex ( )XEv ∈  under the action 

of G on X is trivial. That is, { }.1=vG  This implies that H acts on X and the 

stabilizer of each vertex ( )XEv ∈  under the action of H on X is trivial 

because { } { }.11 === ∩∩ HGHH vv  Again, Lemma 3.1 implies that H is 

a quasi-free group. Since for each edge ( )XEx ∈  of X, ,ux GG ≤  where 

( ) ( ){ },, xtxou ∈  and uG  is trivial, this implies that the stabilizer xG  is 

trivial. Then the elements g
eD  and g

eD  of Theorem 2.2 are trivial. So, for 

any element w of G, we have [ ] .1=ew  Furthermore, the double cosets 

become right cosets. Since { }1=T  is the tree of representatives for the 

action of G on X, where T has no edges, H is generated by the elements of 
forms (2) and (3) of Theorem 2.2. As Y is a transversal for the action of G on 
X, where ( ) { },,:,,1 JjIittYV ji ∈∈=  

( ) {( ) ( ) ( ) ( )}jjjii tttttYE ,,,1,,1,,1 1−=  

and for each ( ),YEe ∈  we have [ ] { }.,:,, 1 JjIittte jii ∈∈∈ −  Then H is 

generated by { ( ) }.,:1 BbAababa ∈∈−  This completes the proof. 

Corollary 3.1. Let H be a non-decomposable subgroup of the quasi-free 
group 

.
-
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Then either ∞= CH ~  or .~
2CH =  
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4. The Number of Subgroups of Index n in Quasi-free Groups 

Given a finitely generated quasi-free group 

��� 
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��� 	� "
factorsqfactorsp

CCCCCCG
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-
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of rank .qpr +=  In this section, we obtain a formula that calculates         

the number of subgroups of G of index n. In the symmetric group ,nS  a 

transposition is a cycle of length 2, and any element of nS  of order 2 is          

a product of disjoint transpositions. It is clear that nS  has ( ) 21−nn  
transpositions. Furthermore, in [9, p. 133], Rotman showed that the number 

kD  of sets of k disjoint transpositions in nS  is given by the formula 

( ) ( ) ( ).1221
2
1

!
1 +−−−= knnnnkD kk "  

This implies that there are ∑






=

2

0

n

k
kD  elements of order 2 in ,nS  where [ ]x  is 

the integer function of the real number x. By taking ,10 =D  we see that in 

,nS  the number of elements nE  of order 2 including the identity element of 

nS  is given by the formula ∑






=
=

2

0
.

n

k
kn DE  

The following lemma is needed to prove the main result of this paper. 

Lemma 4.1. (1) If nd∞  denotes the number of homomorphisms from the 

infinite cyclic group ∞C  to the symmetric group ,nS  then !.nd n =∞  

(2) If nd2  denotes the number of homomorphisms from the cyclic group 

2C  to the symmetric group ,nS  then .2 n
n Ed =  
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Proof. (1) Let c be a generator of ∞C  and g be any element of ,nS  and 

{ } nSc →φ :  be the mapping given by ( ) .gc =φ  ∞C  being a free group of 

base { }c  implies that there exists a unique homomorphism nSC →φ ∞:~  

given by the formula ( ) ,~ mm gc =φ  g being an arbitrary element of nS  and 

the order of nS  is !nSn =  which implies that !.nd n =∞  

(2) Any homomorphism from 2C  to nS  takes every element of 2C  to 

the identity element of ,nS  or takes the identity to the identity, and takes the 

generator of 2C  to any element of nS  of order 2. Consequently, there are 

nE  homomorphisms from 2C  to .nS  

This completes the proof. 

Convention. Let .10
2

0 ==∞ dd  

The main result of this paper is the following theorem: 

Theorem 4.1. The number of subgroups nN  of finite index n of the 

finitely generated quasi-free group 
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��� 	� "
factorsqfactorsp
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is given by the formula 11 =N  if ,1=n  and if ,1>n  then 

( ) ( )
( )

[( ) ( ) ]
( )∑

−

=

−

−
−

−
=

1

1

1
.!1

!
!1

! n

i

i
nq

n
pq

n
p

n n
NEn

n
EnN  

Proof. In [1, Theorem 6.10], Dey proved that if ( )∏∗ ∈= JjAA j  is        

a free product of the groups ,jA  where J is the finite set { },...,,2,1 k  and 

( )0>nd n
j  is the number of homomorphisms of jA  into the symmetric 

group nS  on n symbols and 10 =jd  then the number nN  of the subgroups 
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of A of index n is given by 11 =N  and if ,1>n  then 

( ) ( )∑ ∏
∏ −

= =

−=







−
−

−
=

1

1 1

1 .!
1

!1

n

i
i

k

j

in
j

k

j

n
j

n Ndinn

d

N  

In our case, the product ∏
=

k

j

n
jd

1
 is replaced by the product 

( ) ( ) ( ) ( ) .!2
-

222
-

q
n

pqnpn

factorsq

nnn

factorsp

nnn Endddddddd ==××××××× ∞∞∞∞ ��� 
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From above, we see that the number of subgroups nN  of finite index n of the 

group G is given by the formula 

( ) ( )∑ ∏
∏ −

= =

−=







−
−

−
=

1

1 1

1 .!
1

!1

n

i
i

k

j

in
j

k

j

n
j

n Ndinn

d

N  

This completes the proof. 

We have the following corollaries: 

Corollary 1. If G is the finitely generated free group 
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of rank p, then the number of subgroups nN  of finite index n of G is given by 

the formula 11 =N  if ,1=n  and if ,1>n  then 

( )
( )

[( ) ]
( )∑

−

=

−

−
−

−
=

1

1
!

!
!1

! n

i

i
inpp

n in
Nn

n
nN  

which is the formula of Theorem 5.2 of [3]. 
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Corollary 2. If G is the quasi-free group 
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��� 	� "
factorsq
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222 ∗∗∗=  

of rank q, then the number of subgroups of finite index n of G is given by the 
formula 11 =N  if ,1=n  and if ,1>n  then 

( )
( )

[( ) ]
( )∑

−

=

−

−
−

−
=

1

1

1
.!1!1

n

i

i
nq

n
q

n
n n

NE
n
EN  

Acknowledgement 

The author is grateful to the referee for sincere evaluation of the paper. 

References 

 [1] I. M. S. Dey, Schreier system in free products, Proc. Glasgow Math. Soc.              
7 (1965), 61-79. 

 [2] W. Dicks and M. J. Dunwoody, Groups Acting on Graphs, Cambridge University 
Press, 1989. 

 [3] M. Hall, Jr., Subgroups of finite index in free groups, Canad. J. Math. 1 (1949), 
187-190. 

 [4] M. I. Khanfar and R. M. S. Mahmud, A note on groups acting on connected 
graphs, J. Univ. Kuwait Sci. 16(2) (1989), 205-208. 

 [5] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover 
Publications Inc., New York, 1976. 

 [6] R. M. S. Mahmood and M. I. Khanfar, A remark on fundamental groups of 
connected quasi-graphs, Math. Sci. Res. J. 8 (2004), 205-212. 

 [7] R. M. S. Mahmood, The subgroup theorem for groups acting on trees, Kuwait J. 
Sci. Engrg. 25(1) (1998), 17-33. 

 [8] R. M. S. Mahmud, Presentation of groups acting on trees with inversions,             
Proc. Roy. Soc. Edinburgh Sect. A 113(3-4) (1989), 235-241. 

 [9] J. J. Rotman, The Theory of Groups: an Introduction, Allyn and Bacon, 1973. 

 [10] J.-P. Serre, Trees, Translated by John Stillwell, Springer-Verlag, 1980. 


