Far East Journal of Mathematical Sciences (FJMS)

© 2016 Pushpa Publishing House, Allahabad, India Published Online: July 2016

http://dx.doi.org/10.17654/MS100030439 Volume 100, Number 3, 2016, Pages 439-450

ISSN: 0972-0871

ON SUBGROUPS OF FINITE INDEX IN QUASI-FREE GROUPS

R. M. S. Mahmood

Department of Mathematics Irbid National University P.O. Box 2600, Code 21110 Irbid, Jordan

e-mail: rasheedmsm@yahoo.com

Abstract

A group G is said to be a quasi-free group if G is a free product of a number of infinite cyclic groups and a certain number of cyclic groups of order 2. In this paper, we find the rank, structure, and a formula indicating the number of subgroups of finite index in a finitely generated quasi-free group.

1. Introduction

A group is said to be a *quasi-free group* if it is a free product of copies of infinite cyclic groups and of cyclic groups of order 2. So a group G is a quasi-free group if and only if G is a free product of a free group and copies of cyclic groups of order 2. In [6], Mahmood and Khanfar proved that a group G is a quasi-free group if and only if G is a fundamental group of a connected quasi-graph where an edge of the graph equals its inverse is

Received: March 16, 2016; Revised: April 3, 2016; Accepted: May 15, 2016

2010 Mathematics Subject Classification: Primary 20E06; Secondary 03C45, 03C60, 20A05.

Keywords and phrases: free groups, quasi-free groups, subgroups of finite index, finitely generated groups, groups acting on trees with inversions.

Communicated by K. K. Azad

allowed. Thus, if C_{∞} stands for an infinite cyclic group and C_2 stands for a finite cyclic group of order 2, then a finitely generated quasi-free group G can be written as a free product $G = \underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p\text{-factors}} * \underbrace{C_2 * C_2 * \cdots * C_2}_{q\text{-factors}},$

where one of the cases p = 0 or q = 0 is possible. In this case, G has the presentation $G = \langle y_1, ..., y_p, x_1, ..., x_q | x_1^2 = 1, ..., x_q^2 = 1 \rangle$, where all the symbols $y_1, ..., y_p, x_1, ..., x_q$ are distinct. This implies that every free group is a quasi-free group of a free product of a number of infinite cyclic groups and a zero number of cyclic groups of order 2. In view of Grushko-Neumann theorem [5, p. 192], the rank of the quasi-free group G introduced above is r(G) = p + q. The aim of this paper is to find the generators and the ranks of subgroups of finite index of finitely generated quasi-free groups by applying the theory of groups acting on trees with inversions introduced in [8], and the structures of subgroups of groups acting on trees with inversions introduced in [7], and then find the number of subgroups of finite index by using the methods of [1]. This paper is divided into 4 sections. In Section 2, we introduce basic concepts of groups acting on trees with inversions. In Section 3, we use the results of [7] and [8] to prove that a group G is a quasi-free group if and only if there exists a tree X such that Gacts on X with inversions and the stabilizer of each vertex is trivial. Then we use the results of [7] to show that a subgroup of a quasi-free group is a quasifree and find a formula of the rank of such subgroups. In Section 4, we generalize Theorem 5.2 [3] of Hall to obtain a formula for the number of subgroups of finite index of finitely generated quasi-free groups by using the methods of [1, Theorem 6.10] of Dey.

2. Basic Concepts of Groups Acting on Trees with Inversions

The theory of groups acting on trees without inversions, known Bass-Serre theory is introduced in [2] and [10] and with inversions is introduced in [8]. We begin a general background. A graph X consists of two disjoint sets V(X) (the set of vertices of X) and E(X) (the set of edges of X),

with V(X) non-empty, together with three functions $\partial_0: E(X) \to V(X)$, $\partial_1: E(X) \to V(X)$, and an involution $\eta: E(X) \to E(X)$ satisfying the conditions $\partial_0 \eta = \partial_1$ and $\partial_1 \eta = \partial_0$. For simplicity, if $e \in E(X)$, we write $\partial_0(e) = o(e)$, $\partial_1(e) = t(e)$ and $\eta(e) = \overline{e}$. This implies that $o(\overline{e}) = t(e)$, $t(\overline{e}) = o(e)$ and $\overline{e} = e$. The case $\overline{e} = e$ is allowed. There are obvious definitions of trees, subtrees, morphisms of graphs and Aut(X), the set of all automorphisms of the graph X which forms a group under the composition of morphisms of graphs. For more details, the interested readers are referred to [2, 8, 10]. We say that a group G acts on a graph X if there is a group homomorphism $\phi: G \to Aut(X)$. In this case, if $x \in X$ (vertex or edge) and $g \in G$, we write g(x) for $(\phi(g))(x)$. Thus, if $g \in G$, and $y \in E(X)$, then g(o(y)) = o(g(y)), g(t(y)) = t(g(y)) and $g(\overline{y}) = \overline{g(y)}$. The case $g(y) = \overline{y}$ is allowed for some $g \in G$, and $y \in E(X)$.

Convention. If the group G acts on the graph X and $x \in X$ (x is a vertex or edge), then:

- (1) The stabilizer of x, denoted G_x is the set $G_x = \{g \in G : g(x) = x\}$. It is clear that $G_x \leq G$, and if $x \in E(x)$ and $u \in \{o(x), t(x)\}$, then $G_{\overline{x}} = G_x$ and $G_x \leq G_u$.
- (2) The orbit of x is the set $G(x) = \{g(x) : g \in G\} \subseteq X$. It is clear that G acts on the graph X without inversions if and only if $G(\overline{e}) \neq G(e)$ for any $e \in E(X)$. Otherwise, G acts on X with inversions if and only if $G(\overline{e}) = G(e)$ for some $e \in E(X)$.

Definition. Let G be a group acting on a tree X with inversions and let T and Y be two subtrees of X such that $T \subseteq Y$ and each edge of Y has at least one end in T. Assume that T and Y satisfy the following:

(i) T contains exactly one vertex from each vertex orbit.

(ii) Y contains exactly one edge y (say) from edge orbit if $G(y) \neq G(\overline{y})$ and exactly one pair x, \overline{x} from each edge orbit if $G(x) = G(\overline{x})$. The pair (T; Y) is called a *fundamental domain* for the action of G on X.

For the existence of fundamental domains, we refer the readers to [4].

For the rest of this section, G is a group acting on a tree X with inversions and (T; Y) is the fundamental domain for the action of G on X. We have the following notation:

- (1) For any vertex $v \in V(X)$, there exists a unique vertex denoted v^* of T and an element g (not necessarily unique) of G such that $g(v^*) = v$; that is, $G(v^*) = G(v)$. Moreover, if $v \in V(T)$, then $v^* = v$.
- (2) For each edge $y \in E(Y)$, the value of y is denoted by [y] and is defined to be an element of G satisfying the following:
- (a) If $o(y) \in V(T)$, then $[y]((t(y))^*) = t(y)$, [y] = 1 in case $y \in E(T)$, and $y = \bar{y}$ if $G(y) = G(\bar{y})$.
- (b) If $t(y) \in V(T)$, then $[y](o(y)) = (o(y))^*$, $[y] = [\bar{y}]^{-1}$ if $G(y) \neq G(\bar{y})$ and $[y] = [\bar{y}]$ if $G(y) = G(\bar{y})$.
- (3) For each edge $y \in E(Y)$, let +y be the edge +y = y if $o(y) \in V(T)$ and +y = y if $t(y) \in V(T)$. It is clear that $o(+y) = (o(y))^*$ and $G_{+y} \leq G_{(o(y))^*}$ and if $G(y) = G(\overline{y})$ or $y \in E(T)$, then $G_{+y} = G_y$.

In the next two theorems, G is a group acting on a tree X with inversions and (T; Y) is a fundamental domain for the action of G on X. Furthermore, m, y and x stand for edges of E(Y) such that $m \in E(T)$, $o(y) \in V(T)$, $t(y) \notin V(T)$, $G(y) \neq G(\overline{y})$, and $o(x) \in V(T)$, $t(x) \notin V(T)$ and $G(x) = G(\overline{x})$.

Theorem 2.1. *G* has the presentation

$$\langle gen(G_v), y, x | rel(G_v), G_m = G_{\overline{m}}, y \cdot [y]^{-1} G_y[y] \cdot y^{-1} = G_y,$$

 $x \cdot G_x \cdot x^{-1} = G_x, x^2 = [x]^2 \rangle.$

Proof. See [8, Th. 5.1].

Theorem 2.2. If H is a subgroup of G, $v \in V(T)$ and $e \in E(Y)$, define the following:

- (a) D_v is a double coset representative system for $G \mod(H, G_v)$;
- (b) for any element $g \in G$, D_e^g and $D_{\overline{e}}^g$ are any double coset representative systems for $G_{o(e)} \mod(G_{o(e)} \cap g^{-1}Hg, G_e)$ and

$$G_{(t(e))^*} \operatorname{mod}(G_{(t(e))^*} \cap g^{-1}Hg, [e]^{-1}G_e[e]).$$

Then for any element $w \in G$, there exist unique elements denoted $\overline{w[e]} \in D_{(t(e))^*}$, $\overline{w[e]} \in D_{\overline{e}}^{\overline{g}}$, and an element denoted $g_e \in G_e$ such that $\delta_{w,e} = wg_e[e]\overline{w[e]}^{-1}\overline{w[e]}^{-1} \in H$. Then H is generated by the elements of the following forms:

- (1) the generators of $H \cap aG_va^{-1}$, where $a \in D_v$ and $v \in V(T)$;
- (2) $\delta_{ab,m}$, where $a \in D_{o(m)}$ and $b \in D_m^a$ such that $ab \notin D_{t(m)}$;
- (3) $\delta_{ab,y}$, where $a \in D_{o(y)}$ and $b \in D_y^a$ such that $ab[y] \notin D_{(t(y))*}$;
- (4) $\delta_{ab,x}$, where $a \in D_{o(x)}$ and $b \in D_x^a$ such that $ab[x] \notin D_{o(x)}$ and $H \cap ab[x]G_xb^{-1}a^{-1} = \emptyset$;
- (5) $ab[x]b^{-1}a^{-1}$, where $a \in D_{o(x)}$ and $b \in D_x^a$ such that $ab[x] \notin D_{o(x)}$, and $H \cap ab[x]G_xb^{-1}a^{-1} \neq \emptyset$.

Proof. See [7, Th. 3].

3. Quasi-free Groups and Groups Acting on Trees with Inversions

In this section, we find the relations between quasi-free groups and groups acting on trees with inversions. First, we start the following lemma:

Lemma 3.1. A group G is a quasi-free group if and only if there exists a tree X such that G acts on X with inversions and the stabilizer of each vertex is trivial.

Proof. Let the group G act on the tree X with inversions such that the stabilizer of each vertex $v \in V(X)$ of G is trivial. That is, $G_v = \{1\}$, where 1 is the identity element of G. Then G has a fundamental domain (T; Y) for the action of G on X. By Theorem 2.1, G has the presentation

$$\langle gen(G_v), y, x | rel(G_v), G_m = G_{\overline{m}}, y \cdot [y]^{-1} G_y[y] \cdot y^{-1} = G_y,$$

 $x \cdot G_x \cdot x^{-1} = G_x, x^2 = [x]^2 \rangle,$

where m, y and x are edges of E(Y) such that $m \in E(T)$, $o(y) \in V(T)$, $t(y) \notin V(T)$, $G(y) \neq G(\overline{y})$, and $o(x) \in V(T)$, $t(x) \notin V(T)$, $G(x) = G(\overline{x})$. The condition that the stabilizer of each vertex is trivial implies that $G_m = G_v = G_y = \{1\}$ and G has the presentation $G = \langle y, x | x^2 = 1 \rangle$. This implies that G is a free product of infinite cyclic groups generated by the edges $y \in E(Y)$ and cyclic groups of order 2 generated by the edges $x \in E(Y)$. Now assume that G is a quasi-free group. We need to find a tree X such that G acts on X with inversions and the stabilizer of each vertex $v \in V(X)$ of X is $G_v = \{1\}$. Then G is the free product of infinite cyclic groups generated by $t_i, i \in I$, and cyclic groups of order 2 generated by $t_j, j \in J$. Then G has the presentation $G = \langle t_i, t_j | t_j^2 = 1 \rangle$ for $i \in I$ and $j \in J$. Let X be the graph where the set of vertices is $V(X) = \{g : g \in G\} = G$, and the set of edges is $E(X) = \{(g, t_i), (g, t_i^{-1}), (g, t_j)\}$, where $g \in G$, $g \in G$ and $g \in G$. For the edges $g \in G$, $g \in G$.

 $o(g,\,t_i^{-1}) = o(g,\,t_j) = g, \quad t(g,\,t_i) = gt_i, \quad t(g,\,t_i^{-1}) = gt_i^{-1}, \quad \text{and} \quad t(g,\,t_j) = gt_j, \quad \text{and} \quad \overline{(g,\,t_i)} = (gt_i,\,t_i^{-1}), \quad \overline{(g,\,t_i^{-1})} = (gt_i^{-1},\,t_i), \quad \text{and} \quad \overline{(g,\,t_j)} = (gt_j,\,t_j^{-1}) = gt_j, \quad t_j^{-1} = t_j, \quad \text{on which} \quad t_j \quad \text{has order 2.} \quad G \text{ acts on } \quad X \text{ as follows.}$ Let $f \in G$. Then for the vertex $g \in G$ and the edges $(g,\,t_i), \quad (g,\,t_i^{-1}) = (gt_j,\,t_j), \quad f(g,\,t_i^{-1}) = (fg,\,t_i^{-1}), \quad f(g,\,t_i^{-1}), \quad f(g,\,t_i^{-1}), \quad f(g,\,t_i^{-1}), \quad f(g,\,t_i^{-1}) = (fg,\,t_i^{-1}), \quad f(g,\,t_i^{-1}), \quad f(g$

$$P_g:(1; g_1), (g_1; g_2), (g_1g_2; g_3), ..., (g_1g_2...g_{n-1}; g_n)$$

is a reduced path in X joining the vertices 1 and g. Then for any non-identity elements a, b of G, $P_a^{-1}P_b$ is a path in X joining the vertices a and b. This implies that X is a connected graph. By the normal theorem for free product of groups, we can show that any two vertices of the graph are joined by exactly one reduced path. Consequently, X is a tree. It is clear that T and Y are subtrees of X, where $T = \{1\}$, $V(Y) = \{1, t_i, t_j : i \in I, j \in J\}$ and $E(Y) = \{(1, t_i), (1, t_i^{-1}), (1, t_j), (t_j, t_j)\}$. So (T; Y) is a fundamental domain for the action of G on X. The structure of E(Y) implies that if $e \in E(Y)$, then the value of e is $[e] \in \{t_i, t_i^{-1}, t_j : i \in I, j \in J\}$. This completes the proof.

Theorem 3.1. Let G be a quasi-free group of free product of infinite cyclic groups generated by t_i , $i \in I$ and finite cyclic groups of order 2 generated by t_j , $j \in J$.

Let $A = \{t_i, t_j : i \in I, j \in J\}$. Let H be a subgroup of G and B be a right transversal for H in G. Then for each elements $a \in A$ and $b \in B$, there exists a unique element denoted $\overline{ba} \in B$ such that $ba(\overline{ba})^{-1} \in H$. Furthermore, H is a quasi-free group generated by the set $\{ba(\overline{ba})^{-1}: a \in A, b \in B\}$.

Proof. Lemma 3.1 implies that there exists a tree X such that G acts on X with inversions and the stabilizer of each vertex $v \in E(X)$ under the action of G on X is trivial. That is, $G_v = \{1\}$. This implies that H acts on X and the stabilizer of each vertex $v \in E(X)$ under the action of H on X is trivial because $H_v = H \cap G_v = H \cap \{1\} = \{1\}$. Again, Lemma 3.1 implies that H is a quasi-free group. Since for each edge $x \in E(X)$ of X, $G_x \leq G_u$, where $u \in \{o(x), t(x)\}$, and G_u is trivial, this implies that the stabilizer G_x is trivial. Then the elements D_e^g and D_e^g of Theorem 2.2 are trivial. So, for any element w of G, we have $\overline{w[e]} = 1$. Furthermore, the double cosets become right cosets. Since $T = \{1\}$ is the tree of representatives for the action of G on X, where T has no edges, H is generated by the elements of forms (2) and (3) of Theorem 2.2. As Y is a transversal for the action of G on X, where $V(Y) = \{1, t_i, t_j : i \in I, j \in J\}$,

$$E(Y) = \{(1, t_i), (1, t_i^{-1}), (1, t_i), (t_i, t_i)\}$$

and for each $e \in E(Y)$, we have $[e] \in \{t_i, t_i^{-1}, t_j : i \in I, j \in J\}$. Then H is generated by $\{ba(\overline{ba})^{-1} : a \in A, b \in B\}$. This completes the proof.

Corollary 3.1. *Let H be a non-decomposable subgroup of the quasi-free group*

$$G = \underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p\text{-factors}} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q\text{-factors}}.$$

Then either $H \cong C_{\infty}$ or $H \cong C_2$.

4. The Number of Subgroups of Index *n* in Quasi-free Groups

Given a finitely generated quasi-free group

$$G = \underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p\text{-factors}} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q\text{-factors}}$$

of rank r = p + q. In this section, we obtain a formula that calculates the number of subgroups of G of index n. In the symmetric group S_n , a transposition is a cycle of length 2, and any element of S_n of order 2 is a product of disjoint transpositions. It is clear that S_n has n(n-1)/2 transpositions. Furthermore, in [9, p. 133], Rotman showed that the number D_k of sets of k disjoint transpositions in S_n is given by the formula

$$D_k = \frac{1}{k!} \frac{1}{2^k} n(n-1)(n-2) \cdots (n-2k+1).$$

This implies that there are $\sum_{k=0}^{\left[\frac{n}{2}\right]}D_k$ elements of order 2 in S_n , where [x] is the integer function of the real number x. By taking $D_0=1$, we see that in

 S_n , the number of elements E_n of order 2 including the identity element of

$$S_n$$
 is given by the formula $E_n = \sum_{k=0}^{\left[\frac{n}{2}\right]} D_k$.

The following lemma is needed to prove the main result of this paper.

Lemma 4.1. (1) If d_{∞}^n denotes the number of homomorphisms from the infinite cyclic group C_{∞} to the symmetric group S_n , then $d_{\infty}^n = n!$.

(2) If d_2^n denotes the number of homomorphisms from the cyclic group C_2 to the symmetric group S_n , then $d_2^n = E_n$.

Proof. (1) Let c be a generator of C_{∞} and g be any element of S_n , and $\phi:\{c\}\to S_n$ be the mapping given by $\phi(c)=g$. C_{∞} being a free group of base $\{c\}$ implies that there exists a unique homomorphism $\widetilde{\phi}:C_{\infty}\to S_n$ given by the formula $\widetilde{\phi}(c^m)=g^m$, g being an arbitrary element of S_n and the order of S_n is $|S_n|=n!$ which implies that $d_{\infty}^n=n!$.

(2) Any homomorphism from C_2 to S_n takes every element of C_2 to the identity element of S_n , or takes the identity to the identity, and takes the generator of C_2 to any element of S_n of order 2. Consequently, there are E_n homomorphisms from C_2 to S_n .

This completes the proof.

Convention. Let
$$d_{\infty}^0 = d_2^0 = 1$$
.

The main result of this paper is the following theorem:

Theorem 4.1. The number of subgroups N_n of finite index n of the finitely generated quasi-free group

$$G = \underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p-factors} * \underbrace{C_{2} * C_{2} * \cdots * C_{2}}_{q-factors}$$

is given by the formula $N_1 = 1$ if n = 1, and if n > 1, then

$$N_n = \frac{(n!)^p (E_n)^q}{(n-1)!} - \sum_{i=1}^{n-1} \frac{[(n!)^p (E_n)^q]^{n-1} N_i}{(n-1)!}.$$

Proof. In [1, Theorem 6.10], Dey proved that if $A = \prod^* A_j$ $(j \in J)$ is a free product of the groups A_j , where J is the finite set $\{1, 2, ..., k\}$, and d_j^n (n > 0) is the number of homomorphisms of A_j into the symmetric group S_n on n symbols and $d_j^0 = 1$ then the number N_n of the subgroups

of A of index n is given by $N_1 = 1$ and if n > 1, then

$$N_n = \frac{\prod_{j=1}^k d_j^n}{(n-1)!} - \sum_{i=1}^{n-1} \left\{ \frac{1}{(n-i)!} \right\} \prod_{j=1}^k d_j^{n-i} N_i.$$

In our case, the product $\prod_{j=1}^{k} d_j^n$ is replaced by the product

$$\underbrace{d_{\infty}^{n} \times d_{\infty}^{n} \times \cdots \times d_{\infty}^{n}}_{p\text{-factors}} \times \underbrace{d_{2}^{n} \times d_{2}^{n} \times \cdots \times d_{2}^{n}}_{q\text{-factors}} = (d_{\infty}^{n})^{p} (d_{2}^{n})^{q} = (n!)^{p} (E_{n})^{q}.$$

From above, we see that the number of subgroups N_n of finite index n of the group G is given by the formula

$$N_n = \frac{\prod_{j=1}^k d_j^n}{(n-1)!} - \sum_{i=1}^{n-1} \left\{ \frac{1}{(n-i)!} \right\} \prod_{j=1}^k d_j^{n-i} N_i.$$

This completes the proof.

We have the following corollaries:

Corollary 1. *If G is the finitely generated free group*

$$G = \underbrace{C_{\infty} * C_{\infty} * \cdots * C_{\infty}}_{p\text{-factors}}$$

of rank p, then the number of subgroups N_n of finite index n of G is given by the formula $N_1 = 1$ if n = 1, and if n > 1, then

$$N_n = \frac{(n!)^p}{(n-1)!} - \sum_{i=1}^{n-1} \frac{[(n!)^p]^{n-i} N_i}{(n-i)!}$$

which is the formula of Theorem 5.2 of [3].

Corollary 2. *If G is the quasi-free group*

$$G = \underbrace{C_2 * C_2 * \dots * C_2}_{q\text{-factors}}$$

of rank q, then the number of subgroups of finite index n of G is given by the formula $N_1 = 1$ if n = 1, and if n > 1, then

$$N_n = \frac{(E_n)^q}{(n-1)!} - \sum_{i=1}^{n-1} \frac{[(E_n)^q]^{n-1} N_i}{(n-1)!}.$$

Acknowledgement

The author is grateful to the referee for sincere evaluation of the paper.

References

- [1] I. M. S. Dey, Schreier system in free products, Proc. Glasgow Math. Soc. 7 (1965), 61-79.
- [2] W. Dicks and M. J. Dunwoody, Groups Acting on Graphs, Cambridge University Press, 1989.
- [3] M. Hall, Jr., Subgroups of finite index in free groups, Canad. J. Math. 1 (1949), 187-190.
- [4] M. I. Khanfar and R. M. S. Mahmud, A note on groups acting on connected graphs, J. Univ. Kuwait Sci. 16(2) (1989), 205-208.
- [5] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover Publications Inc., New York, 1976.
- [6] R. M. S. Mahmood and M. I. Khanfar, A remark on fundamental groups of connected quasi-graphs, Math. Sci. Res. J. 8 (2004), 205-212.
- [7] R. M. S. Mahmood, The subgroup theorem for groups acting on trees, Kuwait J. Sci. Engrg. 25(1) (1998), 17-33.
- [8] R. M. S. Mahmud, Presentation of groups acting on trees with inversions, Proc. Roy. Soc. Edinburgh Sect. A 113(3-4) (1989), 235-241.
- [9] J. J. Rotman, The Theory of Groups: an Introduction, Allyn and Bacon, 1973.
- [10] J.-P. Serre, Trees, Translated by John Stillwell, Springer-Verlag, 1980.