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Abstract 

The local electrical neutrality has been assumed to investigate the 
transverse ion transport through an ion-exchange membrane with              
a fixed charge density. General analytical expressions satisfying               
the Poisson-Nernst-Planck equations were sought to reveal ion 
concentration and electric potential profiles within the membrane. The 
Donnan equations were exploited to link the concentration in the 
solution and the concentration in the membrane at the interface.           
The osmotic pressure driven convection was also taken into account 
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for full consideration, in addition to molecular diffusion and 
electrophoresis. The resulting set of the analytical expressions are 
found to agree well with the numerical results based on the full 
Poisson-Nernst-Planck equations without assuming the local electrical 
neutrality. The validation of the present analytic expressions was 
followed by a series of computations to investigate the characteristics 
of various parameters associated with the ion transport through an ion-
exchange membrane with a fixed charge density. 

Nomenclature 

 c : concentration of ion [ ]3mmol  

ic  : concentration of ion in the solution bath [ ]3mmol  

mic  : concentration of +Na  in the membrane [ ]3mmol  

( ) [ ]3
21 mmol2mmmQ ccc +=  

iD  : diffusion coefficient of ion in the solution bath [ ]sm2  

miD  : diffusion coefficient of ion in the membrane [ ]sm2  

F : Faraday constant [96485C/mol] 

i : current density [ ]2mA  

iJ  : ion flux [ ]smmol 2  

pL  : permeability of the membrane [ ]molsm2  

ml  : membrane thickness [m] 

R : gas constant [8.314 J/mol K] 
T : temperature [K] 
u :  velocity component in x direction [m/s] 
v : velocity component in y direction [m/s] 
p : pressure [Pa] 
x : vertical coordinate [m] 
y : transverse coordinate [m] 
z : valency of an ion [-] 
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Greek symbols 

δ : concentration boundary thickness [m] 

ρ : density [ ]3mkg  

φ : voltage [V], ( ) ( )mlφ−φ=φΔ 0  

ε : dielectric permittivity [ ]mF  

Subscript 

i : 1 and 2 for cation and anion, respectively 

m : membrane 

1 : cation 

2 : anion 

Introduction 

Ion transport through ion-exchange membranes is of great importance, 
since it controls the ionic concentrations in electrodialysis cells (e.g., [1, 2]). 
However, such ion transport processes are quite complicated, due to coupling 
among cation, anion and solvents fluxes. Usually, multiple electrodialysis 
cells are arranged to form an electrodialysis stack with alternating anion and 
cation exchange membranes, in which ion transport takes place under an 
applied electric potential difference. The ions pass through the membrane, 
travelling from the solution on one side of the membrane to the other side. 

Numerical simulations of such ion transport in an electrodialysis stack 
are quite formidable, since the length scales associated with ion 
concentration fields within the cells are much larger than those in the 
membranes which are too thin to be resolved spatially. However, such a 
coupling problem resulting from the difference in length scales can be 
overcome by introducing an analytical model to describe the ion transport 
within the ion-exchange membrane with a fixed charge density. Thus, 
without resorting to detailed numerical calculations within the thin 
membranes, one can couple the ion concentration fields within the membrane 
with those in the adjacent electrodialysis cells in the stack. 
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A considerable number of attempts were made to solve the problems 
encountered in the ion transport across the ion-exchange membrane with a 
fixed charge density. The set of the principal ion transport equations involve 
in the Nernst-Planck equation and the Poisson equation (i.e., Maxwell’s first 
law or Gauss’s law for the electric field), which is commonly referred to as 
the Poisson-Nernst-Planck equations (PNP). Manzanares et al. [3] and many 
others (e.g., Flavell et al. [4], Jasielec et al. [5]) appealed to numerical 
solutions of the Poisson-Nernst-Planck equations. 

Since the electroneutrality does not hold in the electrical double layer 
adjacent to the membrane surface, the Poisson equation should be solved 
together with the Nernst-Planck equation to reveal the space-charge 
concentrations in the electrical double layer with thickness in the range of 
several Debye lengths, which is even thinner than the membranes (note that 
the electrical double diffusion layer inside the membrane is even thinner).    
In view of practical applications, such computations are not desirable, 
because of high spatial resolutions required, which one cannot afford          
even with a super-computer available today. Fortunately, in the diffusion 
boundary layer outside the electrical double layer (i.e., several Debye lengths 
away from the membrane surface), the local electrical neutrality holds such 
that the cation and anion concentrations are locally identical. 

In this study, we shall exploit the local electrical neutrality assumption to 
consider the transverse ion transport through an ion-exchange membrane 
with a fixed charge density. Analytical expressions satisfying the Nernst-
Planck equations are sought to reveal ion concentration and electric potential 
profiles within the membrane. The Donnan equations are used to link the 
concentration in the solution and the concentration in the membrane at the 
interface [6]. The osmotic pressure driven convection is also taken into 
account, in addition to molecular diffusion and electrophoresis since it 
always takes place in an electrodialysis stack consisting of feeding and 
concentrating cells. The analytical expressions obtained here for coupling the 
ion concentration fields in the membrane with those in the adjacent 
electrodialysis cells can readily be implemented to conduct full scale 
numerical computations of ion transport in a whole system of electrodialysis 
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cells and electrodes. Thus, the present expressions, when combined with full 
numerical computations within electrodialysis cells, can save considerable 
CPU time. 

Physical Model 

The membrane system under the present study is illustrated in Figure 1 in 
which only several compartments in an electrodialysis system are presented. 
One representative cell may represent any one of cells in the electrodialysis 
stack, since they are repeatedly arranged. Upon analyzing convective ion 
transport within the unit cell, we can understand how overall stack system 
will perform under specified feed conditions. 

 

Figure 1. Physical model (electrodialysis cells). 

Thus, we shall focus on the cation exchange membrane ( )mly ≤≤0  

and its left hand-side (feeding side) and right hand-side diffusion boundary 
(concentrating side) layers, namely, those thin diffusion layers located at 

0≤≤δ− y  and .δ+≤≤ mm lyl  The thickness of concentration boundary 

layer δ is very small, since a porous spacer is placed in the compartment, to 
enhance mechanical mixing of electrolyte solutions. 
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Direct current passes along the y axis in the direction perpendicular to the 
ion-exchange membranes. The electrolyte concentration within the solution 
decreases toward the interface of the left hand side of the membrane at 

.0=y  The cation exchange membrane naturally blocks the anions. Thus, 

the cation concentration is high within the membrane which contains fixed 
negatively charged groups at a uniform concentration Q, while its anion 
concentration is very much low, or virtually zero for the case of ideal ion-
exchange membrane. Away from the right hand-side interface of the 
membrane at ,mly =  the electrolyte concentration decreases to its bulk value 

in the concentrating compartment which is naturally higher than the bulk 
concentration in the feeding compartment. 

In the present analysis, we shall consider an overflow type of 
electrodialysis with the concentrating compartments sealed at the bottom end. 
In such a system, osmotic pressure driven flows across the membranes are no 
longer negligible. Thus, we shall also take account of the ion flux resulting 
from the osmotic flow in addition to diffusion and electrophoresis. 
Electrodialysis systems of this type have an advantage of producing high 
concentration concentrate and thus are commonly used in Japan. 

In this paper, we shall follow Manzanares et al. [3] and many others, and 
consider a particular region covering an ion-exchange membrane and two 
adjacent diffusion layers, namely, ,δ+≤≤δ− mly  indicated by the two 

dashed lines in Figure 1. A steady state one-dimensional ion transport is 
considered across the membrane under the conditions of osmotic pressure 
driven flow with its velocity v. In an actual electrodialysis stack, an 
estimation of such osmotic flow velocity and bulk electrolyte concentration 
fields can be made by solving the set of Navier-Stokes equations and mass 
transfer equations in individual cells, along with the set of analytic 
expressions such as those derived in this paper. A coupling procedure will be 
presented in a separate paper in near future. 

As for the present one-dimensional analysis, the Nernst-Planck equations 
are assumed to be valid for all three layers, namely, the membrane and two 
diffusion boundary layers [6, 7]. The concentrations at the membrane-
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solution interfaces inside the membrane are related through the Donnan 
equations to the concentrations at the membrane-solution interfaces in the 
adjacent diffusion boundary layers. The Donnan equations are assumed to be 
valid even when electric current passes through the interface. The discussion 
on the validity of the Donnan equations may be found in [8]. 

Analysis in the Membrane 

The sodium chloride ions are dissolved such that .ClNaNaCl −+ +→  
We shall first consider the ion transport through the membrane. The ion 
concentrations mic  1( =i  for the cations and 2 for the cations) and electric 

potential φ within the cation-exchange membrane at mly ≤≤0  (see Figure 

1) may be investigated using the Nernst-Planck equation for the total ion 
flux: 

,mimi
miimi

mii vcdy
dcRT

FDz
dy

dcDJ +φ−−=  (1) 

where a locally unidirectional ion transport across the membrane is assumed. 
The subscript m indicates membrane, iz  is the ion valency, miD  the ion 

diffusion coefficient in the membrane, v the osmotic pressure driven velocity, 
[ ],molC96485=F  [ ]KmolJ314.8=R  and [ ]KT  have their usual 

meanings, Faraday constant, ideal gas constant and absolute temperature. 
Writing it for individual ions: 

,Cation:11
11

11
++

φ
−−= Navc

dy
dc

RT
FD

dy
dcDJ mm

mm
m  (2-a) 

.ClAnion:22
22

22
−+φ+−= mm

mm
m vcdy

dcRT
FD

dy
dcDJ  (2-b) 

In order to determine the ion distributions 1mc  and 2mc  in the membrane, 

we may prescribe the ion fluxes 1J  and .2J  Alternatively, we can provide 

the current density 

( )∑ −==
i

ii JJFJzFi 21  (3) 
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such that 

dy
dcDdy

dcDJJF
i m

m
m

m
2

2
1

121 +−=−=  

( ) ( )212211 mmmmmm ccvdy
dcDcDRT

F −+φ+−  (4) 

and the electroneutrality assumption: 

Qcc mm += 21  (5) 

or 

21
Qcc mQm +=  (6-a) 

and 

,22
Qcc mQm −=  (6-b) 

where 

( ) 221 mmmQ ccc +=  (7) 

Q is the negative exchange capacity of the cation exchange membrane. 
Following Sistat and Pourcelly [9], the foregoing equation may be re-written 
in terms of the new variable mQc  as 

( ) ( ) mQmm
mQ

mm cdy
dDDRT

F
dy

dc
DDF

i φ+−−−= 2121  

 ( ) vQdy
dQDDRT

F
mm +φ−− 221  (8) 

which can be transformed into: 

⎟
⎠
⎞

⎜
⎝
⎛ φ

−
+

⎟
⎠
⎞⎜

⎝
⎛ − RT

F
DD
DDvQF

i
mm
mm

21
21exp  

( ) .exp2 21
21

21
21

21 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ φ

−
+

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+−−= RT
F

DD
DDQ

DD
DDcdy

dDD
mm
mm

mm
mm

mQmm  
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Both left and right hand side terms may be integrated from 0 to y as 

( )21 mm DDvQF
i −−=⎟

⎠
⎞⎜

⎝
⎛ −  

( ) ( )

( )

( )
.

exp

20

exp2

0
0

21
21

21
21

0
21
21

21
21

∫ ⎟
⎠
⎞

⎜
⎝
⎛ φ−φ

−
+

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+−

⎟
⎠
⎞

⎜
⎝
⎛ φ−φ

−
+

⎟
⎠
⎞

⎜
⎝
⎛

+
−

+
×

y

mm
mm

mm
mm

mQ

mm
mm

mm
mm

mQ

dyRT
F

DD
DD

Q
DD
DDc

RT
F

DD
DDQ

DD
DDyc

 

Thus, ( ),ycmQ  for given ( ),yφ  may be evaluated from 

( )

( )

( )( )

( )( )
.20exp

0exp

20

21
21

21
21

0 21
21

2121
21

Q
DD
DD

RT
F

DD
DD

dyRT
F

DD
DD

DD

vQF
i

Q
DD
DDc

yc
mm
mm

mm
mm

y

mm
mm

mmmm
mm

mQ

mQ +
−

−
⎟
⎠
⎞

⎜
⎝
⎛ φ−φ

+
+

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ φ−φ

−
+

×

−

−
−

+
−

+

=
∫

 (9) 

This analytical expression deserves special attention in the sense that          
the effects of convective velocity on the ion concentration in the membrane 
are taken into account analytically for the first time. The cation and           
anion concentrations ( )ycm1  and ( )ycm2  in the membrane can be evaluated 

substituting equation (9) into equation (6-a) and (6-b), respectively. 
Furthermore, the cation and anion fluxes may be determined by the following 
equation obtained by integrating equation (1): 

( )

( ) ( ) ( )( )

( ) ( )( )
.

0exp

0exp2

20

0

1

∫ ⎟
⎠
⎞⎜

⎝
⎛ φ−φ

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

φ−φ
⎟
⎠
⎞⎜

⎝
⎛ +−

⎟
⎠
⎞⎜

⎝
⎛ +

=
ml

i

m
mm

iimmQ

imQ

mii
dyRT

yFz

D
vl

RT
lFzQzlc

Qzc

DJ  (10) 
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Hence, 

( )

( ) ( ) ( )( )

( )( )
,

0exp

0exp2

20

0 1

1
11

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −φ−φ

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

φ−φ
−⎟

⎠
⎞⎜

⎝
⎛ +−

⎟
⎠
⎞⎜

⎝
⎛ +

=
ml

m

m
mm

mmQ

mQ

m
dyD

vy
RT

F
D
vl

RT
lFQlc

Qc

DJ  (11-a) 

( )

( ) ( ) ( )( )

( )( )
.

0exp

0exp2

20

0 2

2
22

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −φ−φ−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

φ−φ
⎟
⎠
⎞⎜

⎝
⎛ −−

⎟
⎠
⎞⎜

⎝
⎛ −

=
ml

m

m
mm

mmQ

mQ

m
dyD

vy
RT

F
D
vl

RT
lFQlc

Qc

DJ  (11-b) 

Since the cation exchange membrane is homogeneous, the Poisson 
equation reduces to 

( )( ) ,021
2

2
=

ε
+−

−=φ
m

mm QccF
dy
d  (12) 

where mε  is the dielectric permittivity in the membrane. Thus, across the 

membrane, the electric potential drops almost linearly, namely, 

( ) ,0 ⎟
⎠
⎞

⎜
⎝
⎛φΔ−=φ−φ

ml
y  (13) 

where ( ) ( ) .00 >φ−φ=φΔ ml  

Substitution of equation (13) into (9) yields 

( )

( )

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛φΔ

−
+

−

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛φΔ

−
+

−−×

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

φΔ−

−
−

+
−

+

=

mmm
mm

mmm
mm

mm

m
m

mm
mm

mQ

mQ

l
y

RT
F

DD
DD

l
y

RT
F

DD
DD

F
RT

DD

QvlF
il

Q
DD
DDc

yc

21
21

21
21

2121
21

exp

exp1

20

 (14) 
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which gives the inter-relation between the ion concentration and electric 
potential within the membrane. The Donnan equations should be used to 
match the concentrations ( )0mQc  and ( )mmQ lc  in the membrane with the 

concentrations ( )0c  and ( )mlc  in the solutions as follows: 

( ) ( )( ) ,400 2 QccmQ +=  (15-a) 

( ) ( )( ) .4
2 Qlclc mmmQ +=  (15-b) 

Note that the transverse velocity v due to the osmotic pressure is given 
by 

( ) ( )( ),0clcRTLv mp −=  (16) 

where pL  is the permeability of the membrane. 

Thus, once the concentrations ( )0c  and ( )mlc  in the solutions at the 

membrane interface are given, the concentration ( )ycm1  and ( )ycm2  and the 

electric potential difference φΔ  within the membrane will be determined in 

such a way as to satisfy the Donnan equations (15-a) and (15-b). 

Equations (11-a) and (11-b), for the case of linear potential distribution, 
reduce to 

( )

( )
,

exp1

exp2

20

1

1
1

1
1

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +φΔ−−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +φΔ−⎟

⎠
⎞⎜

⎝
⎛ +−

⎟
⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +φΔ=

m
m

m
m

mmQ

mQ

m
m

m
m

D
vl

RT
F

D
vl

RT
FQlc

Qc

D
vl

RT
F

l
DJ  (17-a) 

( )

( )

⎟
⎠
⎞

⎜
⎝
⎛ −φΔ−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −φΔ

⎟
⎠
⎞⎜

⎝
⎛ −−

⎟
⎠
⎞⎜

⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −φΔ−=

2

2
2

2
2

exp1

exp2

20

m
m

m
m

mmQ

mQ

m
m

m
m

D
vl

RT
F

D
vl

RT
FQlc

Qc

D
vl

RT
F

l
DJ  (17-b) 
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which, for the case of negligible osmotic water flow ( ),0.,i.e =v  reduces to 

the Goldman-Hodgkin-Katz flux equation [10], as follows: 

( ) ( )
.

exp1

exp220
1

1
⎟
⎠
⎞⎜

⎝
⎛ φΔ−−

⎟
⎠
⎞⎜

⎝
⎛ φΔ−⎟

⎠
⎞⎜

⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞⎜

⎝
⎛ φΔ=

RT
F

RT
FQlcQc

RT
F

l
DJ

mmQmQ

m
m  (18) 

Analysis in the Solutions 

The boundary layer approximation may be applied to the ion transport 
equations in both diffusion boundary layers covering over the membrane, 
namely, at 0≤≤δ− y  and ,δ+≤≤ mm lyl  respectively (see Figure 1). 

( ),111
11

11 JyvcycRT
FD

y
cDyucx −

∂
∂=⎟

⎠
⎞

⎜
⎝
⎛ −

∂
φ∂+

∂
∂

∂
∂=

∂
∂  (19-a) 

( ).222
22

22 JyvcycRT
FD

y
cDyucx −

∂
∂=⎟

⎠
⎞

⎜
⎝
⎛ −

∂
φ∂−

∂
∂

∂
∂=

∂
∂  (19-b) 

Noting that the local electroneutrality holds such that ccc ≡= 21  and 

that a near wall approximation (i.e., negligible axial convection) is valid, the 
foregoing equations may be combined to eliminate the potential gradient for 
given set of the ion fluxes, 1J  and ,2J  as 

( ) .2 21212112 cvDDdy
dcDDJDJD ++−=+  (20) 

Equation (20) can easily be solved for ( )yc  as 

( ) ( )
( )δ+ν

+

δ−=
yDD

DD

ecyc 21
21

2  

 ( )
( )

,0:1 21
21

2

21
2112 ≤≤δ−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

ν+
++

δ+ν
+

yeDD
JDJD yDD

DD

 (21-a) 

( ) ( )
( )δ−−ν

+

δ+=
mlyDD

DD

m elcyc 21
21

2  
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 ( )
( )

.:1 21
21

2

21
2112 δ+≤≤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

ν+
++

δ−−ν
+

mm
lyDD

DD

lyleDD
JDJD m

 (21-b) 

For the case of negligible osmotic pressure driven flow, i.e., ,0=v  the 
foregoing equations reduce to the linear concentration profiles: 

( ) ( ) ( ) ,0:2 21
2112 ≤≤δ−δ++−δ−= yyDD

JDJDcyc  (22-a) 

( ) ( ) ( ) .:2 21
2112 δ+≤≤δ−−+−δ+= mmmm lyllyDD

JDJDlcyc  (22-b) 

Results and Discussion 

The present analytical expressions for the ion concentrations given by 
(14), (21-a) and (21-b) for the membrane and adjacent diffusion layers, 
together with auxiliary relations, (15-a), (15-b), (16), (17-a) and (17-b), may 
readily be used to reveal the cation and anion concentration fields in the 
membrane and adjacent diffusion layers. An iterative procedure must be 
taken to satisfy the boundary values, such that the concentrations at the 
boundary layer edges match with the bulk concentrations in the solutions 
(see Figure 1): 

( ) dcc =δ−  (23-a) 

and 
( ) ,cm clc =δ+  (23-b) 

respectively. In order to accomplish this task, we shall first assume ( )0mQc  

and φΔ  to find ( ) 1, Jlc mmQ  and ,2J  using (14), (17-a) and (17-b). Then, the 

Donnan equations (15-a), (15-b) and (16) are used to calculate ( ) ( )mlcc ,0  

and v. These values are substituted into (21-a) and (21-b) to find the bulk 
concentrations in the solutions, namely, ( )δ−c  and ( ).δ+mlc  The whole 

process based on the Newton-Raphson method, e.g., [11] is repeated to find 
the correct set of ( )0mQc  and ,φΔ  which satisfies the boundary conditions in 

terms of the bulk concentrations, namely, equations (23-a) and (23-b). 
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However, in full numerical computations in electrodialysis cells in a stack, 
the streamwise variations of the concentrations ( )0c  and ( )mlc  at the 

membrane interface are determined directly by solving the set of governing 
equations, namely, mass conservation, momentum conservation and Nernst-
Planck equations (note  that there is no need to assume the concentration 

boundary thickness δ or to estimate the bulk concentrations, ( )δ−c  and 

( )).δ+mlc  

Validation of the present analysis 

In order to examine the present analytical expressions based on the local 
electroneutrality assumption, the foregoing iterative calculations were carried 
out for the case of the membrane system with a cation-exchange membrane 
and bathing solutions under negligible osmotic pressure driven transverse 
flow, namely, ( ) ( ) .constlcc m =δ+=δ−  and ,0=v  which was treated by 

Manzanares et al. [3], numerically solving the Poisson-Nernst-Planck 
equations, without assuming the local electroneutrality. The values used for 

the calculations are as follows: ( ) ( ) [ ],mmol500 3=δ+=δ− mlcc  200=i  

[ ] [ ],sm10,mA 29
1

2 −=D  [ ],sm105.1 29
2

−×=D  [ ],298 KT =  =Q  

1000 [ ] [ ]mlm
43 107.1,mmol −×=  and [ ].m104.3 4−×=δ  

The present iterative calculations converged to give ( ) 6370 =mQc  

[ ],mmol 3  and [ ].V1065.4 3−×=φΔ  The resulting ion concentrations are 

compared against the numerical results reported by Manzanares et al. [3] in 
Figure 2. Since the local electroneutrality prevails in the solution bath, the 
cation and anion concentrations are identical across the diffusion layer, 
namely, .21 ccc ≡=  In the solution bath on the feeding side (i.e., the bath 

on the left hand side), the ion concentration decreases towards the left hand 
side of the membrane interface located at .0=y  Then, the cation 

concentration jumps up to a higher level, while the anion concentration goes 
down to a lower level, at the membrane interface, to satisfy the Donnan 
equations. Both cation and anion concentrations in the membrane increase 
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towards the right hand side interface of the membrane. Then, the cation 
concentration suddenly goes down, while the anion concentration goes up, to 
meet each other to satisfy both Donnan equations and local electroneutrality 
condition at the right hand side interface. In the solution bath on the 
concentrating side (i.e., the bath on the right hand side), the concentration 
decreases to its bulk concentration. 

Despite the difference in the two approaches, the present results based on 
the general analytical expressions are in close agreement with those obtained 
from full numerical calculations based on the PNP equations. This agreement 
substantiates the validity of the present analytical expressions to couple the 
concentrations in the solutions with the concentrations in the membranes. 

 
Figure 2. Comparison of the present results and the numerical results 
obtained by Manzanares et al. 

Effects of current density on ion concentration profiles and potential 
drop 

In order to investigate the effects of the current density i on the ion 
concentrations, the concentrations are plotted for the case of ( ) =δ−c  

( ) [ ],mmol591 3=δ+mlc  [ ],sm10 29
1

−=D  [ ],sm105.1 29
2

−×=D  =T  

[ ],298 K  [ ],mmol2000 3=Q  [ ],107.1 4 mlm
−×=  [ ]molsm100.2 214−×=pL  

and [ ],104.3 4 m−×=δ  with three different values of current density, namely, 
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,100=i  200  and [ ].mA400 2  The values of ( )0mQc  and φΔ  were assumed 

initially and updated to match the boundary conditions (22-a) and (22-b). A 
series of the iterative calculations were carried out and the results are plotted 
together in Figure 3. 

 
Figure 3. Effects of current density on ion concentrations. 

Naturally, the net flux ( )21 JJ −  increases with the current density i. 

Both concentration difference ( ) ( )( )0clc m −  and concentration gradient 

across the membrane grow with the current density i, as expected. 
Concentration polarization on the left hand side surface of the ion-exchange 
membrane proceeds further with increasing i. It would eventually yield zero 
concentration there, as the limit current density is attained. 

 
Figure 4. Potential drop across the membrane versus ion density. 
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The dimensionless potential drop RTF φΔ  for this case is plotted against 

the current density, in Figure 4, in which the potential drop is seen to 
increase almost linearly with the current density. 

Effects of bulk concentration on ion concentration profiles 

Calculations were conducted for various values of the bulk 

concentration, namely, ( ) ,591=δ−c  493  and [ ].mmol380 3  The other 

parameters are set the same as the previous calculations. The concentration 
profiles within the diffusion boundary layer in the concentrating bath, shown 
in Figure 5, are quite insensitive to the bulk concentration ( )δ−c  in the 

feeding bath, since the net flux ( )21 JJ −  is virtually controlled by the 

current density i, which is kept constant. However, closer observation reveals 
that the level of the concentration within the diffusion boundary layer in the 
concentrating bath is lower for the lower ( ),δ−c  for which, the osmotic 

pressure driven flow is stronger so that dilution takes place within the 
diffusion later. 

 

Figure 5. Effects of bulk concentration on ion concentration profiles. 

Effects of negative exchange capacity on ion concentration profiles 

The effects of negative exchange capacity Q on the concentration 
profiles are illustrated in Figure 6 for three different values, namely, 
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,1500=Q  2000 and [ ].mmol2500 3  In the membrane, the cation 

concentration 1mc  gets higher while the anion concentration 2mc  gets lower, 

as increasing Q. Since Q is much larger than the bulk concentration on the 
solution, the cation concentration in the membrane on the average is roughly 
equal to Q. An ideal case of infinitely large Q would result in 02 =mc  in the 

membrane. The figure also indicates that large Q leads to slightly high and 
low concentrations in the left and right hand side solution diffusion layers, 
respectively. 

 

Figure 6. Effects of negative exchange capacity on ion concentration 
profiles. 

Effects of membrane permeability on ion concentration profiles 

Finally, a series of calculations were conducted for various values of     

the membrane permeability, namely, ,102 14−×=pL  14106 −×  and 1310−  

[ ],molsm2  with the potential drop across the membrane fixed at =φΔ  

[ ].V1057.2 3−×  The results are plotted in Figure 7, to investigate the effects 

of pL  on the concentration profiles. In the overflow type of electrodialysis 

with the concentrating compartments sealed at the bottom end, the salt 
concentration in the concentrating chamber decreases due to the dilution 
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resulting from this osmotic pressure driven transverse flow. In actual 
electrodialysis desalination system, the osmotic pressure driven flow is never 
negligible. The osmotic flow increases with ,pL  which results in dilution, 

lowering the concentration in the concentrating chamber. The figure clearly 
indicates that the osmotic pressure driven convection should be taken into 
full consideration. 

 

Figure 7. Effects of membrane permeability on the ion concentration 
profiles. 

Conclusions 

A general set of analytical expressions based on the local electrical 
neutrality are proposed, to describe the transverse ion transport with an 
osmotic pressure driven flow through an ion-exchange membrane with a 
fixed charge density. The expressions are found to agree well with the 
numerical results based on the full Poisson-Nernst-Planck equations without 
assuming local electrical neutrality. Various parameters associated with the 
ion-exchange membrane system, such as current density, bulk concentration 
in the solution, negative charge capacity and osmotic pressure driven flow 
are varied to investigate their effects on the ion concentrations in both 
solutions and membrane. The present set of analytical expressions capable of 
accounting for osmotic pressure driven convection can easily be coupled 
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with full numerical computations of ion transport within electrodialysis cells 
and electrode systems, using Navier-Stokes equations and mass transfer 
equations in individual cells. 
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