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Abstract

A Lie-Yamaguti algebra (or general Lie triple system or Lie triple
algebra) is a tangent algebraic system of the reductive homogeneous
space studied by Nomizu in [3]. The class of Lie-Yamaguti algebras
contains Malcev algebras and Lie triple systems as special classes.

In this paper, we describe and give some properties of Lie-Yamaguti
superalgebras. Also, we study a particular class of Lie-Yamaguti
superalgebras.

1. Introduction

In what follows, the algebras and superalgebras considered will be
defined over a field k of characteristic 0.

A Lie-Yamaguti algebra (T, -, [,, ]) [7] is a vector space T equipped
with a bilinear operation: T x T — T and a trilinear operation [ ,, ]: T x
T xT — T satisfying the following identities forany x, y, z, v, we T:
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(1) xy = -yx;
@ [x y, 2] =-ly. x z];

@ X {xyz+(xyz=0

cycl x, v,z

@ > [xy,z,w]=0;

cycl x, v,z
) [x, y, zw] =[x, y, z]w + z[x, y, w];

©) [x v [z v wll =[x, y, z], v, W]+ [z, [x, y, v] W]+ [z, v, [x, y, w]]

Lie-Yamaguti algebras are reduced to Lie algebras if we define
[X, ¥y, zZ]=0 or [x vy, z]=(xy)z while Lie-Yamaguti algebras with
xy = 0 are Lie triple systems. In [2], Kinyon and Weinstein showed that if

(L, .) isa Leibniz algebra, that is, x(yz) = (xy)z — y(xz), forany x, y, z in

L, then (L, [, ].[,,]) with [x, y]= %(Xy— yx); [xy, 2] = —%(XY)Z is

a Lie-Yamaguti algebra. Also, in [6], Yamaguti showed that if in a Malcev
algebra (M, ) we set [, y, z] = x(yz) — y(xz) + (xy)z, then (M, -, [ ,, ])
is a Lie-Yamaguti algebra. Then it is clear that Lie-Yamaguti algebras are a
generalization of Lie algebras, Malcev algebras and Lie triple systems. In [5],
Sagle gave the construction of remarkable Lie-Yamaguti algebras and in [1]
examples of irreducible Lie-Yamaguti algebras are provided.

The purpose of this paper is twofold. We first introduce the concept and
establish some properties of Lie-Yamaguti superalgebras and we study a
particular class of Lie-Yamaguti superalgebras composed of Lie supertriple
systems and Lie superalgebras. Second, we show that a Lie superalgebra
with a reductive decomposition induces the structure of a Lie-Yamaguti
superalgebra on the reductive complement to the 7Z,-graded subalgebra

and we show that every Lie-Yamaguti superalgebra has an enveloping Lie
superalgebra.
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2. Lie-Yamaguti Superalgebras

Let us recall that a superalgebra over k is a Z,-graded algebra
A=Ay ® A, where A/A; = A, j. The subspaces Ag and A are called

the even and the odd parts of the superalgebra and so are called the elements
from Ay and A;, respectively. Below all the elements are assumed to be

homogeneous, that is, either even or odd and for a homogeneous element
X € A, i =0,1 thenotation X =i is used and means the parity of x.

Let G=alg(l,g,i=1 2 ..) be the Grassmann algebra over a
countable set of generators e, with ei2 =0, eej =-eje for i= j. The
elements 1, ej &j, ---€,, ij <ip <--- <i, form ak basis of G. Denote by G,
(respectively G;) the span of the products of even length (respectively odd
length) in the generators. The product of zero ejs is by convention equal to
1. Then G = Gy @ G; is an associative and supercommutative superalgebra,
that is, g9, = (-1)%192g,g,, where g;, g, € Gy UGy. Let A= Ay @ A

be a superalgebra; the graded tensor product G ® A, where G is the
Grassmann superalgebra, becomes a superalgebra with the product given by

(x® g1)(y ® g5) = (-1)*92 xy ® g,0,, for homogeneous elements g;, g,
€G, X, ye A and grading given by (G® A)y =Gy ® Ay ® G, ® A,
(G®Ay =Gy ®A ®G, ®Ay. By the Grassmann envelope of the
superalgebra A = Ay @ A, we mean the subalgebra G(A) = (G ® A), =
Gy ® Ay ® G; ® A of the tensor product G ® A

Let V be a homogeneous variety of algebras, that is, a class of algebras
satisfying a certain set of homogeneous identities and all their partial
linearizations [8]. A superalgebra A = Ay @ A is called a V-superalgebra, if

its Grassmann envelope G(A) belongs to V.
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Thus, the concept of Lie-Yamaguti superalgebra introduced here has
been modeled with the aim in mind that a superalgebra T = Ty @ T; should

be a Lie-Yamaguti superalgebra if its Grassmann envelope G(T) is a Lie-
Yamaguti algebra. We have the following definition.

Definition 2.1. A Lie-Yamaguti superalgebra is a Z,-graded vector
space T =Ty @ Ty, with a bilinear operation: T xT — T and a trilinear
operation [ ,, |: TxT xT — T such that for any x, y, z, v, we To U Ty,
i, j, keZsy,

(LYS1) TiTj = Ti,j; i + ] calculated modulo 2;

(LYS2) [T;, Tj, Tl © Ty jks i+ j +k calculated modulo 2;
(LYS3) xy = (- 1)V yx;

(LYS4) [x, y, 2] = ()Y [y, x. z];

(LYss) > (D(x v, 2]+ (xy)2) = O;

cycl x,v,2

(LYS6) > (-1)%%[xy, z, W] = 0;

cycl X, y, z
(LYS?) [X, y, zw] =[x, ¥, z]w + (—1)Z(i+7)z[x, y, wj;
(LYS8) [x, y, [z, v, wll =[x, ¥, z], v, w]

(D2, [y, v w]+ (D2, v [xy, il
Remark 2.2. 1. Obviously, Ty is a Lie-Yamaguti algebra.

2. In [4] (see Definition 11.1.4), the concept of Lie-Yamaguti
superalgebras introduced as Lie triple superalgebras is defined as follows:
a Lie triple superalgebra is a Z,-graded vector space T =Ty @ Ty, with

a bilinear operation: T xT — T and a trilinear operation [ ,, ]: T xT xT
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— T such thatforany x, y, z, v, we To UTy, i, j, k € Zy,
(i) xy = ~(-1"V yx;
i) I, v, 2] = =DMy, x, 2];
(i) [x, y, 2]+ () y, 2, x]
+ () Iz, x, y]+ (DTS (%, y, 2) = 0;
() [xy, 2, v]+ () yz, x, v]+ (VD y, v] = 0;
W) Dy, (2w, wll =[xy, 2], v, w]
+ (A5, [x, y, v] wl+ (()EDE) v [x y, w])

where J(x, v, z) = (xy)z — x(yz) - (-1)Y%(x2) .
By setting

oy, 2) = (DY y, 2],
we can see by straightforward calculations that if (T,.,[,,]) is a Lie-

Yamaguti superalgebra in our sense, then (T,., {,,}) is a Lie triple
superalgebra in the sense of [4] and conversely.

Proposition 2.3. A superalgebra T =Ty @ T; equipped with bilinear
and trilinear products satisfying T;Tj < Ti,j and [T, Tj, T] < Tij j4k isa
Lie-Yamaguti superalgebra if its Grassmann envelope G(T) = Gy ® Ty ®

G; ® T; is a Lie-Yamaguti algebra under the following products:
(x® g1)(y ® g2) = (<)) xy ® 9195,

[x® g1, y ® gg, 2® g3] = (<)X VX, y, 2] ® 910,03,

Proof. The proof is straightforward by using the fact that for any element
X® g in G(T), we have X = @. O
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Examples. 1. It is clear that Lie superalgebras are Lie-Yamaguti
superalgebras with [x, y, z] = 0.

2. If xy=0 for any x,yeTyUT, then (LYS1), (LYS3), (LYS6),
(LYS?) are trivial and (LYS2), (LYS4), (LYS5), (LYS8) define a Lie supertriple
system that is a Zj,-graded vector space T =Ty @ Ty, with trilinear

composition [,, ]: T xT xT — T such that for any x,y, z,v,we Ty UTy,
i, J, keZo,

(LSS1) [T, Tj, Tkl < Tiy ks 1+ J + k calculated modulo 2;
(LSS2) [x. y, 2] = (-1 [y, x, 2]}

(Lss3) Y (D*[x vy, 2]=0;

cycl x,y,z

(LSS4) [x, v, [z, v, W]l =[x, Y, z], v, W]
+ (A2, %y, v] w]+ ()T, v, [x, y, W

Let us recall that a superalgebra M = My @ M, is said to be a Malcev

superalgebra if the following identities are satisfied:
xy = (1) yx;
(D77 (2) (y) = () 2)t + (DT (y2)t)x
+(EY @)y + (T () y)z

The next proposition is a superanalogue of the corresponding result for
Malcev algebras [6].

Proposition 2.4. Let (T,.,[,,]) be a Lie-Yamaguti superalgebra
such that [x, y, z] = x(yz) — (1) y(xz) + (xy)z. Then (T,-) is a Malcev
superalgebra. Conversely, if we define on a Malcev superalgebra (T, ) a

trilinear operation by
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[x, y, 2] = x(y2) - (1) y(x2) + (%),
then (T, ., [,, ]) is a Lie-Yamaguti superalgebra.
Proof. Let (T,.,[,, ]) be a Lie-Yamaguti superalgebra with a trilinear
composition satisfying [x, y, z] = x(yz) - (<1)*Y y(xz) + (xy)z. Then its

Grassmann envelope G(T) = Gy ® Ty ® G; ® Ty is a Lie-Yamaguti algebra
such that

(x® g1)(y ® 93) = (1Y xy ® 9105,

[x® g1, ¥y ® gy, 2® gg] = (-1 x, y, 2] ® 919,03
We have:

(x®91)(y®92)(2®093)) - (Y® g2)((x® 91)(z ® g3))

+((x®g1)(y ® 92))(z ® g3)

= (F) VYT (x(y2)) ® 010203 — (1Y TYF X7 y(xz) ® 920103
+ (L)Y (xy)z © 919503
= () YHYI X [x(yz) - (-1 y(x2) + (xy) 2] ® 919293
= ()Y [k y, 2] ® 010203 = [x ® g1, Y ® g3, 2 ® g3]
Thus, (G(T), ., [ ,, ]) is a Lie-Yamaguti algebra such that
[X® 01, Yy ® gy, Z® g3]
=(x®01)(y®92)(z®03))

—(Y®g2)(x®g1)(z2®9g3)) +(x® g1)(y ® 92))(z ® g3).
Having in mind that any Lie-Yamaguti algebra (T, .,[,, ]) with [x, vy, z]
= X(yz) — y(xz) + (xy)z is a Malcev algebra [6], we deduce that (G(T), .) is

a Malcev algebra and then (T, .) is a Malcev superalgebra.

The converse is proved in the same way. O



8 Patricia Lucie Zoungrana

Definition 2.5. Let T =Ty @ T; be a Lie-Yamaguti superalgebra. A
graded subspace H = Hy © H; of T is a graded Lie-Yamaguti subalgebra of
Tif HiHj C Hi+j and [Hi, Hj, Hk]C Hi+j+k forany i, j, k e Zz.

Definition 2.6. Let T =Ty ®T; and T'=Ty @ T{ be Lie-Yamaguti
superalgebras. A linear map f : T — T' is said to be of degree o if

f(Ti) < T forall a, i e Z,.

Definition 2.7. Let T =Tp @ T, and T' =Ty @ T{ be Lie-Yamaguti
superalgebras. A linear map f : T — T’ is called a homomorphism of Lie-

Yamaguti superalgebras if
1. f preserves the grading, that is, f(Tj) = Ty, i € Z,;
2. f(xy) = FO) F(y);
3. f([x, y, z]) =[f(x), f(y), f(z)] forany x, y,ze ToUT;.

Let us recall that if V =Vy @V, is a Z,-graded vector space, then
we set End, (V) = {f € End (V)/f(Vj) = Vo,i}, we obtain an associative
superalgebra End(V ) = Endg(V )@ End;(V); End, (V) consists of the linear

mappings of V into itself which are homogeneous of degree o. The bracket
[f,g]= fg - (—1)fggf makes End(V) into a Lie superalgebra.

Definition 2.8. Let T =Ty @ T; be a Lie-Yamaguti superalgebra. Then
D e End,(T) is a superderivation of T if forany x, y, z e Ty U Ty,

1. D(xy) = D(x)y + (-1)**xD(y);
2. D([x, v, z)) = [D(x), ¥, ]+ (<1)**[x, D(y), 2]

+ (-0 Yk, y, D(2)]
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Let D,(T) consist of the superderivation of degree o and D(T) =

Do(T) @ Dy(T). It is easy to check that D(T) is a graded subalgebra of
End(T) called the Lie superalgebra of superderivation of T.

Let T =Ty ®T; be a Lie-Yamaguti superalgebra. For any x, yeTogUTy,
denote by Dy y the endomorphism of T defined by Dy y(z) =[x, y, z] for
any z e T. Wehaveforany x, y e TgUTy, a € Zy, Dx7y(Ta) (S P
that is, Dy y is a linear map of degree X + y. The axioms (LYS4), (LYS6),
(LYS7) and (LYS8) can be written as:

(i) Dy, y = ~(-1Y Dy y;

(i) Y (-D*Dy,, =0

cycl x,y,2
(iii) Dy, y(zw) = Dy y(2)w + (—1)2(X+7)2nyy(w);
(iv) Dx,y([zi v, w]) = [Dx,y(z): v, w]
+ (A2, Dy W), W]+ () FDENz, v, Dy (W)

for any x, vy, z,v, we Ty UT;. By (iii) and (iv), we have that Dy,y is a

superderivation of T called an inner superderivation of T. From (iv), we also
have that forany x, y, z, v, we T U Ty,

(iv)’ [Dx,y1 I:)z,v] = D[x, y,zJv T (_1)2(X+V)Dz,[x, y,v]:
Let D(T, T) be the vector space spanned by all Dy y(x, y € T).
We can define naturally a Z,-gradation by setting D(T,T)=

Do(T,T)® Dy(T, T), where D,(T, T) consists of the superderivation
Dy, y of degree o. It is clear from (iv)’ that D(T, T) is a Zj-graded Lie

subalgebra of D(T) called the Lie superalgebra of all inner superderivations
of T.
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Let (T,.,[,,]) be a Lie-Yamaguti superalgebra; T can be written
as a pair T =(Tg, Tp), where Tg =(T,.) is the bilinear system and
Tp =(T,.,[,, ]) the trilinear system. Thus, the relations (iii) and (iv) mean
that every inner superderivation of (T, ., [ ,, ]) is a superderivation of both
of the bilinear system Tg and the trilinear system Tp, thatis, D(T, T) <
DerTg () DerTp, where DerTg (respectively DerTp) denotes the Lie

superalgebra of all superderivations of Tg (respectively Tp).

Now, we consider a particular class of Lie-Yamaguti superalgebras
composed of Lie supertriple systems and Lie superalgebras.

The following result is obvious:

Proposition 2.9. Let (T, ., [, , ]) be a Lie-Yamaguti superalgebra. Then
the bilinear system Tg = (T, .) forms a Lie superalgebra if and only if the
trilinear system Tp = (T, ., [ ,, ]) forms a Lie supertriple system. A pair of
a Lie superalgebra Tg and a Lie supertriple system Tp on the same

underlying vector space T forms a Lie-Yamaguti superalgebra if and only if
the following relations are verified:

0 Y Dy zv]=0

cycl x, v,z
(i) D(T, T) < DerTg.

Proposition 2.10. Let T = (Tg, Tp) be a Lie-Yamaguti superalgebra.
Suppose that Tg forms a Lie superalgebra (or Tp forms a Lie supertriple
system). Then the following assertions are equivalent for any x, vy, z,

veT:
(i) By € DerTp, where By : T > T, y > xy;

(i) [xy, z, v] =[x, vy, z]v.
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Proof. Suppose that for any x in T, B, € DerTp. Notice that B,(T;) =
XTj < Tj,x, thatis, By is homogeneous of degree X.

By (LYS6), it follows that forany x, y, z,veT,
(D7 [y, 2, v+ (D [yz, x vI+ (<)Y%, y, V] = 0,
thatis, [xy, 2, v] = <" Dyz, %, v] - (DT [2x, y, 0]
But, forany zin T, B, € DerTp gives
2[x, y, v] = [2%, ¥, V]+ (<)X [x, zy, v]+ ()P Z[x, y, 2],
that is,
[2x, ¥, V] = 2l y, v] = ()7 [x 2y, V] = ()2 [x, y, 2]
= 2lx, y, v - (D [yz, % vl = (DT, y, 0]
Then
by, 2,v] = (D yz, 6, vl = (D ax, y, v]
= (D 2, y, v+ [x, y, 2]
=[x, y, z]v by (LYS7).

Now, let us consider that [xy, z, v] =[x, y, z]Jv. Then, by the equality
(LYS7), we have

[y, z, xv] = [y, z, x]v + (1" * D[y, z, v]
and
Ay, 2. v]= (DT Dy, 2, 0] = (DT Dy, 2, 1y,
that is,
xy, 2 v] = (D Dy, 2, 0] - (7T vz, x, v]

by using the assumption.
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It follows that

Buly. 2, V] = Ky, z, v] = (-)*"* )y, z, xv] - (-)*"*P)[yz, x, v].
But (LYS6) gives

()V[yz, x, v] = (- 7[2x, y, v]- (<) "[xy, 2, v}
Then
B[y, 2, V]

= (D" y, 2, xv] - (AT [yz, x, V]

= (D, 2, 0] = (A (D [2x, v, vI = (D [y, 2, v])

=[xy, 2, v]+ (AT, xz, vl + ()" y, 2, xv],
Thus, By € DerTp. O

Theorem 2.11. Let T =(Tg, Tp) be a Lie-Yamaguti superalgebra.
Suppose that Tg forms a Lie superalgebra (or Tp forms a Lie supertriple
system). Then the following assertions are equivalent:

1. For any fixed o € k, the trilinear system T given by
[, y, z2]* =[x, Y, z] + a(xy)z forms a Lie supertriple system.

2. Byy € DerTp,.

Proof. Suppose that the trilinear system T3 forms a Lie supertriple

system. Let us show that B,y e DerTp.

As T is a Lie supertriple system, then by definition, we have

%y, [z, v, Wi =[x, v, 2 v wit + ()P [z, [x, y, v w
+ (D)D), [x, y, wi
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As [x, v, 2I' = [x, y, 2]+ (xy)z, we have
[y, [z, v, wit =[xy, [z, v, wi]+ () [z, v, wi

=[xy, [z, v, wl+ ()] + (xy) ([z, v, W]+ (2v)w),
% v, 2 v wl =[x, y, 2F, v, wl+ ([x, y, 2w

=[xy, z]+ (xy)z, v, W]+ (([x, ¥, 2]+ (xy) 2)v)w,
[z, [x, y, vI' Wl = [z, [x y, VI w]+ 2l y, viDw

= [z, [x v, vI+ (xy)v, wl+ (z([x, y, v]+ (xy)v))w,
[z, v, [y, wiT = [z, v, [ y, wi']+ (2v)[x, v, w]

=[z. v, [x y, W+ (xy)w] + (2v) ([x, Y, W]+ (xy)w).

Hence, we have

%, ¥, [z, v, Wi+ ()] + () (2, v, W]+ (2v)w)
=[x ¥, 2]+ )z, v wl+ (([x, v, 2]+ () 2)v)w

+ (A (z, [x, v, v+ (y)v, w]+ (2%, s V] + (y)v)wW)

+ ()T [z, v, [x, v, wl+ )W)+ (@) (%, y, W]+ (xy)w).

Using the fact that Tg is a Lie superalgebra, we also have due to the

Jacobi’s superidentity:
(xy) (20)w) = (DT EI @) (xy)w) + (7 (2((xy)v))w
+(xy)2V)w.
In consequence, we have:
%, v, (2v)w]+ (xy) [z, v, w]

= [(xy)z, v, W]+ ([x, ¥, 2V + ()P 2[x, y, v)w + ()P [z, (xy)v, w]
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+ (D) EENZ, v, (xyyw] + ()TN @2y [x, y, w]
= [(x)z, v, W]+ [x, y, v]w+ (<D [z, (xy)v, w]

+ (DTCIz, v, (xyyw] + ()T (2v) [x, y, w],
that is,

() [z v, w] = [(xy)z, v, w]+ (0752, (xy)v, w]
+ ()T 7, v, (xy)w]

and B,y € DerTp.

The converse is obtained by straightforward calculations. O
3. Lie Enveloping Superalgebra

Let A=Ay ® A and B = By © B; be two Z,-graded vector spaces;
A®B has a natural Z,-gradation defined by (A@® B), = A, @ B,
a=0,1. Let (L, [,]) be a Lie superalgebra with a reductive decomposition
L=h&m, thatis, h=hy ® Iy is a Z,-graded subalgebra of L and m =
my ® my a Zj-graded subspace of L with [m, h]c m. On m, define a
bilinear map: mxm — m and a trilinearmap [ ,, ]: mxmxm — m by:

xy = mm([x, y]);
[, y, 2] = [ma([x, ¥D), 2],

for any X, y, z € m, where n, and my denote the projections on m and h

with respect to the reductive decomposition. We have the following:
Theorem 3.1. (m, ., [ ,, ]) is a Lie-Yamaguti superalgebra.
Proof. Obviously, we have mym; < mj_; and [m, mj, me] < m

forany i, j, k € Z,. Forany x, y e m, [x, y]=—(=1)*Y[y, x] gives xy +
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mn (% YD) = (=D (yx+ mn([y, X)), thatis, xy = ~(=1)*¥ yx and mp ([x, y])
= —(-1)*Y(yx + mp([y, x])). This gives

[x, . 2] = [rn([x, YD, 2] = (1Y [mn(ly, XD, 2] = ~(-D[y, %, 2]
forany z e m.

Forany x, y, z € m, the relation
D7 [Ix ) 2]+ (D[, 2] x]+ (-1)Y?[[z, x], y] = 0
implies
(D)X [ (x, YD+ mn([% YD, 2]+ (0 [ [y, 2D) + 7 [y, 2]), X]

+ (1) (2, X]) + 7 (2, XD, ¥] = 0

and
(D7 [xy, 2]+ (D 2 [mn([%, YD, 2]+ (<D [yz, x]+ (<1 [z [y, 2]), X]
+ (1Y 2%, y]+ (<1 [mn [z, X)), y] = 0.

We obtain
D Dy, 2D) + (D7 [x, Y, 2]+ (D) e (yz, XD + (<D [y, 2, x]

+ (1) (2%, y]) + (1) [z, %, y] = 0
and
(D mn(Dxy, z]) + (D) my([yz, x]) + (1) mn (2%, y]) = O,
that is,
D7y, 2]+ DMy, 2, ]+ (D)7 [z, x, ]

+ (D7 0y)z + (LY (yo)x + ()P (2x)y = 0
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and for any v e m,
(D [xy, 2, v]+ (- [yz, x, v]+ (-))"7[zx, y, v] = 0.
Also, due to the Jacobi’s superidentity, we have, forany x, y, z, v e m,
(DI [ (x, ] [z VI + ()P Vz, [v, mn((x, yD)]
+ ()7 [v, [m([x, y], 2] =0.
Hence,
DI [ (%, YD 7z, VI + (D5 w2, [, 70 (%, y)]

+ (1) mv, [ ([x, YD, 21 =0

and
DX, y, v = ()T x, y, v+ () X, y, 2] =0,
thatis, [x, y, 2v] = [x, y, z]v + ()" ¥)z[x, y, v],
Again, due to the Jacobi’s superidentity, we have:
DI [z ([, yD) [xn((z, VD), Wil
+ ()N E Dy (2, v]), [w, m([x, yD)]
+ ()" w, [y ([, yD, (2 VDI = 0.
But

[en (% YD), [z, V] = (02 D[z, [rp([x, y), I+ [mn(x, YD) 2], V],

that is,

[tn (% YD, 7 (2, VD] = <025 D[z, [x, y, v+ 7allx, ¥, 2], V).
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Thus,

[mn (0% YD) [z, v, w]) = (DT 2, v, [x, y, w]]
— ()" Iz, [x, y, v) wl=[[x, v, 2} v, W] =0
and
%y, [z v, wll = [Ix, y, 2 v, w] + (7592, [x, y, v], w)
+ () FE [z, v, [x, y, w])
It follows that (m, ., [ ,, ]) is a Lie-Yamaguti superalgebra. O

Now, let (T,.,[,,]) be a Lie-Yamaguti superalgebra. Set L; =T; +
Di(T,T), i =0,1 and define a new bracket operation in L = Ly @ Ly as
follows: forany x, y e T UTy, Dy, Dy € Do(T, T)U Dy(T, T),

[X, y] = xy + D(x, y);
D, x] = (-)*P[x, D] = D(x);
[D1, D] = DD, — (-1)PP2 D,D. (*)

Theorem 3.2. Let T =Ty @ T; be a Lie-Yamaguti superalgebra. Then
L=Ly®L =T®D(T,T) is a reductive decomposition and the operations

in T coincide with those given by (*).

Proof. The bracket [,] is bilinear by definition and XY = —(—1)X?YX
forany X,Y e L by (LTS3) and (LTS4). The Jacobi’s superidentity follows
from (LTS5-LTS8); [D(T,T), T]<T is obvious from (%), so the
decomposition is reductive. Also, we have =t ([X, y]) = xy and

[ro,7)([% YD 2] =[x v, 7]

forany x, y, z € T which proves the remaining assertion. O
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Patricia Lucie Zoungrana

Note that L is called the standard enveloping lie superalgebra of T.
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