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Abstract 

We show that a Fibonacci number mF  can be written as a product of 

Lucas numbers if and only if 2=m  or 23 ⋅=m  for some 

.0≥  Similar results are also given. 

1. Introduction and Preliminaries 

Let ( ) 0≥nnF  be the Fibonacci sequence given by ,00 =F  ,11 =F  and 

21 −− += nnn FFF  for ,2≥n  and let ( ) 0≥nnL  be the Lucas sequence given 

by the same recursive pattern but with the initial values 20 =L  and .11 =L  
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There have been some investigations on Diophantine equations involving 
Fibonacci and Lucas numbers, and on multiplicative partitions, where the 
number of representations of a positive integer as an unordered product is 
counted. In this article, we are interested in the factorization of Fibonacci 
numbers as a product of Lucas numbers and other closely related questions. 
More precisely, we explicitly solve the following Diophantine equations: 

 ,321 knnnn
a

m FFFFF =  (1) 

 ,321 knnnn
a

m LLLLF =  (2) 

 ,321 knnnn
a
m FFFFL =  (3) 

 ,321 knnnn
a
m LLLLL =  (4) 

where ,1≥a  ,0≥m  1≥k  and .0 21 knnn ≤≤≤≤  

Since our main tool in solving the above equations is the primitive 
divisor theorem of Carmichael [2], we first recall some facts about it. Let α 
and β be algebraic numbers such that β+α  and αβ are nonzero coprime 

integers and 1−αβ  is not a root of unity. Let ( ) 0≥nnu  be the sequence given 

by 

1,0 10 == uu    and   ( ) ( ) 21 −− αβ−β+α= nnn uuu  for .2≥n  

Then we have Binet’s formula for nu  given by 

β−α
β−α=

nn
nu  for .0≥n  

So, if 2
5+1=α  and ,2

5−1=β  then ( )nu  is the Fibonacci sequence. 

A prime p is said to be a primitive divisor of nu  if nup |  but p does not 

divide .121 −nuuu  Then the primitive divisor theorem of Carmichael can 

be stated as follows: 
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Theorem 1.1 (Primitive divisor theorem of Carmichael [2]). If α and β 
are real numbers and ,6,2,1≠n  then nu  has a primitive divisor except 

when ,12=n  1=β+α  and .1−=αβ  

There is a long history about primitive divisors and the most remarkable 
results in this topic are given by Bilu et al. [1], by Stewart [6], and by Kunrui 
[3], but Theorem 1.1 is good enough in our situation. 

We also need the concept of the order of appearance of a positive integer. 
Recall that for each positive integer m, the order of appearance of m in the 
Fibonacci sequence, denoted by ( ),mz  is the smallest positive integer k such 

that .kFm |  It is a well-known fact that if p is an odd prime and ( )pz  is odd, 

then p does not divide any Lucas number. We will use this fact in the proof 
of main results without reference. 

Finally, we remark that some variants of (1) to (4) are also considered  
by Szalay in [7] and by Pongsriiam in [4]. Other variants of (1) to (4) will 
appear in our next article [5]. 

2. Main Results 

The reader will see that equation (2) has infinitely many solutions while 
(1), (3) and (4) have only a finite number of solutions. We begin this section 
by solving (2). The solutions to (1), (3) and (4) can be obtained similarly. 

Theorem 2.1. A Fibonacci number mF  can be written as a product       

of Lucas numbers if and only if 2=m  or 23 ⋅=m  for some .0≥  
Furthermore, there is a unique representation of ( ),2

2
≥forF  and 

exactly five representations of ( )2
23

≥
⋅

forF  as a nontrivial unordered 

product of Lucas numbers: 

2222 21 LLLF −−=  for ,2≥  (5) 

ALLLF 12232323 21 −− ⋅⋅⋅
=  for ,2≥  where (6) 
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00060022300002212 LLLLLLLLLLLLLLLFA ====  

.2233036 LLLLLLL ==  (7) 

Here nontrivial product means that there is no 11 =L  in the representation. 

Remark 2.2. 121 1 LFF ===  is a representation of 1F  and 2F  as a 

product of Lucas numbers. But when we would like to count the number of 
nontrivial representations, we consider only those in which every factor is 
larger than 1. This is why we restrict our attention to the case 2≥  in (5).    
In addition, if 0=  or 1=  in (6), then we have 03 LF =  and =6F  

.3
003 LLL =  Moreover, if ,2=  then the product 122323 21 LLL −− ⋅⋅

 

appearing in (6) is empty. In this case, (6) becomes 1223
FAF ==

⋅
 and its 

representation as a product of Lucas numbers is given by (7). 

Proof of Theorem 2.1. We first eliminate the following two cases: 

Case 1. m is odd and .5≥m  By Theorem 1.1, there exists an odd 
primitive prime divisor p of mF  so that ( ) .mpz =  Therefore, p does not 

divide any Lucas number. Since ,mFp |  we see that mF  is not a product of 

Lucas numbers. 

Case 2. ,2 am =  ,1≥  5≥a  and a is odd. Since ,ma |  .ma FF |  From 

the argument in Case 1, there exists a prime p such that aFp |  but p does       

not divide any Lucas numbers. Since aFp |  and ,ma FF |  we have .mFp |  

Therefore, mF  is not a product of Lucas numbers. 

From Case 1 and Case 2, we only need to consider 

2=m    or   23 ⋅=m  for some .0≥  

We have ,11 LF =  ,03 LF =  ,036 LLF =  and by the well-known identity 

,2 nnn FLF =  we also obtain 
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2222 21 LLLF −−=  for every ,2≥  and (8) 

 036232323 21 LLLLLF −− ⋅⋅⋅
=  for every .2≥  (9) 

This proves the first part. For the second part, it is easy to check that 4F  and 

8F  have a unique representation as a product of Lucas numbers given by (8) 

and AF =⋅= 24
12 32  has exactly five representations given in (7). Next, 

we show that the representation of 
2

F  in (8) is unique for every .4≥  

Consider the equation 

 ,1321 28422 −== LLLLFLLLL knnnn  (10) 

where ,4≥  ,21 knnn ≤≤≤  and 1≠jn  for any j. By the identity 

,2 nnn FLF =  (10) can be written as 

 .
2284222 211321 kkk nnnnnn FFLLLLFFLLLL −−−

=  (11) 

If ,22 kn>  then by Theorem 1.1, there exists a prime p dividing 
2

F  but p 

does not divide any term on the left hand side of (11), which is not the case. 

Similarly, 22 >kn  leads to a contradiction. Therefore, 22 =kn  and (10) 

is reduced to 

2121 2842 −−
= LLLLLLL knnn  

which is in the same form as (10). So we can repeat the same process to 

obtain ...,,2,2 3
2

2
1

−
−

−
− == kk nn  and (10) is reduced to 

.4221 LLLLL jnnn =  

From this, it is easy to check that ,2=j  21 =n  and .42 =n  Hence, 

...,,4,2,1 21 ==−= nnk  and .2 1−=kn  This proves the uniqueness of 

(8). Similarly, we consider from (9), the equation 
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 ,12321 232363023 −− ⋅⋅⋅
== LLLLLFLLLL knnnn  (12) 

with ,3≥  ,21 knnn ≤≤≤  and 1≠jn  for any j. Applying Theorem 

1.1 and the same argument given above, we obtain =⋅= −
−

1
1,23 kk nn  

...,23 2−⋅  and (12) is reduced to 

.630321 LLLLLLL jnnnn =  

Note that ,32 24
630 ALLL =⋅=  which can be written as an unordered 

product of Lucas numbers in 5 ways. This completes the proof.  

Every Fibonacci number nF  is obviously a product of Fibonacci numbers 

nn FF =  but it is more interesting to consider the product that has more than 

one nontrivial factor. 

Theorem 2.3. A Fibonacci number mF  can be written as a nontrivial 

product of at least two Fibonacci numbers if and only if 6=m  or 12. Here 
nontrivial product means that there is no ,00 =F  121 == FF  in the factor. 

Proof. Here the factor of mF  is always smaller than .mF  So, if 13≥m  

or ,3=m  4, 5, 7, 8, 9, 10, 11, then mF  has a primitive divisor by       

Theorem 1.1. Therefore, mF  cannot be written as a product of smaller 

Fibonacci numbers. So we only need to consider .12,6=m  We have 
3

36 FF =  and .2
4

4
312 FFF =  This completes the proof.  

Theorem 2.4. A Lucas number mL  can be written as a nontrivial 

product of at least two Lucas numbers if and only if 3=m  or .6=m  Here 
nontrivial means that there is no 11 =L  in the factor. 

Proof. Since ,2mmm FFL =  we see that if mF2  has a primitive divisor 

p, mL  also has p as a primitive divisor. So, if 7≥m  or ,5,4,2=m  then 

mL  has a primitive divisor. By the same argument used in Theorem 2.3,      
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we only need to consider .6,3=m  We have 2
03 LL =  and .2

206 LLL =  This 

completes the proof.  

Theorem 2.5. A Lucas number mL  can be written as a nontrivial product 

of Fibonacci numbers if and only if .6,3,2,0=m  Here nontrivial product 

means that there is no ,00 =F  121 == FF  in the factor. 

Proof. Suppose 7≥m  and mL  is a nontrivial product of Fibonacci 

numbers. Since ,2 mmm LFF =  we see that mF2  is a nontrivial product of at 

least two Fibonacci numbers. By Theorem 2.3, we have 62 =m  or ,122 =m  
a contradiction. Therefore, we only need to check the result for .6≤m  This 

can be easily done, so the proof is complete.  

Our argument can be applied to obtain more general results as follows. 

Theorem 2.6. Let 0≥m  and .2≥n  Then n
mF  can be written as a 

product of Lucas numbers if and only if 2=m  or 23 ⋅=m  for some 

.0≥  Furthermore, all representations of ( )2
2

≥nF  and of ( )2
23

≥
⋅
nF  

can be obtained directly from those given in Theorem 2.1. 

Remark 2.7. There can be more than five representations of nF
23⋅

 as          

a product of Lucas numbers but they only come from the factor =nA  

( ) .32 24 n⋅  For example, if ,2=n  then there are 13 representations of ,nA  

and therefore nF
23⋅

 can be written as a product of Lucas numbers in 13 

different ways. 

Proof of Theorem 2.6. The proof is similar to that of Theorem 2.1. We 

first eliminate those m which are not of the form 2  or .23 ⋅  For those m of 

the form 2  or ,23 ⋅  we can use the representations of mF  to obtain those 

of .n
mF  The details are omitted.  
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Theorem 2.8. Let 0≥m  and .2≥n  A number n
mF  can be written as 

 ,21 kmmm
n

m FFFF =  (13) 

where ,3,2 21 kmmmk ≤≤≤≤≥  and ji mm ≠  for some ∈ji,  

{ }k...,,2,1  if and only if 12,6=m  or ( ).43 ≥= nandm  

Proof. Assume that (13) holds. If ,13≥m  then the repeat application     
of Theorem 1.1 leads to ,...,,, 11 mmmmmm kk === −  respectively, which 

contradicts the assumption that ji mm ≠  for some i, j. If ,2,1,0=m  then 

the left hand side of (13) is smaller than the right hand side, which is not 
possible. If ,4=m  5, 7, 8, 9, 10 or 11, then the same argument based on the 
primitive divisor can still be applied as follows. Let p be a primitive divisor 
of .mF  Then imFp |  for some i. So .mmi ≥  If ,mmi >  then there is a prime 

divisor q of imF  which does not divide ,mF  a contradiction. So .mmi =  

Repeating this argument, we see that mm j =  for every j, a contradiction.  

So we only need to check ,3=m  6, 12. For 3=m  and ,4≥n  we have 

.2 6
3

3 FFF nnn
m

−==  The remaining cases can be checked easily as well. 

This completes the proof.  

Theorem 2.9. Let 0≥m  and .2≥n  A number n
mL  can be written as 

,21 kmmm
n
m LLLL =  

where ,2≥k  ,0 21 kmmm ≤≤≤≤  1≠jm  for any j, and ji mm ≠  for 

some i, j if and only if 6,3=m  or ( ).30 ≥= nandm  

Proof. We omit the proof as it is very similar to that of Theorem 2.4 and 
Theorem 2.8.  

Theorem 2.10. For 0≥m  and ,2≥n  a number n
mL  can be written as 

 kmmm
n
m FFFL 21=  (14) 
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with ,3,2 21 kmmmk ≤≤≤≤≥  and ji mm ≠  for some i, j if and only 

if 6,3=m  or ( ).40 ≥= nandm  

Proof. We first consider the case .0>m  By (14) and the identity =mF2  

,mmFL  we have 

.3212
n

mmmmm
n
m FFFFFF k=  

By Theorem 2.8, we obtain .12,62 =m  So .6,3=m  We have 

,2 6
32

3
2

3 FFL nnn −==  

.32 2
43

2
6

nnnnn FFL ==  

For 0=m  and ,4≥n  we have .2 6
3

30 FFL nnn −==  The case ,0=m  4<n  

can be checked easily. This completes the proof.  
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