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Abstract

We show that a Fibonacci number F,, can be written as a product of
Lucas numbers if and only if m= 2 or m=3-2" for some
¢ > 0. Similar results are also given.

1. Introduction and Preliminaries

Let (F,)..q be the Fibonacci sequence given by Fp =0, F =1, and

n=0
Fon = Fr1 + Fnp for n> 2, andlet (L), be the Lucas sequence given

by the same recursive pattern but with the initial values Lo = 2 and Ly = 1.
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There have been some investigations on Diophantine equations involving
Fibonacci and Lucas numbers, and on multiplicative partitions, where the
number of representations of a positive integer as an unordered product is
counted. In this article, we are interested in the factorization of Fibonacci
numbers as a product of Lucas numbers and other closely related questions.
More precisely, we explicitly solve the following Diophantine equations:

Fn = Fry P, Fng =+ Py » )
Ft = Loy Ly g =+ Ly 2
L = Fry iy g -+ Fiy 3
L% = Ly LnyLng =+ Ly » (4)

wherea>1 m>0, k>1and 0<my <nyp <--- < ny.

Since our main tool in solving the above equations is the primitive
divisor theorem of Carmichael [2], we first recall some facts about it. Let o
and B be agebraic numbers such that o + 3 and off are nonzero coprime

integers and ap~L is not a root of unity. Let (up,)

by

n>0 De the sequence given

=0 w=1 and u,=(a+B)up_q1—(aPf)u,_o for n> 2.

Then we have Binet’ s formulafor u,, given by

n n
a —P for n> 0.

1++/5 andel_Z\/g

, then (up,) isthe Fibonacci sequence.

A prime p is said to be a primitive divisor of u,, if p|u, but p does not
divide wu, ---u,_1. Then the primitive divisor theorem of Carmichael can
be stated as follows:
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Theorem 1.1 (Primitive divisor theorem of Carmichael [2]). If o and
are real numbers and n =1, 2, 6, then u, has a primitive divisor except
when n=12, o+ =1and aff = -1.
There is along history about primitive divisors and the most remarkable

resultsin this topic are given by Bilu et al. [1], by Stewart [6], and by Kunrui
[3], but Theorem 1.1 is good enough in our situation.

We also need the concept of the order of appearance of a positive integer.
Recall that for each positive integer m, the order of appearance of min the
Fibonacci sequence, denoted by z(m), isthe smallest positive integer k such

that m|Fy. It isawell-known fact that if pisan odd prime and z(p) is odd,

then p does not divide any Lucas number. We will use this fact in the proof
of main results without reference.

Finally, we remark that some variants of (1) to (4) are aso considered
by Szalay in [7] and by Pongsriiam in [4]. Other variants of (1) to (4) will
appear in our next article [5].

2. Main Results

The reader will see that equation (2) has infinitely many solutions while
(1), (3) and (4) have only a finite number of solutions. We begin this section
by solving (2). The solutions to (1), (3) and (4) can be obtained similarly.

Theorem 2.1. A Fibonacci number F,, can be written as a product

of Lucas numbers if and only if m= 2" or m=3-2" for some ¢ > 0.
Furthermore, there is a unique representation of FZZ (for ¢ >2), and

exactly five representations of F3. o (for ¢ > 2) as a nontrivial unordered
product of Lucas numbers:

Fzg = LZ(/_]_LZ(/_Z L2 for ¢ > 2, (5)

F3~2( = L3~2(71L3-2672 L12A for ¢ > 2, where (6)
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A= Fp = Lhlslolololo = Lalolalolo = Lelololo
= LeLslo = Lslslolo. (7
Here nontrivial product means that thereisno L; =1 in the representation.

Remark 2.2. F; = F, =1= L, is arepresentation of F; and F, as a
product of Lucas numbers. But when we would like to count the number of
nontrivial representations, we consider only those in which every factor is
larger than 1. This is why we restrict our attention to the case ¢ > 2 in (5).
In addition, if /=0 or ¢ =1 in (6), then we have F3 =Ly and Fg =

Lslg = L%. Moreover, if ¢ =2, then the product L3_2g_1L3_24_2-~-L12
appearing in (6) is empty. In this case, (6) becomes F3. of = A= Fp andits
representation as a product of Lucas humbersis given by (7).

Proof of Theorem 2.1. Wefirst eliminate the following two cases:

Case 1. mis odd and m> 5. By Theorem 1.1, there exists an odd
primitive prime divisor p of F,, so that z(p) = m Therefore, p does not

divide any Lucas number. Since p|F,,, we seethat F, isnot a product of

Lucas numbers.

Case2. m= Zéa, ¢>1 ax=5andaisodd. Since ajm, F,|F,. From
the argument in Case 1, there exists a prime p such that p|F, but p does
not divide any Lucas numbers. Since p|F; and F,|Fy, we have p|Fy,.

Therefore, Fy, isnot aproduct of Lucas numbers.

From Case 1 and Case 2, we only need to consider

Y4

m=2" or m=23-2' for some ¢ > 0.

Wehave F = Ly, F3 =Ly, Fg = Lglg, and by the well-known identity

Fon = LyFn, wealso obtain
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FZ( = L2€,1L2€,2 L2 for every ¢ > 2, and (8)
F3.2K = L3.2g_1L3‘2/‘_2 LGLSLO for every ( > 2. (9)

This proves the first part. For the second part, it is easy to check that F, and

Fg have a unique representation as a product of Lucas numbers given by (8)
and Fp = 24.3% = A has exactly five representations given in (7). Next,
we show that the representation of Fzg in (8) is unique for every ¢ > 4.

Consider the equation

L L L, = sz = |_2|_4|_8...|_2[_1, (10)

Ly Ly Lng -+ Ly

where /24, m <np <--<ng, and n; =1 for any j. By the identity

Fon = LyFn, (10) can be written as
LoyLnpLing -+ Ly o Fon For1 = Lobalg - Ly oFy Py (1D)

If 2¢ > 2ny, then by Theorem 1.1, there exists a prime p dividing Fzg but p
does not divide any term on the left hand side of (11), which is not the case.

Similarly, 2n, > 2" leads to a contradiction. Therefore, 2n, = 2" and (10)
isreduced to

L L

= Lolalg L2

nanz B 1 "]

which is in the same form as (10). So we can repeat the same process to

obtain ng_q = 2-2, Ng_p = 2'73, .., and (10) isreduced to

Lybny < Ln; = Lala.

mln,

From this, it is easy to check that j =2, m =2 and ny, = 4. Hence,

K=/-1Lm=2n=4.,adn = 27 This proves the unicueness of

(8). Similarly, we consider from (9), the equation
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Ln]_LnZ |_n3 Lnk = F3~2€ = L0L3L6 L3.2(72 L3.2[71’ (12)
with £>3, m<np <--<n, and nj =1 for any j. Applying Theorem

1.1 and the same argument given above, we obtain n, = 3- 21, N1 =

3.2/72, ... and (12) is reduced to

Ly, L, L

m =no 'Lnj = LolsLe.

ng "

Note that Lglslg = 2%.32 = A which can be written as an unordered

product of Lucas numbersin 5 ways. This completes the proof. O

Every Fibonacci number F, is obviously a product of Fibonacci numbers
F, = F, but it is more interesting to consider the product that has more than

one nontrivial factor.

Theorem 2.3. A Fibonacci number F,, can be written as a nontrivial
product of at least two Fibonacci numbers if and only if m= 6 or 12. Here
nontrivial product means that thereisno Fy = 0, F; = F, =1 inthefactor.

Proof. Here the factor of F, is aways smaller than F,,. So, if m>13
or m=3 4,5 7 8 9 10, 11, then F, has a primitive divisor by
Theorem 1.1. Therefore, F,, cannot be written as a product of smaller

Fibonacci numbers. So we only need to consider m=6,12. We have

Fg = F33 and Fpp = F34F42. This completes the proof. O

Theorem 2.4. A Lucas number L,, can be written as a nontrivial
product of at least two Lucas numbers if and only if m=3 or m= 6. Here
nontrivial meansthat thereisno Ly =1 inthe factor.

Proof. Since Ly,Fm = Fom, We see that if Fy, has a primitive divisor
p, Ly, aso has p as a primitive divisor. So, if m>7 or m= 2, 4,5, then

L, has a primitive divisor. By the same argument used in Theorem 2.3,
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we only need to consider m = 3, 6. We have L3 = L% and Lg = LOL%. This

compl etes the proof. O

Theorem 2.5. A Lucas number L, can be written as a nontrivial product
of Fibonacci numbers if and only if m=0, 2, 3, 6. Here nontrivial product

meansthat thereisno Fy = 0, F; = F, =1 inthefactor.

Proof. Suppose m> 7 and Ly, is a nontrivial product of Fibonacci
numbers. Since Foy, = Fyly, weseethat Fp, isanontrivial product of at
least two Fibonacci numbers. By Theorem 2.3, we have 2m= 6 or 2m =12,
a contradiction. Therefore, we only need to check the result for m < 6. This

can be easily done, so the proof is complete. O
Our argument can be applied to obtain more general results as follows.

Theorem 2.6. Let m>0 and n> 2. Then F, can be written as a
product of Lucas numbers if and only if m= 2" or m=3-2" for some

¢ > 0. Furthermore, all representations of Fer (¢ > 2) and of F3n2“ (¢ >2)

can be obtained directly from those given in Theorem 2.1.

Remark 2.7. There can be more than five representations of F3”2€ as

a product of Lucas numbers but they only come from the factor A" =

(24 . 32)“. For example, if n = 2, then there are 13 representations of A",

and therefore F3n , can be written as a product of Lucas numbers in 13

of
different ways.
Proof of Theorem 2.6. The proof is similar to that of Theorem 2.1. We
first eliminate those m which are not of the form 2° or 3- 2. For those m of
the form 2¢ or 3-2° , we can use the representations of F,, to obtain those

of Fn. The details are omitted. O
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Theorem 2.8. Let m> 0 and n > 2. Anumber F can bewritten as

Fm = FmyFmy - F (13)

m,
where k22, 3<m<mp<-.-<m, and m =m; for some i, e
{4, 2, .., k} ifandonlyif m=6,12 or (m=3and n> 4).

Proof. Assume that (13) holds. If m > 13, then the repeat application
of Theorem 1.1 leadsto my = m, m_; = m, ..., my = m, respectively, which
contradicts the assumption that m = m; for somei, j. If m=0,1 2, then

the left hand side of (13) is smaller than the right hand side, which is not
possible. If m= 4, 5,7, 8,9, 10 or 11, then the same argument based on the
primitive divisor can still be applied as follows. Let p be a primitive divisor
of Fy. Then p|Fy, forsomei.So m >m If m > m, thenthereisaprime

divisor g of Fy, which does not divide Fp, a contradiction. So my =m
Repeating this argument, we see that m; = m for every j, a contradiction.
So we only need to check m=3, 6, 12. For m=3 and n > 4, we have
FM = 2" = FI'"3F,. The remaining cases can be checked easily as well.

This completes the proof. O

Theorem 2.9. Let m> 0 and n > 2. Anumber L, can bewritten as

n _
Lm = Lmy Ly, " Lm, »
where k22, 0<my <mp <---<m, mj=1foranyj, and my # m; for
somei, jifandonlyif m=3,6 or (m=0and n> 3).
Proof. We omit the proof asit is very similar to that of Theorem 2.4 and

Theorem 2.8. O

Theorem 2.10. For m> 0 and n = 2, a number L',“n can be written as

L = FmyFm, - Fm, (14)
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with k>2,3<m<m <---<mg, and m # m; for somei, j if and only
ifm=3 6o (m=0and n> 4).

Proof. Wefirst consider the case m > 0. By (14) and the identity Fy, =

LmFm, we have
F2m = Finy Finy Fg *** Fm Fn-
By Theorem 2.8, we obtain 2m = 6, 12. So m = 3, 6. We have
L0 = 020 _ p20-3F
L3 = 2M32" = FPRZ,

For m=0 and n> 4, wehave L} = 2" = F§"3F,. Thecase m=0, n< 4

can be checked easily. This completes the proof. O
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