A NOTE ON UNLIFTABLE IMMERSED SURFACES IN 3-SPACE

ISSN: 0972-415X

Tsukasa Yashiro

Department of Mathematics and Statistics College of Science Sultan Qaboos University P. O. Box 36, P. C. 123, Al-Khoud Sultanate of Oman

Abstract

An immersed surface in 3-space is a surface with double curves and isolated triple points. In general, immersed surfaces in 3-space are not images of embedded surface in 4-space under the orthogonal projection. In this paper, we present a sufficient condition about a triple point for an immersed surface to become an unliftable surface into 4-space. Also we construct an orientable unliftable immersed sphere.

1. Introduction

Boy's surface. This is an immersed surface with only one triple point and three double loops based at the triple point (see Figure 2 also [4]). It is known that the projective plane can be realized in 4-space. However, the Boy's surface is not the projected image of embedded projective plane in

Received: December 15, 2015; Accepted: February 11, 2016 2010 Mathematics Subject Classification: 57M99, 57R42. Keywords and phrases: immersion, surface, liftable immersion.

Communicated by Yasuo Matsushita

4-space. It is called an *unliftable immersed surface*. In [3], Carter and Saito gave sufficient and necessary conditions for a generic closed surface to be liftable into 4-space. In this paper, we discuss about an immersed surface with triple points. We will show that if there is a triple point having three-fold symmetry and there is a double curve passing through the triple point three times, then it is unliftable (Theorem 3.1).

2. Preliminaries

Let proj: $\mathbf{R}^4 \to \mathbf{R}^3$ be the orthogonal projection defined by proj $(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3)$. The function $h : \mathbf{R}^4 \to \mathbf{R}$ defined by $h(x_1, x_2, x_3, x_4) = x_4$ is called a *height function*.

Let F be a closed oriented surface. Let $f: F \to \mathbb{R}^3$ be an immersion with triple points. We define the *singular set* of f as follows:

$$S_f = \{x \in F \mid \#(f^{-1}(f(x))) > 1\},\$$

where '#' means the cardinality. The singular set is a union of immersed circles. At a triple point p, the neighbourhood of p in \mathbb{R}^3 contains three small discs and their pre-images are disjoint discs in F (see Figure 1).

Figure 1. A triple point and its pre-images.

Let F be a closed orientable surface and let $f: F \to \mathbf{R}^3$ be an immersion. If there is an embedding $\tilde{f}: F \to \mathbf{R}^4$ such that $\operatorname{proj} \circ \tilde{f}(x) = f(x)$ for all $x \in F$, then \tilde{f} is called a *lift* of f into \mathbf{R}^4 and f is said to be *liftable*. The image of the singular set S_f under f is called a *singularity set* in 3-space.

In [3], Carter and Saito proved that the liftability of orientable closed surface is determined by the singular set:

Lemma 2.1 (Carter and Saito [3]). Let F be a closed surface and let $f: F \to \mathbb{R}^3$ be an immersion. Then f is liftable if and only if the crossing set satisfies the following two conditions:

- (1) The components can be divided into two families and (called a-curves and b-curves, respectively), and
- (2) The singular set is the union of two families $S_a = \{s_a^1, s_a^2, ..., s_a^k\}$, called a-curves and $S_b = \{s_b^1, s_b^2, ..., s_b^k\}$, called b-curves of immersed circles, such that $f(s_a^i) = f(s_b^i)$ for each i = 1, 2, ..., k, and for a triple point p with $f^{-1}(p) = \{p_1, p_2, p_3\} \subset S_f$, each point of $f^{-1}(p)$ is formed by a-curves or b-curves; the three combinations for the set $f^{-1}(p)$ is $\{(b, b), (a, b), (a, a)\}$ (see Figure 1).

Proposition 2.1. Let F be a closed oriented surface and let $f: F \to \mathbb{R}^3$ be an immersion with at least one triple point p. Let $P = \{p_1, p_2, p_3\}$ be the set of pre-images of a triple point p. Suppose that one of immersed circles c in S_f contains all points of P. Then f is unliftable into 4-space.

Proof. Suppose that f is liftable. Then by Lemma 2.1 S_f is a union of at least two immersed circles c_a and c_b such that $f(c_a) = f(c_b)$. In general, $c_a \cup c_b$ can be viewed as a graph with vertices p_1 , p_2 and p_3 . Each p_i is a four-regular vertex and $P \subset c = c_a$ (or c_b). By Lemma 2.1, these points p_1 , p_2 and p_3 have colours $\{(a, a), (a, b), (b, b)\}$ but this contradicts that c_a contains all three points. Therefore, f is unliftable.

3. Pre-images of Triple points

Let $f: F \to \mathbf{R}^3$ be an immersion with a triple point p and let

 $P=f^{-1}(p)=\{p_1,\,p_2,\,p_3\}$ be the set of pre-images of a triple point p. Suppose that an immersed circle c in S_f contains some of elements of P; that is, $p\in f(c)$. From Proposition 2.1, if the map f is liftable, then $\#(c\cap P)\leq 2$.

Let $N(S_f)$ be a small neighbourhood of S_f in F and denote $f(N(S_f))$ by M_f . Let $\varphi: \mathbf{R}^3 \to \mathbf{R}^3$ be an orientation preserving homeomorphism such that $\varphi(M_f) = M_f$. If the minimal period n of φ ; that is, $\varphi^n(x) = x$ for all $x \in M_f$, is called the *order* of φ . If n = 3, and $\varphi(p) = p$ for some triple point, then we say that M_f has a *three-fold symmetry* around p.

The map φ induces a map $\widetilde{\varphi}: F \to F$. We define $\widetilde{\varphi}': N(S_f) \backslash S_f \to N(S_f)$ by $\widetilde{\varphi}'(x) = f^{-1}\varphi f(x)$. This map is an embedding and it naturally extends to a homeomorphism $\widetilde{\varphi}: F \to F$.

Lemma 3.1. *If* φ *has order* 3, *then* $\widetilde{\varphi}$ *also has order* 3.

Proof. From the definition, it is trivial.

Theorem 3.1. Let $f: F \to \mathbb{R}^3$ be an immersion with at least one triple point p. Suppose that the neighbourhood of singularity set M_f has three-fold symmetry around a triple point p. If there exists c in S_f such that f(c) passes the triple point p three times, then f is unliftable.

Proof. Suppose that f is liftable. Then from Lemma 2.1, there are double decker curves c_a and c_b such that $f(c_a) = f(c_b)$.

Let $P = \{p_1, p_2, p_3\}$ be the pre-image of the triple point p. Without loss of generality, we can assume that $h(p_1) < h(p_2) < h(p_3)$. There are three disjoint closed discs D_1 , D_2 and D_3 in F such that $f(D_1 \cup D_2 \cup D_3) \subset M_f$

forms a closed neighbourhood of the triple point p. We assume that $p_i \subset D_i$ for i = 1, 2, 3. Each D_i contains two line segments $d_i \cup e_i$:

$$D_i \cap (c_a \cup c_b) = d_i \cup e_i,$$

$$p_i = d_i \cap e_i.$$
(1)

By Lemma 2.1, D_1 contains only part of *b*-curves; D_2 contains both *a* and *b*-curves; and D_3 contains only *a*-curves.

Since f(c) passes the triple point p three times, there is a loop l_1 based at p_1 such that $l_1 \cap D_1$ is a pair of arcs a_1 and b_1 and $a_1 \subset d_1$ and $b_1 \subset e_1$. Since $\widetilde{\varphi}$ is cyclic, $\widetilde{\varphi}(D_1) = D_2$, $\widetilde{\varphi}(D_2) = D_3$ and $\widetilde{\varphi}(D_3) = D_1$. Thus, $\widetilde{\varphi}(l_1) = l_2$ is also a loop at p_2 with arcs $\widetilde{\varphi}(a_1) = a_2$, $\widetilde{\varphi}(b_1) = b_2$ and $a_2 \subset d_2$, $b_2 \subset e_2$. We may assume that $d_2 \subset c_a$ and $e_2 \subset c_b$ or $d_2 \subset c_b$ and $e_2 \subset c_a$. Either case is a contradiction. Therefore, f is unliftable. \square

4. Examples

Example 4.1. It is known that Boy's surface (Figure 2) is unliftable (see [4, 5]).

By Theorem 3.1, we can justify this: Boy's surface has only one triple point and one double curve and it has three-fold symmetry. Therefore, from Theorem 3.1 it is unliftable.

We can construct an orientable unliftable immersed sphere (see also [5, 6]). First provide the following immersed disc depicted in Figure 3.

Figure 2. Boy's surface.

Figure 3. Z-disc.

We call this immersed disc a *Z-disc*. Take three copies of the *Z*-disc and paste these boundaries together so that the points *N* and *S* are pasting together and it has only one double curve (see Figure 4). The resulting diagram will be an immersed sphere.

Figure 4. Three copies of *Z*-disc.

In a neighbourhood of the point N, we have three double curves meeting together. Merge them to make a pair of triple points p and q (see Figure 5).

Figure 5. Intersecting three double curves to create triple points p and q.

The resulting immersed sphere has a three-fold symmetry around the triple point p and it has only one double curve and it passes through p three times. Therefore, by Theorem 3.1, it is unliftable.

References

- [1] W. Boy, Über die Curvatura integra und die Topologie geschlossener Flächen, Math. Ann. 57 (1903), 151-184.
- [2] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, 55, American Mathematical Society, Providence, RI, 1998.
- [3] J. S. Carter and M. Saito, Surfaces in 3-space that do not lift to embeddings in 4-space, Knot theory, Banach Center Publications, 42, Polish Acad. Sci., Warzawa, 1998, pp. 29-47.
- [4] G. Francis, A Topological Picturebook, Springer-Verlag, Berlin-Heidelberg, New York, 1987.
- [5] C. Giller, Towards a classical knot theory for surfaces in R⁴, Illinois J. Math. 26 (1982), 591-631.
- [6] T. Yashiro, Deformations of surfaces in 4-dimensional space, New Zealand J. Math. 33 (2004), 187-203.