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1. Introduction

In [1], on a semi-Riemannian manifold M 2n+1, Kaneyuki and Konzai

introduced a structure which is called the almost paracontact structure and

characterized the almost paracomplex structure on M 2+ R, Recently,
Zamkovoy [2] studied paracontact metric manifolds and some subclasses
which are known as para-Sasakian manifolds and then the study of
paracontact geometry was continued by several papers [3-7] which are
contained role of paracontact geometry about semi-Riemannian geometry,

mathematical physics and relationships with the para-Ké&hler manifolds.

Assume that M and M are Riemannian manifolds, f : M — M is an

isometric immersion, h is the second fundamental form and V is the Van der

Waerden-Bortolotti connection of M. If the following condition
R(X,Y)-h=(VxVy - VyVx = V[x yPh =0, (1.1)

is provided, then an immersion is called semi-parallel [8]. Several papers on
semi-parallel immersions have appeared (see [9-11]). In [12], Arslan et al.

introduced the following condition
R(X,Y)-Vh =0, (1.2)

for all X,Y e I'(M). If the condition (1.2) satisfying, then submanifold is

said to be 2-semi-parallel.

Also, in [13], Bejancu and Papaghiuc examined semi-invariant
submanifolds and then the study of semi-invariant submanifold was
continued by several papers [14-18]. In our paper, we give some geometric
results about invariant and semi-invariant submanifolds of a para-Sasakian

manifold.

This manuscript is arranged as follows. There are some basic definitions
and equations for submanifolds and almost paracontact manifolds in Section
2. In Section 3, we show that semi-parallel and 2-semi-parallel invariant
submanifolds of a para-Sasakian manifold are totally geodesic. In Section 4,
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some characterizations of semi-invariant submanifold of a para-Sasakian
manifold are given. Finally, totally paracontact umbilical and totally
paracontact geodesic submanifolds are introduced.

2. Preliminaries

Let (M"™ §) be a semi-Riemannian manifold and (M", g) be a

submanifold of M. Let V and V be the Levi-Civita connection of M and

M, respectively. Then the Gauss and Weingarten formulas are given by
VxY = VxY +h(X,Y), (2.1)
VyN = —AyX + VxN, (2.2)
where X, Y e I'(M) and N is a normal vector field on M.
The covariant derivative of second fundamental form h is given by
(Vyh)(Y, Z) = Vx (h(Y, Z)) - h(VxY, Z) = h(Y, Vx Z), (2.3)

for X, Y, Z e T(TM). Then Vh is called the third fundamental form of M.

If Vh = 0, then M is said to have parallel second fundamental form[19].

In view of (1.1), we have
(R(X,Y)-h)(U,V) = RY(X, Y)h(U, V) - h(R(X, Y)U, V)
—h(U, R(X, Y)V), (2.4)
for X,Y,U,V € I'(TM). Furthermore, we get
(R(X,Y)-Vh)(Z,W, U)
= RY(X, Y)(Vh)(Z, W, U) - VA(R(X, Y)Z, W, U)
—-Vh(Z, R(X, Y)W, U) - Vh(Z,W, R(X, Y)U), (2.5)

for X, Y, Z,W, U e I'(TM), where (Vh)(Z, W, U) = (Vh,)(W, U) [12].
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A paracontact manifold M2 s smooth manifold equipped with a
I-form m, a characteristic vector field £ and a tensor field ¢ of type (1, 1)
such that [1]:

¢’ =1-1®& n@E)=1L ¢&=0, nop=0. (2.6)
If we set D = kern = {X e I(TM) : n(X) = 0}, then ¢ induces an almost
paracomplex structure on the codimension 1 distribution defined by D [1].

Moreover, if the manifold M is equipped with a semi-Riemannian metric

§ of signature (n + 1, n) which is called compatible metric satisfying [2]
9(0X, 0Y) = -g(X, Y)+n(X)n(Y), X,Y e[ (TM), 2.7)
then we say that M is an almost paracontact metric manifold with an almost
paracontact metric structure (o, & 1, §).
From the definition, one can see that [2]
n(X) = (X, &). (2.83)
The fundamental 2-form of M is defined by

(X, Y) = §(X, oY). (2.9)

Definition 2.1. If §(X, oY) = dn(X,Y) (where dn(X,Y)= %{Xn(Y)
- Yn(X)-n(X, Y])}), then n is a paracontact form and the almost

paracontact metric manifold (M, @, &, n, §) is said to be paracontact metric

manifold.

An almost paracontact metric structure (¢, & 1, §) is a para-Sasakian

manifold if and only if [2]

(Vx@)Y =-4(X, Y)& +n(Y) X, (2.10)

A

where X,Y e I'(TM) and V is a Levi-Civita connection on M.
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From (2.10), we arrive at
VyE = —oX. (2.11)
Also, the following relation holds in a para-Sasakian manifold [2]:
R(X, Y)& = n(X)Y =n(Y)X, (2.12)

for X,Y e T(TM).
3. Invariant Submanifolds

Let M be a submanifold of a para-Sasakian manifold
(M2™1 o, €, m, g). If the structure vector field & e T(TM) and @X is
tangent to M, for any X € T'(TM) at every point of M, that is, Ty (M)

< T4(M), for all xe M, then M is called invariant submanifold of M.
Since & € T'(TM), we write

—X = VyxE=VyxE+h(X,&), Xel(TM).
In that case, we obtain h(X, &) = 0.

Proposition 3.1. If M is an invariant submanifold of a para-Sasakian
manifold M, then the following relations hold:

(i) h(X, &) =0, ANE =0, (3.1)
(i) h(X, oY) = h(eX, Y) = oh(X, Y), 3.2)
(iii) QANX = —AyoX = A X. (3.3)

Proposition 3.2. Let M be an invariant submanifold of a para-Sasakian

manifold M. If the second fundamental form h of M is parallel, then M is
totally geodesic.

Proof. Assume that h is parallel. Thus, for any X, Y e I'(TM), we have

0= (th)(Y7 %) = Vxh(Y: %) - h(vXY’ <t:~) - h(Y7 VXE_,)
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From (2.11) and (3.1), we get
h(eX, Y) = 0.
By use of (3.2), we conclude
h(X,Y) =0,
which completes the proof. O

Theorem 3.1. Let M be an invariant submanifold of a para-Sasakian

manifold M. If M istotally umbilical, then M is totally geodesic.

Proof. From (3.1), we obtain

h(‘:: E_v) =0.

If M is totally umbilical, then we get

h(, £) = 0 = ng(, &),

which implies p = 0. Hence, we obtain
h(X,Y)=0, VX,Y el(TM).
This completes the proof. n

Theorem 3.2. Let M be an invariant submanifold of a para-Sasakian

manifold M. Then M is semi-parallel if and only if M is totally geodesic.

Proof. Let M be a semi-parallel invariant submanifold of M. Then from

(2.4), we get
RL(X, Y)h(V, Z)-h(R(X,Y)V, Z)-h(V, R(X,Y)Z) =0, (34
forany X,Y,V,Z e I'(TM).
Putting X = Z = & in (3.4) and using (3.1), we have

hV, R, Y)E) = 0.
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From (2.12) and (3.1), we get
hV,Y) =0,
which implies that M is totally geodesic.
The proof sufficiency part is clear. 0

Theorem 3.3. An invariant submanifold M of a para-Sasakian manifold

M has parallel second fundamental formif and only if M is totally geodesic.

Proof. By use of (2.3), forany X, Y, W e I'(TM), we get

vV (h(Y, W)) = h(V Y, W) — h(Y, VW) = 0. (3.5)

Taking W = & in (3.5), we find
Vx (h(Y. €)= h(VxY. &) = h(Y, V&) = 0.
From (3.1), we obtain
h(Y, V&) = 0.
Therefore, from (2.11), we get
h(Y, ¢X) = 0. (3.6)
Replacing X by ¢X in (3.6) and in view of (2.6) with (3.1), we have
h(Y, X) =0,

which gives that M is totally geodesic. OJ

Theorem 3.4. An invariant submanifold M of a para-Sasakian manifold

M is2-semi-parallel if and only if M is totally geodesic.

Proof. Assume that M is 2-semi-parallel. Thus, from (2.5), we write
RY(X, Y)(Vh)(Z,W, U) - Vh(R(X, Y)Z, W, U)
~Vh(Z, R(X, Y)W, U) - Vh(Z,W, R(X, Y)U) = 0, (3.7)

forany X,Y,U,W, Z e I'(TM).
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By putting X =W = & in (3.7) and then by using (2.3), (2.12) and (3.1),

we have

R (& Y)h(eZ, U) + n(Z)h(eY, U) = VZh(Y, U)

+h(VZzR(E, Y)E U) + h(Y, VzU) —n(U)h(eZ, Y) = 0.
Taking U = & in (3.8) and from (2.6) with (3.1), we have

h(Y, VzE) - h(¢Z, Y) =0,
which yields
h(eZ,Y) = 0.
Replacing Zby ¢Z in (3.9) and in view of (2.6) and (3.1), we obtain
h(Z,Y) = 0.

Hence, M is totally geodesic.

Since the proof of contrary is clear, we omit it.

4. Semi-invariant Submanifolds

(3.8)

(3.9)

Definition 4.1. A submanifold M of an almost paracontact metric

manifold M with & € [(TM) is called a semi-invariant submanifold, if there

exist two differentiable distributions D and D> on M such that [22]
() T™M = D @ D* @ {g},
(ii) @(D) = D, that is, D is invariant by o,

(iii) (DY) = T*M, thatis, D" is anti-invariant by ¢.

A semi-invariant submanifold is an invariant submanifold (resp. anti-

invariant submanifold) if D = {0} (resp. D = {0}). Also, if D # {0} # D™,

then a semi-invariant submanifold is called proper.
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For X e ['(TM), we put
X = X + oy X + n(X)E, 4.1)
where o] and o, are projection operators of TM on D and DL, respectively.
Moreover, for X € I(TM) and N e [(T*M), we get
(Vx@)Y =[(Vx F)Y = AykY = Bh(X, Y)]
+[(Vxw)Y + h(X, fY)-Ch(X, Y)], (4.2)

(Vx@)N = [(VxB)N — Acy X — fAyX]

+[(VxC)N + h(X, BN) — wA X], (4.3)

where
eX = fX +wX, (fX el(TM), wX e I(TM)), (4.4)
oN =BN +CN, (BN eI'(TM), CN e I'(T1M)), (4.5)
(Vi F)Y =V fY = fVyY, (VW)Y = VWY — wv Y, (4.6)

(VxB)N = VyBN - BVxN, (VxC)N = Vx%CN —CVxN.  (4.7)
Example 4.1. Let M =R be the 9-dimensional real number space with
(Xl, yI’ X2, y2’ X3, y3’ X4, y4, Z)
standard coordinate system. If we set

0 _0 42 -0 9 o (<i<4),

T i i i

ox oy oy  0oX

then ¢ is a tensor field of type (I, 1) on R’. We define the differential
1-form n and the vector field & by

nzdzandizg.
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Also, we define metric § by
4 . . . .
g=m®n+) (X ®d -dy ®ay').
i=1
Then the set (I\7I , &, M, ¢, §) is an almost paracontact metric manifold.

Now, we define a 4-dimensional submanifold M of M, with & e '(T™),
by
Xl _ _yl, X2 _ _y2’ X3 _ X4, y3 _ 0, y4 - 0.

In this case, TM is spanned by {U; },;,, Where

o 0 o 0
Ui=—i-—7 Y2=—5--75
ox oy oX oy
o 0 0
Up=2+2 uy=e=2.
ad ! 0z

o o 6 o
Np=-—5+—. Np=-—5+—,
ox oy ox~ oy
o 6 o 6
Ns=-—5-—a Ne=——5--7
x> oX oy> oy
6 &
N5=—3+_4.
oy” oy

If we set D = Span{Uy, U, }, D = Span{Us}, D = San{Ny, Ny, N3, Ny}
and DT = San{Ns}, then we have that ¢D = D, oD =D+ = T1M,

oD = D. Thus, M is a semi-invariant submanifold of M.

Theorem 4.1. Let M be a semi-invariant submanifold of a para-Sasakian
manifold M. Then the distribution D is integrableif and only if
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h(X, ¢Y) = h(eX, Y),
forall X,Y eI'(D).
Proof. In view of (2.1), (2.2), (2.10) and symmetry of h, then we get
9([X, Y] 9Z) = g(VxY - Vy X, 9Z)
= g(VxY - Vy X, 92)
= g(oVy X — ¢VxY, Z)
= 9((Vx)Y - VxoY. 2)
— 9((Vy@) X = VyeX. Z)
= —g(X. Y)n(2) + g(X. Z)n(Y) - 9(V x9Y. Z)
+9(X. Y)n(Z) - (Y. Z)n(X) + g(VyeX. Z)
= 9(VyoX. 2) - 9(VxoY. Z), (4.8)
forany X,Y e I'(D), Z e I(D™). Again using (2.1) in (4.8), we have
a([X. Y] 02) = g(VyeX, Z) + g(h(Y, ¢X). Z)
- 9(VxeY. Z) - g(h(X, ¢Y), Z)
= g(h(Y, ¢X), Z) - g(h(X, ¢Y), Z)
= g(h(Y, oX) - h(X, 9Y), Z).

Therefore, [X, Y] e T'(D) if and only if h(Y, ¢X)—h(X, ¢Y) = 0, which
completes the proof. OJ

Theorem 4.2. Let M be a semi-invariant submanifold of a para-Sasakian

manifold M. Then the distribution D isintegrableif and only if

ApuV = AU,

for all U,V e I(DV).
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Proof. By using (2.2) and (2.10) with (4.4) and (4.5), for all U,V €
(DY), we get
(Vuo)V = VyoV - oVyV,
~g(U, V)& +n(V)U = —AyV + VeV - oVyV - oh(U, V),
~g(U, V)& = —AuV + VeV - fVyV
- wVyV - Bh(U, V) - Ch(U, V). (4.9)
If we take tangential part of (4.9), then we have
-g(U,V)E = —AuV - VYV - Bh(U, V). (4.10)
In (4.10), replacing U with V, we get
-g(V,U)g = —ApU - FVU — Bh(V, U). (4.11)
In view of (4.10) and (4.11), we obtain
AU — AV + VvV - fWU =0,
from which, we easily see that
ApuV - ApvU = flU, V].

Thus, we obtain that [U,V]e ['(D") if and only if A,yV — AU =0,
which completes the proof. O

Theorem 4.3. Let M be a semi-invariant submanifold of a para-Sasakian

manifold M. Then the distribution D is integrable and its leaves are totally
geodesicin M if and only if

g(h(x’ Y)a (PU) = 0,

forall X,Y e (D), U e [(D™).
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Proof. By use of (2.1), (2.2), (2.10) with (4.4), we obtain
g(h(X, Y), oU) = g(VxY, oU)
= -g(VxY,U)
= 9(Vx0)Y,U) - g(VxoY, U)
= —g(X, Y)n(U) + g(X, U)n(Y) - g(VxoY. U)
= —g(VxoY,U) = -g(Vx fY,U),

forall X,Y e I['(D), U e [(D™).

Assume that D is integrable and its leaves are totally geodesic in M. Then

we have
VY e (D),
which yields g(h(X, Y), U) = 0.
Conversely, if g(h(X, Y), oU) = 0, then we get
ag(Vx fY,U)=0.
Therefore, V fY e I'(D). O

Definition 4.2. Let M be a semi-invariant submanifold of a para-Sasakian

manifold M. If the second fundamental form of M satisfies
h(X,Y)=0, VX,Y eI(D),
then M is called D-geodesic submanifold.

Theorem 4.4. Let M be a semi-invariant submanifold of a para-Sasakian

manifold M. Then D is integrable and its leaves are totally geodesic in M
if and only if M is D-geodesic submanifold.
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Proof. We suppose that D is integrable and its leaves are totally geodesic

in M. Then we have
VyY e I'(D),
forall X,Y e I'(D). Hence, we get
g(h(X, Y), N) = g(VxY, N) = 0,
for N e T(TM), which shows M is a D-geodesic submanifold.
Contrary, let M be a D-geodesic submanifold. Then we get

ag(VxY, N) = g(h(X, Y), N) = 0. (4.12)

The assertion is proved by virtue of (4.12). O

Definition 4.3. Let M be a semi-invariant submanifold of para-Sasakian

manifold M. If the second fundamental form of M satisfies
h(X,Y)=0, X eI(D), Y eI(D}),

then M is called mixed-geodesic submanifold.

Theorem 4.5. Let M be a semi-invariant submanifold of para-Sasakian

manifold M. Then M is mixed-geodesic submanifold if and only if
AveX € I'(D),
forany X e (D) and N e [(T+M).
Proof. Using (2.1) and (2.2), we obtain
g(h(eX, V), N) = g(VyeX, N) = —g(Vy N, 9X)
= 9(ANV, ¢X) = g(V, AyoX),

forany X e ['(D),V e (D) and N e [(T*M). Thus, we get h(X, V)
= 0 ifand only if AyoX e I'(D). O
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Definition 4.4. Let M be a semi-invariant submanifold of para-Sasakian

manifold M. If there exists a normal vector field H such that the second

fundamental form of M is given by
h(X,Y) = g(eX, eY)H + n(X)h(Y, €) + n(Y)h(X, &), (4.13)

for any X,Y e I(TM), then M is called totally paracontact umbilical
submanifold. If we have H = 0 in (4.13), that is,

h(X, Y) = n(X)h(Y, &) + n(Y)h(X, &), (4.14)
then we say M is totally paracontact geodesic.

Theorem 4.6. Any totally paracontact umbilical semi-invariant
submanifold M of a para-Sasakian manifold istotally paracontact geodesic.

Proof. By using (2.6), we get
(Vx@)eX = —9(Vx9) X = (Vxm)(X)& - n(X)VxE,
for any X e I'(TM). Moreover, from (2.10), we get

(Vx0) X =-g(X, X)&+n(X)X

and
(V& X) = (Vxm)(X) = 0.
Thus, we obtain
(Vx@)oX = -n(X)oX - n(X)Vx& (4.15)
Now, we assume that X e T'(D). So, from (2.10), we get
a(Vx)pX, H) = 0. (4.16)

Using (2.6) in (4.16), we obtain
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0 = g(VXoX — oVxoX, H)

9g(Vx X, H) + g(VxoX, oH)

~9(X, VxH) + g(VxoX, ¢H)

—9(Aq X, X) + g(Apn X, 9X),

from which, we have

0 = g(h(X, ¢X), oH) — g(h(X, X), H). (4.17)

Thus, using (4.14) in (4.17), we obtain

g(xs X)g(H, H) =0,

and consequently, H = 0, which proves the result. O
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