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Abstract 

In this paper, an algorithm is constructed based on variational iteration 
method (VIM) to solve convection-diffusion equation. The algorithm 
converges faster and has proved elegant. Numerical examples are 
presented to show the efficiency of the method. 

1. Introduction 

Convection-diffusion equation describes the physical phenomenon where 
particles, energy and other physical quantities are transferred inside a system 
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due to diffusion or convection. This equation is of the form 
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subject to the initial condition ( ) ( ),0, xgxu =  10 ≤≤ x  and boundary 

conditions ( ) ,0,0 =tu  ,0≥t  ( ) ,0, =tlu  ,0≥t  where the parameter γ is 

the viscosity coefficient and ε is the phase speed and both are assumed to be 
positive. g is a given function of sufficient smoothness. 

In [1, 2], Adomian decomposition method was used to solve convection-
diffusion (CD) equation, in [3, 4], He’s homotopy perturbation method was 
used and in [5], homotopy analysis method was used to solve convection-
diffusion equations. In this paper, the equation was solved by variational 
iteration method [6-11]. To illustrate the efficiency, applicability and 
reliability of the method, some examples are presented. 

2. Variational Iteration Method 

The basic idea of the He’s variational iteration method (VIM) [6-11] can 
be explained by considering the following nonlinear partial differential 
equations: 

 ( ),xgNuLu =+  (2) 

where L is the linear operator, N is the nonlinear operator and ( )xg  is the 

inhomogeneous term. According to the method, we can construct a correction 
functional as follows. 

The corresponding variational iteration method for solving (2) is given as 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ −+λ+=+
x

nnnn dssgsuNsLusxuxu
01 ,  (3) 

where λ is a Lagrange multiplier which can be identified optimally by 
variational iteration method. The subscript n denotes the nth approximation, 

nu  is considered as a restricted variation, i.e., .0=δ nu  The successive 
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approximation ,1+nu  0≥n  of the solution u can be easily obtained by 

determining the Lagrange multiplier and the initial guess ,0u  thus the solution 

is given by 1.lim −=λ=
∞→ nn

uu  for the problems under consideration. 

3. Numerical Examples 

In this section, examples of convection-diffusion equation are given and 
the results will be compared with the exact solutions. Three examples are 
solved with the VIM algorithm and the results have been generated by Maple 
18. 

Example 3.1. Consider the CD equation in [5]: 

 01.002.0 =+− xxxt uuu  (4) 

with the initial condition ( ) .0, 67701771243444.1 xexu =  The exact solution of 

this equation is ( ) ., 09.067701771243444.1 txetxu −=  

Applying (3), we obtain the following: 

( ) ,80899999999.0, 177124344.1177124344.1
1 teetxu xx −=  (5) 

( ) teetxu xx 177124344.1177124344.1
2 0899999999.0, −=  

,970040499999.0 2177124344.1 te x+  (6) 

( ) teetxu xx 177124344.177124344.1
3 80899999999.0, −=  

2177124344.1970040499999.0 te x+  

,9990001214999.0 3177124344.1 te x−  (7) 

( ) teetxu xx 177124344.1177124344.1
4 80899999999.0, −=  

217724344.1970040499999.0 te x+  

3177124344.19990001214999.0 tx−  

,499980000027337.0 4177124344.1 te x+  (8) 
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( ) teetxu xx 177124344.1177124344.1
5 80899999999.0, −=  

2177124344.1970040499999.0 te x+  

3177124344.19990001214999.0 te x−  

4177124344.1499980000027337.0 te x+  

.09207499941.4 5177124344.18 te x−−  (9) 

Table 1 shows the errors index of the approximate solution at different 
points ( )., tx  Also, the graphs of u(exact) and u(approx.) are shown in Figure 

1 and Figure 2 when 1.0=t  and ,1=t  respectively. Figure 3 and Figure 4 
show the 3-D graphs of u(exact) and u(approx.), respectively. 

Table 1. The errors index of the approximate solution at the points ( ),, tx  

1.0,10...,,3,2,1 == tx  for Example 3.1 

x 0 1 2 3 4 5 6 7 8 9 10 
Error 0 0 10–8 0 0 0 10–6 0 0 0 10–4 

 
Figure 1. u(exact) and u(approx.) when .1.0=t  



Application of Variational Iteration Method to the Solution … 1793 

 
Figure 2. u(exact) and u(approx.) when .1=t  

 
Figure 3. 3-D graph of u(exact). Figure 4. 3-D graph of u(approx.). 

Example 3.2. Consider the CD equation [4, 5]: 

 05.022.0 =−+ xxxt uuu  (10) 

with initial condition ( ) ( ).sin0, 22.0 xexu x π=  The exact solution is 

( ) ( ) ( ).sin,
25.0024.022.0 xetxu tx π= π+−  
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Applying (3), we obtain the following: 

( ) ( )xetxu x 141592652.3sin, 22.0
1 =  

( )txe x 141592654.3sin270664968.2 2200000000.0+  

( ) ,141592654.3cos266690158.1 2200000000.0 txe x+  (11) 

( ) ( )xetxu x 141592652.3sin, 22.0
2 =  

( )txe x 141592654.3sin270664969.2 2200000000.0+  

( )txe x 141592654.3cos266690158.1 2200000000.0+  

( )xet x 141592654.3sin775707721.1 2200000000.02+  

( ),141592654.3cos876228968.2 2200000000.02 xet+  (12) 

( ) ( )xetxu x 141592654.3sin, 22.0
3 =  

( )te x 141592654.3sin270664969.2 2200000000.0+  

( )txe x 141592654.3cos266690158.1 2200000000.0+  

( )xet x 141592654.3sin775707722.1 2200000000.02+  

( )xet x 141592654.3cos876228968.2 2200000000.02+  

( )xet x 141592654.3sin1295821303.0 2200000000.03+  

( ),141592654.3cos926741284.2 2200000000.03 xet x+  (13) 

( ) ( )xetxu x 141592654.3sin, 22.0
4 =  

( )te x 141592654.3sin270664969.2 2200000000.0+  

( )txe x 141592654.3cos266690158.1 2200000000.0+  

( )xet x 141592654.3sin775707722.1 2200000000.02+  
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( )xet x 141592654.3cos876228968.2 2200000000.02+  

( )xet x 141592654.3sin1295821303.0 2200000000.03+  

( )xet x 141592654.3cos926741284.2 2200000000.03+  

( )xet x 141592654.3sin8532591938.0 2200000000.04−  

( ),141592654.3cos702447328.1 2200000000.04 xet x+  (14) 

( ) ( )xetxu x 141592654.3sin, 22.0
5 =  

( )te x 141592654.3sin270664969.2 2200000000.0+  

( )txe x 141592654.3cos266690158.1 2200000000.0+  

( )xet x 141592654.3sin775707722.1 2200000000.02+  

( )xet x 141592654.3cos876228968.2 2200000000.02+  

( )xet x 141592654.3sin1295821303.0 2200000000.03+  

( )xet x 141592654.3cos926741284.2 2200000000.03+  

( )xet x 141596254.3sin8532591938.0 2200000000.04−  

( )xet x 141592654.3cos702447328.1 2200000000.04+  

( )xet x 141592654.3sin8187878072.0 2200000000.05−  

( ).141592654.3cos5569744970.0 2200000000.05 xet x+  (15) 

Table 2. The errors index of the approximate solution at the points ( ),, tx  

1.0,10...,,3,2,1 == tx  for Example 3.2 

x 0 1 2 3 4 5 6 7 8 9 10 
Error 0 10–12 10–12 0 0 0 10–6 0 0 0 10–9 
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The graphs of u(exact) and u(approx.) are shown in Figure 5 and Figure 
6 when 1.0=t  and ,1=t  respectively. Figure 7 and Figure 8 show the 3-D 
graphs of u(exact) and u(approx.), respectively. 

 
Figure 5. u(exact) and u(approx.) when .1.0=t  

 
Figure 6. u(exact) and u(approx.) when .1=t  
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Figure 7. 3-D graph of u(exact). Figure 8. 3-D graph of u(approx.). 

Example 3.3. Consider the CD equation [4, 5]: 

 0,10,01.02.0 ≥≤≤=+− txuuu xxxt  (16) 

with initial condition ( ) ( ).sin0, 25.0 xexu x π=  The exact solution of the 

problem is 

( ) ( ) ( ).sin,
22.00125.025.0 xetxu tx π= π+−  

Applying (3), we obtain the following: 

( ) ( )xetxu x 141592654.3sin, 25.0
1 =  

( )txe x 141592654.3sin2211420880.0 2500000000.0−  

( ) ,141592654.3cos2827433388.0 2500000000.0 txe x−  (17) 

( ) ( )xetxu x 141592654.3sin, 25.0
2 =  

( )txe x 141592654.3sin2211420880.0 2500000000.0−  

( )txe x 141592654.3cos2827433388.0 2500000000.0−  
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( )xet x 141592654.3sin60155199862.0 2500000000.02−  

( ),141592654.3cos50625264523.0 2500000000.02 xet x+  (18) 

( ) ( )xetxu x 141592654.3sin, 25.0
3 =  

( )txe x 141592654.3sin2211420880.0 2500000000.0−  

( )txe x 141592654.3cos2827433388.0 2500000000.0−  

( )xet x 141592654.3sin60155199862.0 2500000000.02−  

( )xet x 141592654.3cos50625264523.0 2500000000.02+  

( )xet x 141592654.3sin260070370200.0 2500000000.03+  

( ),141592654.3cos990031463524.0 2500000000.03 xet x−  (19) 

( ) ( )xetxu x 141592654.3sin, 25.0
4 =  

( )txe x 141592654.3sin2211420880.0 2500000000.0−  

( )txe x 141592654.3cos2827433388.0 2500000000.0−  

( )xet x 141592654.3sin60155199862.0 2500000000.02−  

( )xet x 141592654.3cos50625264523.0 2500000000.02+  

( )xet x 141592654.3sin260070370200.0 2500000000.03+  

( )xet x 141592654.3cos990031463524.0 2500000000.03−  

( )xet x 141592654.3sin7820006114478.0 2500000000.04−  

( ),141592654.3cos9420003234698.0 2500000000.04 xet x−  (20) 
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( ) ( )xetxu x 141592654.3sin, 25.0
5 =  

( )txe x 141592654.3sin2211420880.0 2500000000.0−  

( )txe x 141592654.3cos2827433388.0 2500000000.0−  

( )xet x 141592654.3sin60155199862.0 2500000000.02−  

( )xet x 141592654.3cos50625264523.0 2500000000.02+  

( )xet x 141592654.3sin260070370200.0 2500000000.03+  

( )xet x 141592654.3cos990031463524.0 2500000000.03−  

( )xet x 141592654.3sin7820006114478.0 2500000000.04−  

( )xet x 141592654.3cos9420003234698.0 2500000000.04−  

( )xet x 141592654.3sin805320000087515.0 2500000000.05+  

( ).141592654.3cos24480000488831.0 2500000000.05 xet x+  (21) 

Table 3. The errors index of the approximate solution at the points ( ),, tx  

1.0,10...,,3,2,1 == tx  for Example 3.3 

x 0 1 2 3 4 5 6 7 8 9 10 
Error 10–15 10–10 10–9 10–9 10–8 10–9 10–9 10–8 10–9 10–8 10–8 

The graphs of u(exact) and u(approx.) is shown in Figure 9 and Figure 
10 when 1.0=t  and ,1=t  respectively. Figure 11 and Figure 12 show the      
3-D graphs of u(exact) and u(approx.), respectively. 
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Figure 9. u(exact) and u(approx.) when .1.0=t  

 

 

 

 
Figure 10. u(exact) and u(approx.) when .1=t  
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Figure 11. 3-D graph of u(exact). Figure 12. 3-D graph of u(approx.). 

4. Conclusion 

In this paper, VIM was used for solving the convection-diffusion 
equations. The result obtained in comparison with the exact solution admits a 
remarkable efficiency. The computations associated with the examples in the 
paper were performed using Maple 18. 

Tables 1-3 and Figures 1-12 justify that the method is reliable and can be 
applied to nonlinear convection-diffusion equations of different parameters. 
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