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Abstract

Let D’((D)(RN) be the space of Beurling ultradistributions in the sense
of [5] and Z’(w)(RN) be the space of the Fourier transform of

D/(m)(]R{N). We define certain analytic functions in tubes in CN
which are defined by growth conditions and obtain distributional
boundary value properties of the analytic functions in Z’(m)(RN).

Also, we recover analytic functions by Fourier-Laplace transforms.
Further, we show that Beurling ultradistributions of Lj-growth

generate the analytic functions which satisfy a boundedness condition

and have distributional boundary values in D’(m)(RN ).
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1. Introduction

Let D’(m)(RN), S&m)(RN), S’((D)(RN) and D’Lp (RY) be spaces of
distributions, distributions of compact support, tempered distributions and
Schwarz distributions, respectively. Tillmann has obtained a characterization

of the analytic functions which represent E’(m)(RN ) as boundary values in
[21] and similar analysis for the spaces of D’Lp (RN ) in [22]. In [23], he has

also shown that if functions f(z) which are analytic in an octant have

distributional boundary values in S’(m)(RN ), then f(z) must satisfy a
boundedness condition. In [24], Vladimirov has obtained distributional
boundary value results in S '((D)(]RN ) using a boundedness condition similar

to Tillmann for functions analytic in a tubular cone of which an octant

and a tubular domain are examples. In [3] and [4], Beltrami and Wohlers
have obtained distributional boundary value results in S'(m)(]RN ) using a

boundedness condition that is less restrictive than that of Tillmann and

Vladimirov. In [6] and [7], Bremermann has obtained the representation

of elements in O, which are intermediate spaces between S’(w)(RN ) and

D'(m)(]RN ) as boundary values of analytic functions in half planes and tubes
defined by quadrant.

In [8] and [9], Carmichael has obtained distributional boundary value
results in S’(w)(RN ) and D'Lp (RY) as a subspace of S'(w)(]RN ) for

functions analytic in a tubular radial domain using a boundedness condition
which is weaker than that of Tillmann and Vladimirov. His results had
as special cases the above mentioned results. Analysis concerning the
representation of several kinds of distributions in the sense of Schwartz as
boundary values of analytic functions in one and multiple variables was

presented in [11].
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Let D'((Mp ), Q) (resp. D'({Mp 1, Q)) and 8’((Mp ), Q)(é"({Mp 5 Q)

be spaces of Beurling ultradistributions (resp. Roumieu ultradistributions)
and infra-hyperfunctions for each open subset Q(= &) < RV , respectively.
Here (M) is a non-quasianalytic sequence and {M,} is a quasianalytic
sequence. We can find the boundary value characterizations for the
spaces D’((Mp ), Q) (D’({Mp 1, Q) and 5'((Mp), Q)(S'({Mp 5, Q) in
[19, 17, 18] and [20]. Carmichael et al. have defined ultradistributions of
Beurling type D'((M ), L”) and of Roumieu type D'({M ,}, L¥), both

of which generalize D'Lp, in [12] and have found the boundary value

characterizations for D'(M,), L) and D'({M ,}, IF') with p > 1 in [13],
[14] and [10].

In the mean time, Braun et al. [5] have introduced w-ultradistributions
of Beurling type D’((D)(Q) and Roumieu type D'((D)(Q) and Betancor et al.

[1] have introduced Beurling ultradistributions of L, -growth, D'Lp,(w),

L +é =1, which is an extension of D’Lp. Here o is a weight function.

P

Fernandez et al. studied the representation of distributions (and Beurling

ultradistributions) of L, -growth, 1 < p < oo, on RY as boundary values of

holomorphic functions on (C\R)" in [15].
In this paper, we define the space of the Fourier transform of D’(w)(Q),

sz)(RN ), and a certain analytic functions in tubes in CV which satisfy
the growth conditions. We prove distributional boundary value properties of
the analytic functions in ka)(RN ) and recovery of the analytic functions
by Fourier-Laplace transforms. Also, we show that the elements of

'Lp’(w)(RN ), 2 < p < oo, generate the analytic functions which satisfy a
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certain boundedness condition and have boundary values in the topology of

D{e)(RY).

Throughout this paper, we let o = (0, 0y, ..., Ly ) € Np', o] =0+

ay +-+ay, al=oqlasl...ay!, aa = (a0, aa,, ..., aa,) for a e R

and z% = zl(xlzg2 ...ZZO\L,N for z e CV.

2. Beurling Ultradistributions and its Fourier Transform

In this section, we review Beurling ultradistributions and Beurling
ultradistributions of L, -growth in R™ and establish some of their properties

which will be needed later.

Definition 1 [5]. A weight function is an increasing continuous function

o : [0, ) — [0, ) with the following properties:

(o) there exists L > 0 with ®(2¢) < L(w(¢) +1) for all ¢ > 0,

® [, (@0)fi?)dt < oo,

() log(?) = o(w(¢)) as ¢ tends to oo,

(®) v : t — w(e) is convex.

For a weight function o, we define & : C — [0, ) by &(z) = o( z|)
and again call this function ®. Here | z | = zil' z |-

By (8), w(0)=0 and lim,_,, x/w(x)=0. Then we can define the

Young conjugate y* of y by

v o0, 0) > R, y(y) = sup(ay - w(x)).

x>0
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Obviously, we have

Lemma 1 [5]. y/y™(y) is decreasing and lim,, y/vi(y) = 0.

Let o be a weight function. For a compact set K — RrRY , we define
D(o)(K) ={f € D(K): | f g s < o for every k € N},

where

| £l = sup sup | F@)(x) je~kv e l/k)

xeK (xeN(])v

D(m)(K ), endowed with its natural topology, is a Fréchet space. For a

fundamental sequence (K; )i r of compact subsets of RrY , we let
Ny _ -
D(m)(R ) = lndiD(m)(Ki)-

The dual of D(,,)(R") will be denoted by Dj,)(R") and endowed with
its strong topology. The elements of D'((D)(RN ) are called Beurling
ultradistributions. We denote by S((D)(RN ) the set of all C*(R") functions
fsuch that | /|| k.5, <o for every compact K in RY and every A > 0. For
more details about D((D)(RN ) and E(m)(RN ), we refer to [2] and [5].

Betancor et al. [1] introduced Beurling ultradistributions of L, -growth

in RV as follows: forevery 1 < p <o, k e N and ¢ € Cw(RN), Vi, p(0)
is defined by

Ve, p(@) = sup | ()], e v (/b
aeNO

where ||-|| , denotes the usual norm in LP(RN )- (| f ], means essential
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supremum of | f(¢)].) If 1 < p < oo, then the space DLP’(m)(RN) is the set
of all C* -functions ¢ on R™ such that Yk, p(¢) < oo for each k e N. A

function ¢ € C*(RY) is in B, (o) When v; () <o for each k e N.

We denote by D;_ (,) the subspace of B () that consists of all those
functions ¢ € By (i) for which limy |, d)(a) (x) = 0. The topology of
DLP,(m)(RN)» 1< p<oo, is generated by the family {y; ,(¢)};oy of

seminorms.
The dual of DLP,(m)(RN) will be denoted by D'Lp,(w)(RN). The

elements of D’Lp,(m)(]R{N ) are called the Beurling ultradistributions of L -
growth, %-ﬁ-é =1, in the sense of Theorem 2.5 in [1]. For more details
about DLP,((D)(]RN)7 we refer to [1].

Assume that G is an entire function in CV such that log G(z)| =

O(o(| z 1)), as | z| > oo. The functional 7T on 5(0))(RN ) is defined by
Ao GY0) (a
T )= Y (0“0 4@0), g eg@")
aeNY '
0
The operator G(D) defined on Dzw)(RN ) by
G(D): DoY) > Dy(BY). 1 GO =u*Tg

is called an ultradifferential operator of (w)-class. When G(D) is restricted
to S(Q)(RN ), is a continuous operator from 5(@)(]RN ) into 5(@)(R N) and,

if for every ¢ e S(w)(RN),
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GD)) ()= > @)

N
(xeNO

(o)
G a'(O) d)(a)(x), xeRY,

As in Proposition 2.4 in [16], it can be shown that each ultradifferential

operator G(D) of (o)-class defines a continuous linear mapping from
DLP’(m)(RN) into DLP,((»)(RN) for every 1 < p < oo, Thus, G(D) is also
a continuous linear operator from D'Lp’(w)(RN ) into D’Lp,(m)(RN ).

Definition 2. An ultradifferential operator G(D) of (w)-class is said
to be strongly elliptic if there exist M >0 and />0 such that |G(z)|
> M1 7D \when |Imz | < M| Rez|. In this case, the entire function G(z)
is said to be the (I, M )-strongly elliptic.

The Fourier transform is not well-defined for T e th)(RN ) with

b e D(w)(RN ) since ¢ may not be a function in D(w)(RN ). To establish
our results in the next section, we need to define a theory of the Fourier

transform on the whole of D’(m)(RN ).
We define the support function for a compact set K < RY as H x(x) =
SupyeK<x’ y)'

Definition 3. Let @ be a weight function. Then Z((D)(RN ) is the space

of all infinitely differentiable functions ® which can be extended to be entire

analytic functions in CV such that there exist 4 > 0 for which
|CD(Z)| < Cke(A‘ Imz ‘—k())(z))’ - (Cn’

for every k£ € N. Here C depends on k and possibly @ and 4 depend on ©.
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A sequence {®,} converges in Z((D)(RN ) if
(i) each ®,, € Z(,)(RY);

(i1) there exist constants C; and A4, which are independent » such that

for all n
| q)n(z)| < Cke(A‘ Imz ‘—k(x)(z))’ s (Cn’
for each k;

(iii) {®@,,} converges uniformly on every bounded set in C".

Z'(w)(]RN ) is the set of all continuous linear functionals on Z(m)(RN ).
From Proposition 3.4 in [5], we have that the Fourier transform is a

topological isomorphism of D((D)(]RN ) onto D((D)(]RN ).
We are ready to define the Fourier transform on D’(m)(RN ).

Definition 4. Let T € D{). Then the Fourier transform of T is the

element S =T € Z{() such that

(S, @) =(T, §), deDy), P=deZ(y). (1)

where ¢(x) = ¢(=x).
We have that Fourier transform defined in (1) is an element of

Z'((D)(RN ) and this Fourier transform is a topological isomorphism of
Dzw)(RN ) onto Z'(w)(]RN ). The inverse Fourier transform is a topological
isomorphism of Z(w)(RN ) onto D(w)(]RN ) from which we can define an

inverse Fourier transform from Z'((D)(RN ) to D'((D)(RN ) by

(T, §) = (S, @), @ € Z(o)(RY), (1) = F'[@(x); 1] € Di(RY)
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with ®(x) = ®(-x), where S e th)(RN) and T = F![S] is the inverse
Fourier transform of S. The inverse Fourier transform is a topological

isomorphism of Z'(m)(]RN ) onto D'(m)(]RN ).
3. Distributional Boundary Values in D&m)(RN ) and ka)(RN )

Let C = RY be a cone with vertex at zero, i.e., if y € C implies

Ay € C for all A > 0. The intersection of the cone C with the unit sphere

{yeR": | v| =1} is called the projection of C and denoted pr(C). If C'
and C are cones such that prC' < pr(C), then C' will be called a compact

subcone of C. An open convex cone C such that C does not contain any

straight line will be called a regular cone. For a cone C, O(C) will denote

the convex hull (envelope) of C and T C-RN+iccCVisatubein CV.
If Cisopen, T € is called a tubular domain. If C is both open and connected,
7€ is called a wbular radial domain. The set C* = {t e RY : (1, y) > 0,

forall y e C} is the dual cone of the cone C.

Definition 5. The function

Uc(t)= sup (=(t, ¥))
yepr(C)

is the indicatrix of the cone.
By the sets S, and Gj;, we shall mean S, = {t:Uc(t) < 4} and
Gy =f{zeCV: |Imz| < M|Rez |}, respectively. For a cone C, put C, =

RM\C*. The number

characterizes the nonconvexity of the cone C. In [24, p. 220, Lemma 2 and
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Lemma 3], Vladimirov has proved that a cone is convex if and only if

H¢ =1, and if a cone is open and consists of a finite number of components

then He < .

Lemma 2 [24, p. 223, Lemma 2]. Let C be an open cone and C' be a
cone that is compact in O(C). Then there exist a 8 = 8, > 0, depending on

v, and an open cone C", depending on C', containing the cone C* such that
)z yllt], yeC, tecC" (2)

Further, if C’ is an arbitrary compact subcone of O(C), then there exists

a 8(C") > 0, depending only on C’ and not on y e C’, such that (2) holds

forall y € C’' andall t € C".

Lemma 3 [24, Sec. 25.1 and Sec. 26.4]. If t € C,, then
~t, ) <Upc)®| ], Upc)t) < HcUc(t), ye€O(C).  (3)

If we let C}, be an arbitrary subcone that is compact in C* and t € Cj,

then there exists v = y(Cy) such that
] <Uc) <|t]. €y

Let C be an open connected cone in R™. For any real number m > 0

and any compact subcone C' of C, put

T(C’; m) = RY +{(C(C N N0, m))),
where N(0, m) = {y e RY :|y|<m}and 0 =(0,0,..,0).

Definition 6. Let ® be a weight function and C be an open connected
cone in RY. We shall say that f(z) € H,(4; C) if f(z) is analytic in

tube 7€ = RN +iC and for every compact subcone C’' of C and any real

number m > 0, there exists a constant K(C’, o, m) depending on C’, ¢ and
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on m > 0 such that

| £(2)| < K(C', 5, m)ME AN 2 e 7y m), (5)

for all ¢ > 0. Here M and 4 are nonnegative real numbers which do not

depend on C' and m > 0.

Clearly, H(A4; C) c H,(4; C) by (y) in Definition 1, where H(4; C)
is defined in Definition 4.7.2 in [11]. We will show that the Fourier-Laplace
transform of a certain type of distributions is in H(0; C).

Theorem 1. Let C be an open connected cone in RY and let C' be an

arbitrary compact subcone of C. Let g(t) be a continuous function with

support in C* which satisfies
| g(1)] < K(C', m, o)exp(n((s, t) + o] s])), teRY (6)

for all ¢ >0. Here K(C', m,c) is a constant which depends on C',

m > 0, and & and (6) is independent of s € (C'\(C' N N(0, m))).

Let G(z) be an (I, M)-strongly elliptic entire function and G(D) be an
ultradifferential operator of (w)-class corresponding G(z). If V = G(D)g,
then

f(2) = V(). exp(z, )
is an element of H ,(0; C).

Proof. From (6), g(¢) defines an element of D'(m)(]RN ), hence V =
G(D)g is well defined and

f(2) = V(1) exp(z, 1))
= (g * TG(1), exp(z. 1))

= (g(n), < G(z), exp(z, M)

= G(z)J.C* g(t)explz, i)dt, zeTC.
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By the proof of Theorem 4.7.1 in [11, pp. 181-183], g(¢) is analytic and

)

for z € T(C"; m), where K'(C', m, ) is a constant depending on C’" and on

UC* g(t)exp(z, t)dt| < K(C', m, G)exp(Zn(%y %

m > 0; here o is arbitrary. Since G(z) is an entire function in C" such that

log] G(2)] = O] 2)). /() € Hy(0; C). s

If /e Hy(4; C), then f(- +iy) defines an element of Dzw)(RN) (even

an element in S’(m)(RN )) for each y e C. Throughout this paper, we

assume that

lim  (f(-+iy), 6()), ¢ €D, or Zi,
y—0,yeC

exists (which is different from the existence of the limits in weak topology.)
Then the limit defines an element of D’((D)(]RN ) or Z'(o))(RN ) by Banach-
Steinhaus theorem. Now we are ready to study distributional boundary value
results in Z&m)(RN ) and D&m)(RN ) for functions analytic in a tubular radial
domain.

Theorem 2. Let f(z) € H,(A4; C). Then there exist an element U e
Z'((D)(]RN) such that f(z) — U in the weak topology of Z'((D)(]RN) as
y—>0, yeC' cC and an element V € D’(w)(RN) having support in

Sy =1{t:Uc(t) < A} such that U = F[V] in Z{4)R"Y).
Proof. Let z = x + iy. Take an integer / such that N -/ < —1—¢ for
any € > 0. Let G(z) be an (I, M )-strongly elliptic entire function. Then

S(z)

o | K(CelTImeo@ A0l o e NGy ()
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Consider

gt)=| v 28”61 zeT(C; m)N Gy ®)

From (7), g(¢) is well-defined and is continuous function of ¢ for each

fixed y € (C'\(C' N N(0, m))). Let C" be an arbitrary compact subdomain
of C. From (7), for z € Gy,

f(2) -i(z,1)
GG e dy —> 0 )

as | x| — . Applying (7) and Cauchy’s theorem to integrand in (9), we
have that g(7) is independent of y € C", hence of y € C. (8) can be

rewritten as

e 0g(r) = f—l[égg; t} z e T(C"; m) N Gy,

We have from (7) that f(z)/G(z) € Ly N L, as a function of x ¢ R

for y € (C'\(C' N N(0, m))) arbitrary. By the Plancherel theorem,

é 8 = Fle (), (¥)], z e T(C; m)N Gy (10)

in L,. Only replacing IRN (1+|x|)" *dx by .[RN exp((-n — &) o(x))dx,

we can show supp(g) < S, by the exactly the same line in the proof of
Theorem 4.7.2 in [11].

Let @ e Z(o))(]RN) and ¢ e D(w)(RN) be such that @ = ¢. Since

e lg() e D(RY) < Diyy)(RY),

(L8 00) = (g0, 40). T mNGy, (1
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where C' is an arbitrary compact subcone of C. Since e ’t>g(t) — g(2)

in Dzm)(RN) as y >0, yeC' < C and g(t) e D(RY) < Dzm)(RN),

we have
(e g(e), 6(0) > (2(0). 9(0) = (4(x). @(x)) (12)
as y > 0, ye C' c C. From (11) and (12),
L8> o (13)

in Z'(w)(]RN) as y > 0,y e C' = C. Also, since log| G(z)| = O(o(| z 1)),
as |z| > oo, if D e Z(w)(RN), G(z)D(x) € Z(m)(RN) as a function of

z=RezeRY for y=Imz e C"V. Hence we have from (13) that

(1) o0 = (5. Grew)

— (G(2)&(x), @(x)) (14)
as y >0, yeC’ cC.Put
V =G(D)g.

where G(D) is an ultradifferential operator of (®)-class corresponding to

G(z). By the properties of G(z), G(D) defines an ultradifferential operator
of (w)-class. Since g e Dzw)(RN ) and G(D) defines on th)(RN ) into
D&m)(RN), Ve D’(m)(RN) and supp(V) = supp(g) < S4. Also, if we let
(S Z(m)(RN) such that @ = ¢, then for ¢ e D((D)(]RN),
(FIV1(x), @(x))
= (G(D)g(®), §(1))

= (g * T5(0), §(0))
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(g(), (TG (&), (@(s), e 8y

—( gtn) Z(z)‘“‘G “’)5 —{b(s), e
(xeNO
~ {g(n), Gl=s)(b(s), e )
(5(s). Gl=5)(s))
(G(=5)&(s), D(s)), (15)

where we have used the fact that @ e Z(m)(RN ) implies G(z)® e

Z(m)(RN ) as a function of x = Rez € R™. Then we have from (14) and

(15) that for ® € Z(\(R") and y e C,
(w)

tim /(x4 ). 0(x) = tim (L5 G)()

(8(x), G(z)@(x))
= (FV](x), @(x)). (16)
If we put U = 5’-"[1>] € Z'((D)(RN), then (16) proves that f(x + iy)
— U in the weak topology of Z&m)(RN ) as y = 0, y € C. The proof is
complete. [l
Now we will study distributional boundary values results in D’(m)(RN )
for functions analytic in a tubular radial domain. Let U € D’Lp’(m)(RN )

2< p<o, and supp(U) < S, for some open connected cone C. Take

a.(t) € C” such that

1 on an e-neighborhood of S,
ag(t) = (17)

0 on a complement of a 2e-neighborhood of §4
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and

| D}a ()| < M,, teR", (18)
where M, is a constant depending on y. We will show that ocg(z)ei<z’t>,
zeT%, isin D Lp,(u))(RN ), 1 < p < o as a function of 7. Consider

()= .[RN| Do, (1) D10y | kv (o lfk) gy (19)
where B+ vy = o and k£ € N. Then

(1)< MBIRN | DW (- =0y P kv (/b

= My VIPloel= kv (al/k) I . P00y, (20)
y
where Mg is a constant in (18). If | z| < 1, then
e\y\plog\z\e—kw*(\a\/k) <1. (21)
Let |z|>1and |y|p > k. Then
Jvlplog z] ~kv"(al/k) o kloglz| ~ky™(al/k) o ko(z) (22)
Let |z|>1and |y|p > k. By Lemma 1, since ™ (¢)/t is increasing,
v Iptogl z | =k (alfk) < Jvlploglz |~ 1oy (al/lv|p) < J¥lpalz) (53
From (21), (22) and (23),
v Iplogl z| kv (al/k) o jmax(k.|v|p)e(z) (24)

Let C" and C, = RV\C” be cones in which inequality (2) in Lemma 2

and inequality (4) in Lemma 3 are verified, respectively,
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[P0 < sup {< P —y dz}
S4

reS 4 Sa (1+]¢])?

SK{sup{e_<y’t>(l+|t|)2}+ sup {e_<y’t>(l+|t|)2}}, (25)
teC” ;

IESA Cs

where K is a constant. Using (3) in Lemma 3, we continue the inequality

sup e Pl ‘(1 +p) + sup  eflcAly ‘(l +|])?
p=0 Y|t |<Uc(t)<4

2
< K(C')| sup ¢ y‘pz + (1 + é) et y]
p=>0 v

’ -2 HrA
< Ky (C)(| [ + €fTedlo])
< K{(C)|(1+] y[H)etlcAr] 2 e 7€, (26)

where K(C') and K;(C') constants, depending on C'. Here we have used

the fact that f(p) = e_Sp‘y‘p2 has a maximum (4¢2/p?)|y|* at p =

2/(3| D),
(I) < MBKl(C')emaX(kO" vip)elz)q |y |—2)eHcA\ vl 27)
Thus, ocg(t)ei<z’t> is in DLP,((D)(RN), 1 < p < oo, as a function of ¢ for
afixedzeT C,, hence
U(0)" >y = (U)o, ()51, zeTC. (28)
is well-defined for ¢.

Theorem 3. Let U € D'LP,((D)(RN), 2< p<oo, and supp(U) < Sy
for some open connected cone C. Then there exists a function f(z) such

that f(z) is analytic in T o) ana for any arbitrary compact subcone C' of
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O(C), there exist an (I, M)-strong elliptic entire function G(z) and
m € N, depending on U such that

| D f(2)| < K(a, C)| G()|(1+| y ™) 2 e 7€ NGy,
where K(a, C') is a constant, depending on o. and C'. Also, f(z) = U in
Dzm)(RN) as y —> 0,y e C' < OC).

Proof. Let 2 < p < co. We note that, since Uc(¢) is a convex function,

S 4 is convex. Furthermore, by Lemma 3,
{t, y) 2 -Uoc)®|y|z -HcUc(®)| |2 —HcA| y|, (29)
for (y,1) e O(C)x Sy.

Now, since U e D’Lp’(m)(]RN ), there exists a strongly elliptic

ultradifferential operator G(D) of (o)-class and / € L, %'f‘é =1 such

that U = G(D)h. Take m € N, depending on /4 (hence on U) such that

I _M) (30)

B )
Put
1(z) = (P, 00y = (U, a () Sy, z=x+iyeTC,
where o (¢) satisfies (17) and (18). From (28), f(z) is well-defined and

analytic in T o(C), Then, for z € T ¢ (1 Gy, there exists a strongly elliptic

entire function G(z) corresponding to G(D) such that
[£@)] = {10, agl)e ™ )|

= | (h(t), G(D) (0t (1)) |
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<|G(2)| j oy 0 (e |de

<16()] sup fe o) MO

teSA RN (1 |)m
< K| G(z)|{sup DA+ )"+ sup {e—<y»f>(1+|t|)m}}, (31)
teC” teS 4NCy

where m is as in (30), K is a constant and C" and C; are cones in which

inequality (2) in Lemma 2 and inequality (3) in Lemma 3 are verified,
respectively. Using (3) in Lemma 3, we continue the inequality (31)

| £(2)| < K| G@)|[supe ¥ 0+ py"+ sup MA@ e))”
p=0 1 t<Uc(t)<4

< K(C)|G@) |+ y[™)e AN 2 e NGy, (32)
where K(C") is a constant, depending on C'. Since

DS M) max M0+|z) (U a0 =),
<j<la

where N(a) is a constant depending on o and M j is as in (29), we have

from (32) and the property of (I, M)-strong elliptic entire function that

| Df(2) | < Kl O] G+ y|Petel] 2 e 79 NGy
where K(o, C') is a constant, depending on o and C’.

Now we will show that f(z) > U in D&m)(RN) asy >0, yeC c
O(C). Let § € D(u)(RY). Then ¢ € Z(,)(RY) and e 7§ € Z(,)(RY)
for y e 7€ and ¢ € S4. Since Z(,)(RY) c DLP’(Q,)(RN ), (U(), ag(r)

t>&)(z‘)) is well-defined. Since ocg(t)e_<y : %)(t) — a.()d(r) in
Z(w)(]RN) as y >0, yeC' cO(C), for ¢ € D(w)(RN) and (z,1) e
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7€ x S,
(£(2), 9(x)) = (U (), €1, 9(x))
= (U(e), ag()e " 09(0)
= (U, 0 ()(0)) = (U(). 6(x)).
The proof is complete. O
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