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Abstract

In this paper, we consider graded N-prime submodules as introduced
by Sanh, and investigate their properties besides characterizations. For
example, we prove that (i) if X is a fully invariant graded submodule
of M, then the residual ideal of X by M is a graded ideal of S, and
(ii) if M is a graded quasi-projective module, X is a graded N-prime
submodule of M and Y < X is a fully invariant graded submodule of
M, then X /Y is a graded N-prime submodule of M /Y.

Also, we characterize graded N-prime submodules.
1. Introduction

Dauns introduces the notion of a prime submodule and investigates some
of its properties [4]. Graded rings and graded modules have been studied
by Nastasescu and Van Oystaeyen [5]. Moreover, based on the definition
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of prime submodules in the sense of Dauns, Atani and Fazalipour have
defined the graded prime submodules of graded modules and investigated
some properties [1, 2]. The notion of graded primary submodules has been
introduced and studied by Oral et al. [6]. Recently, Sanh [7] introduced the
prime submodule of fully invariant submodule of R-module M. Let X be a
fully invariant proper submodule of M. Then X is called a prime submodule
of M if for any ideal 1 of S and any fully invariant submodule U of
M, 1(U)c X implies I(M)c X or U < X. In this paper, we use the
definition of prime submodules in the sense of Sanh and call these N-prime
submodules. Moreover, we define an N-prime submodule in graded R-
modules and we call it a graded N-prime submodule. We prove that if X is a
fully invariant graded submodule of M, then the residual ideal of X by M is a
graded ideal of S. It is also shown that if M is a graded quasi-projective
module, X is a graded N-prime submodule of M and Y < X is a fully
invariant graded submodule of M, then X /Y is a graded N-prime submodule
of M/Y. Also, we give the characterization of graded N-prime submodule as

stated in Theorem 2.2.

Let G be an abelian group with identity e and R be any ring with unit 1g.
The ring R is called a graded ring if R = @4.g Ry, where Ry is an additive
subgroup of R and RyR, = Ry for every g, h in G. The summands Ry’s
are called homogeneous components. Also, we write h(R) = UgeG Rg-
If ae R, then a can be written uniquely as deeag' where ag is a

component of a in Ry. In this case, Ry isasubring of Rand 1z € Re.

Let R be a graded ring and M be an R-module. We call M a graded
R-module if there exists a family of subgroups {Mg}geG of M such
that M = @3.cMy and RyMy, < Mg,. The RgMy, denotes the additive

subgroup of M consisting of all finite sum of elements rysy,, where ry € Ry

and s, € My,. Also, we write h(M) = UgeG Mg and the elements of h(M)
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are called to be homogeneous. If M is a graded R-module, then Mg is an
Re -module for all g € G. A submodule X of a graded R-module M is
called a graded submodule of M if X = ®@y.c Xy, where Xy = X 1My
for g € G. In this case, X is called the g-component of X. Moreover,

M/X becomes a graded module with g-component (M/X)geG =

((Mg + X)/X)geG'
2. Main Results

Let R be a graded ring, M and N be graded R-modulesand f : M — N

be an R-module homomorphism. Then f is said to be a graded R-module
homomorphism of degree k if f(My) < N foreach g € G, where k € G.

Graded homomorphism without an indication of degree is understood to have
degree zero. Let (ENDg(M)), be the set of graded module homomorphism
from M to M of degree k and let ENDr(M) = ®y.g(ENDR(M)),. Then
ENDRr(M) is a graded ring and ENDRr(M) is a subring of Endg(M)
(see [3, Subsection 9.1, p. 303]). If G is a finite group, then ENDr(M ) =
Endgr(M) (see [5]).

Let M be a graded right R-module and S = ENDgr(M). A graded

submodule X of M is called a fully invariant graded submodule of M if for
any se S, s(X)c X. By the definition, the family of all fully invariant

graded submodules of a graded module M is non-empty and closed under
intersections and sums.

Let I, J be graded ideals of S and X be a graded submodule of M. We
define

1J :{Zgisn xiYi|Xi € h(l), y; € h(J), neN} and I(X):Zfeh(l)f(x)'
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For any graded right R-module M and any graded right ideal | of
graded ring R, the set MI is a fully invariant graded submodule of M (see
[2, Subsection 1]).

Definition 2.1. Let M be a graded right R-module and X be a proper
fully invariant graded submodule of M. Then X is called a graded N-prime
submodule of M if for any graded ideal | of S and any fully invariant graded
submodule U of M, I(U) < X implies IM)c X orU < X.

Especially, if we take M is the R-module R, a graded ideal P of R is a
graded prime ideal if for any graded ideals I, J of R with IJ < P implies
| < P or J c P. From now on, a graded R-module M means a graded right
R-module.

The following theorem gives some characterization of graded N-prime
submodule.

Theorem 2.2. Let M be a graded R-module and X be a proper fully
invariant graded submodule of M. Then the following are equivalent:

(1) X'is a graded N-prime submodule of M.

(2) For any graded right ideal | of S and graded submodule U of M, if
I(U) < X, theneither M) < X or U c X.

(3) For any ¢ € h(s) and fully invariant graded submodule U of M, if
o(U) < X, theneither (M) < X or U c X.

Proof. (1=2) Suppose X is a graded N-prime submodule of M. Take any
graded right ideal | of S and a graded submodule U of M where 1(U) < X.

Since | is a graded right ideal of S, IS — | and Sl is a graded ideal of
S. Since U is a graded submodule of M, S(U) is a fully invariant graded

submodule of M. If 1(U) < X, then (SI)(S(U))=(SIS)(U) < S(1(V))
< S(X) < X. From assumptions that X is a graded N-prime submodule of
M, we have SI(M)c X or S(U) < X. Hence, either IIM)c X or U c X,

(2=3) Obvious.



Some Results on Graded N-prime Submodules 1403

(3=1) Take any graded ideal |1 of S and any fully invariant graded
submodule U of M where 1(U) < X. Since | is a graded ideal, | has a set of
homogeneous generators. By (3), we obtain (M) < X or U < X. O
Let M be a graded R-module, S = ENDg(M ) and X be a fully invariant

submodule of M. We define the set Iy ={f €S|f(M)c X}. The set Iy is

a graded ideal if X is a fully invariant graded submodule as we give in the
following lemma.

Lemma 2.3. Let M be a graded R-module and S = ENDg(M ). Suppose
that X is a fully invariant graded submodule of M. Then the set Iy is a
graded ideal of S.

Proof. Take any ¢ €S and f e ly. It is clear that (I, +) is an
abelian group. Then ¢f(M)c o(X)< X and fo(M)c f(M)c X. So
of, fo in Iy, and we prove that 1y is an ideal of S. Furthermore, we will
prove that |y is a graded ideal of S, i.e., Ix = ®yg(lx N Sy) for every

geG. Forevery g e G, Ix NSy < Iy, sowe obtain @y (Ix N Sg)

cly.Takeany f ely. Then f ZdeG fq and f(M):(zgeG fg)(M)

c X. We will prove that f € @y.g(lx N Sy). Itisclearthat fy e Sy, so

we have to prove that fy e Iy for every g e G. Without loss of generality,

m

we may assume that f =" fq.,

where fgi #0 forall i=1 2, ..., m

and fg =0 forall g ¢ {91, 92, .., OmJ- Since M is a graded module, we
| . .

assume that m = ijlmhj, where mhj #0 forall j=1, 2, .., 1 Since

f(M)c X and WIS th < M for all j, we obtain f(mhj)e X for all

. m . .

j-Then 3.7, fq. (mhj) e X, where fg. (mhj ) e Mgih;- Since X is a graded

submodule, we obtain fg, (mhj)e Mgihj N X < X. Thus, fgi(mhj ) e X

foralljso fy. (M) X and fy. e I foralli, as required. O
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It is worth pointing out that Iy is a graded prime if X is a graded

N-prime, as we give in the following theorem.

Theorem 2.4. Let M be a graded R-module, S = ENDg(M) and X be

a fully invariant proper graded submodule of M. If X is a graded N-prime
submodule, then Iy is a graded prime ideal of S.

Proof. Let K, L be graded ideals of Iy such that KL < Iy. Then
KL(M) c Iy (M) < X. If we assume that K ¢ Iy, then K(M) ¢ X.

Since submodule X is a graded N-prime submodule, L(M) < X, so we

obtain L < Ix. Thus, Iy isagraded prime ideal of S. O

We define the set 1(M)=> . _ f(M). If (M) c X, then | — Iy and
the converse is also true as we prove in the following proposition.

Proposition 2.5. Let M be a graded R-module, X be a fully invariant
graded submodule of M and | be a graded ideal of S. Then I(M) < X if and

onlyif I < Iy.

Proof. Take any f el, f(M)c I(M). Since I(M)c X, we have

f(M) < X. Sowe have f e Iy. Conversely, consider the set I1(M ). Since

| < Iy, we have Zfelf(M)czfele(M)c X. O

We conclude from Proposition 2.5 and Definition 2.1 and obtain the
following theorem.

Theorem 2.6. Let M be a graded R-module and X be a fully invariant
proper graded submodule of M. Then X is a graded N-prime submodule
if and only if for any graded ideal | of S and any fully invariant graded
submodule U of M such that 1(U) < X implies | < Iy or U < X.

Proof. Let X be a graded N-prime submodule. By Definition 2.1, for any
graded ideal | of S and any fully invariant graded submodule U of M such
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that 1(U) < X implies (M) < X or U < X. According to Proposition 2.5,
(M) c X isequivalentto | < Iy. O

Definition and some properties of a graded N-prime module are given as
follows.

Definition 2.7. A graded R-module M is called an N-prime module if O is
a graded N-prime submodule of M.

We can characterize N-prime module using the annihilator as the
following proposition.

Proposition 2.8. Let M be a graded R-module and S = ENDg(M) =
®keg ENDR(M),. A module M is an N-prime module if and only if

Anng(M) = Anng(X) for all nonzero graded submodules X of M.

Proof. (=) Let M be a graded N-prime module. Then 0 is a graded
N-prime submodule of M. Since X is a nonzero graded submodule of M,
Anng(M) < Anng(X). Takeany f € Anng(X), hence f(X) = 0. Since X

is a nonzero graded submodule and 0 is a graded N-prime submodule of
M, we have f(M)=0. Equivalently, f € Anng(M). So we obtain Anng(M )

> Anng(X) and moreover Anng(X) = Anng(X).

(<) Take any graded ideal | of S and a nonzero fully invariant graded
submodule X of M where 1(X)=0. Since Anng(M )= Anng(X), I(M)=0.

So we obtain 0 is a graded N-prime submodule of M. It is proved that M is a
graded N-prime module. O

Proposition 2.9. Let M be a graded N-prime R-module. Then S =
ENDR(M) = &g ENDR(M), is a prime ring.

Proof. Let M be a graded N-prime module. Then 0 is a graded N-prime
submodule of M. Based on Theorem 2.4, | is a graded prime ideal of S, so

S is a prime ring. O
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The following proposition states the relations between a graded module
homomorphism of M and a graded module homomorphism of M/Y.

Proposition 2.10. Let M be a graded module, Y be a fully invariant
graded submodule of M. If f : M — M is a graded module homomorphism
of degree zero, then ¢:M/Y - M/Y with o(m+Y)=f(m)+Y is a
graded module homomorphism of degree zero.

Proof. (i) We will show that ¢ is a mapping. Take any my +Y,
m, +Y e M/Y with my+Y =my +Y, so m-m,eY. Since Y is a fully
invariant graded submodule of M, f(m; —m,)= f(m)- f(my)eY, it
means f(my)+Y = f(m,)+ Y. Inother words, (m; +Y) = ¢(m, +Y).

(i) Itis clear that ¢ is a module homomorphism.

(iif) We show that ¢ is a graded module homomorphism of degree zero.
Take any my + K e (Mg +Y)/Y forsome g € G, ahomogeneous element
of degree g in M/Y. We will prove that ¢(My +Y) € (Mg +Y)/Y. Based
on definition of ¢, ¢(Mgy +Y)= f(Mg)+Y. Since f is a graded module
homomorphism of degree zero, f(mg) € M. In other words, o(mg +Y)e
(Mg +Y)/Y. It is proved that (Mg +Y)/Y) < (Mg +Y)/Y or ¢ isa
graded module homomorphism of degree zero. O

We will look more closely at the properties of graded N-prime
submodule of quotient module.

Lemma 2.11. Let M be a graded module, X, Y be graded submodules of
Mand Y < X. Then X/Y isa graded submodule of M/Y.

Proof. It is clear that X/Y is a submodule of M/Y. Furthermore, we
will show that X/Y is a graded submodule. It means, we will show that
X/Y =®gea X/Y N(M/Y)y. The condition @y X/Y N(M/Y)y < X/Y
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is obvious. Let m:deGmg e X/Y. It is sufficient to show that my =
mg +Y € X/Y N(X/Y)y foreach g € G. Since X is a graded submodule
of M, mg € X ﬂMg for each g € G, so Mg e X and my € Mg. Then
mg+Y e X/Y and mg +Y e (Mg +Y)/Y = (M/Y),. Hence, My =mg +

Y e X/Y N(M/Y),. 0

Theorem 2.12. Let M be a graded quasi-projective module, X be a
graded N-prime submodule of M and Y < X be a fully invariant graded
submodule of M. Then X /Y is a graded N-prime submodule of M /Y.

Proof. Let S=ENDgr(M/Y). Let ¢ be a homogeneous element of
degree zero in S and U/Y be a fully invariant graded submodule of M/Y
with Y < U and ¢(U/Y) < X/Y. Since M is quasi-projective, we can find
f € h(S) = h(ENDR(M)), fis a homogeneous element of degree zero in S
such that v =vf, where v: M — M/Y is the graded canonical projection.
Then oU/Y)=0evU)=vfU)=(f(U)+Y)/Y < X/Y. It follows that
f(U) < X. Since Y is a fully invariant graded submodule of M and U/Y is
a fully invariant graded submodule of M/Y, U is a fully invariant graded
submodule of M. By the primeness of X, we have f(M)c X or U < X.
Thus, (f(M)+Y)/Y =vi(M)=9¢v(M)=¢e(M/Y)c X/Y or U/Y < X/Y,
that is, X/Y is a graded N-prime submodule of M/Y. O
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