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Abstract 

In this study, a new continuous distribution called the Kumaraswamy 
Erlang-truncated exponential distribution is introduced and studied. 
The mathematical properties of the new model such as the         
quantile function, moments and moment generating function and order 
statistics are derived. The estimation of the parameters of the model is 
approached by the method of maximum likelihood. The importance of 
the model is illustrated by means of application to real data set. 
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1. Introduction 

The knowledge of the statistical distribution any phenomenon follows, 
greatly improves the sensitivity, efficiency and the power of the test 
associated with it. Because of this, considerable efforts over the years have 
been made in the development of large classes of standard probability 
distributions along with relevant methodologies. 

In recent years, new classes of distributions have been proposed by 
modifying existing distributions using the Kumaraswamy family of 
generalized distributions proposed by Cordeiro and de Castro [1] to cope 
with bathtub failure rates. Among these are: Kumaraswamy linear 
exponential distribution [8], Kumaraswamy exponentiated Pareto distribution 
[2] and Kumaraswamy generalized gamma distribution [9]. The 
Kumaraswamy family has similar properties as the beta-G distribution (see 
[4]) but has some advantages in terms of tractability, since it does not involve 
any special function such as the beta function. 

In this paper, we combine the works of Kumaraswamy [6] and Cordeiro 
and de Castro [1] to derive the mathematical properties of a new model, 
called the Kumaraswamy Erlang-truncated exponential (Kw-ETE) 
distribution. The Erlang-truncated exponential (ETE) distribution was 
developed by El-Alosey [3]. A non-negative random variable X is said to 
have the ETE distribution with shape parameter 0>β  and scale parameter 

0>λ  if its probability density function (PDF) is given by 

( ) ( ) ( ) .0,1,; 1 >−β=λβ
λ−−β−λ− xeexg xe  (1) 

The corresponding cumulative distribution function (CDF) is given by 

( ) ( ) .0,1,; 1 >−=λβ
λ−−β− xexG xe  (2) 

2. Kumaraswamy Erlang-truncated Exponential 
(Kw-ETE) Distribution 

A non-negative random variable X has a Kw-ETE distribution with 
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parameters ,0>α  ,0>θ  0>β  and 0>λ  ( ( ))λβθα ,,,-ETEKw  if its 

CDF is given by 

( ) [ ( ( ) ) ] .0,111,,,; 1
- >−−−=λβθα αθ−β− λ−

xexF xe
ETEKw  (3) 

The parameters θα,  and β are shape parameters and the parameter λ is a 

scale parameter. If the parameter ,1=α  then we obtain exponentiated 
Erlang-truncated exponential (EETE) distribution and if ,1=α  ,1=θ  then 

the ETE distribution is obtained. The corresponding PDF is given by 

( ) ( ) ( ) [ ( ) ] 111
- 11,,,; −θ−β−−β−λ− λ−λ−

−−αθβ=λβθα xexe
ETEKw eeexf  

[ ( ( ) ) ] .0,11 11 >−−× −αθ−β− λ−
xe xe  (4) 

The survival and the hazard rate functions of the ( )λβθα ,,,-ETEKw  are 

( ) [ ( ( ) ) ] 0,11,,,; 1
- >−−=λβθα αθ−β− λ−

xexS xe
ETEKw  (5) 

and 

( )λβθα ,,,;- xh ETEKw  

( ) ( ) [ ( ) ]

[ ( ) ]
,0,

11

11
1

111
>

−−

−−αθβ=
θ−β−

−θ−β−−β−λ−

λ−

λ−λ−

x
e

eee
xe

xexe
 (6) 

respectively. The reverse hazard has been shown to play a useful role                             
in reliability analysis (see [5]). The reverse hazard function of the 
Kw-ETE ( )λβθα ,,,  distribution is 

( )λβθατ ,,,;- xETEKw  

( ) ( ) [ ( ) ] [ ( ( ) ) ]

[ ( ( ) ) ]
,

111

1111
1

11111

αθ−β−

−αθ−β−−θ−β−−β−λ−

λ−

λ−λ−λ−

−−−

−−−−αθβ
=

xe

xexexe

e

eeee
 

.0>x        (7) 
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Figure 1 and Figure 2 display the PDF and hazard function of the 
Kw-ETE ( )λβθα ,,,  distribution, for different parameter values, respectively. 

From the figures, it is obvious that the PDF can be decreasing or unimodal 
and the hazard can exhibit decreasing, increasing or constant failure rates. 

 

Figure 1. PDF of Kw-ETE distribution. 

 

Figure 2. Hazard function plot of Kw-ETE distribution. 

The PDF of the ( )λβθα ,,,-ETEKw  distribution can be written as                           

a linear combination of the PDFs of the ETE distribution. This result                             
is important in providing the mathematical properties of the 

( )λβθα ,,,-ETEKw  model directly from those properties of the ETE 

distribution. For ,0>d  a series expansion for ( ) ,1 1−− dz  for 1<z  is 
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( ) ( ) ( ) ( )
( )∑ ∑

∞

=

∞

=

−
−Γ
Γ−=⎟

⎠
⎞

⎜
⎝
⎛ −

−=−
0 0

1 ,!
11

11
k k

k
k

kkd zkdk
dz

k
d

z  (8) 

where ( )⋅Γ  is the gamma function. Since ( ) ,10 1 <<
λ−−β− xee  for ,0>x  

using the series expansion (8) in (4) yields 

( )λβθα ,,,;- xf ETEKw  

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )∑
∞

=

−+β−
+

λ− >
−+θΓ−αΓ
+θΓ+αΓ−−θβ=

λ−

0,

11 0,1!!
1111

kj

xej
kj

xejkkjk
ke  

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )∑

∞

=
+

+
λβ

−+θΓ−αΓ+
+θΓ+αΓθ−=

0,
1 ,,;1!1!

111

kj
jETE

kj
xfjkkjk

k  (9) 

where ( )λβ + ,; 1jETE xf  is the PDF of the ETE distribution with shape 

parameter ( )11 +β=β + jj  and scale parameter λ. When 0>α  is an integer, 

the index k stops at 1−α  and when ( ) 01 >+θ k  is an integer, the j stops at 

( ) .11 −+θ k  

3. Statistical Properties 

In this section, the statistical properties of the newly developed 
distribution were derived. 

3.1. Quantile, median and mode 

The characteristics of a distribution such as the median, skewness and 
kurtosis can be studied through the quantile function of the distribution. The 
quantile function of a distribution can also be used to generate random 
numbers from the distribution. The ( )λβθα ,,,-ETEKw  quantile function, 

say ( ) ( ),1 pFpQ −=  is straightforward and to be computed by inverting (3). 

The pth quantile is given by 
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( ) ( ( ) )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−−−β
=

θα
λ− 11

111

1ln
1

1

pe
xp  (10) 

which is used for data generation from the ( )λβθα ,,,-ETEKw  distribution. 

The random variable p is uniformly distributed on the ( )1,0  interval. Using 

(10), the median of the ( )λβθα ,,,-ETEKw  distribution can be obtained as 

( ) ( ( ) )
.

5.011

1ln
1

1
115.0 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−−β
=

θα
λ−e

x  (11) 

The mode, which is defined as the maximum value of the PDF, denoted by 

0x  can be obtained by numerically solving the following non-linear equation 

(12) since it is not possible to obtain the explicit solution in the general case: 
For different special cases, the explicit form may be obtained: 

( ) ( ) ( )

( ) xe

xe

e

ee
λ−

λ−

−β−

−β−λ−

−

−β−θ
1

1

1

11  

( ) ( ) ( ) [ ( ) ]

( ( ) )
( ).1

11

111
1

111
λ−

θ−β−

−θ−β−−β−λ−
−β=

−−

−−θβ−α
− λ−

λ−λ−

e
e

eee
xe

xexe
 (12) 

3.2. Moments 

It is customary to derive the moments when a new distribution is 
proposed. Moments play an important role in any statistical analysis, 
especially in applications. They are used for finding measures of central 
tendency, dispersion, skewness and kurtosis among others. In this subsection, 
the rth non-central moment for the ( )λβθα ,,,-ETEKw  distribution was 

derived. 

Proposition 1. If X has a ( )λβθα ,,,-ETEKw  distribution, then the rth 

non-central moment of X is given by the following: 
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( ) ( ) ( )( ) ( )
( ) ( ) ( )( )[ ( )]∑

∞

=
λ−

+

+
=

−β−+θΓ−αΓ+

+Γ+θΓ+αΓθ−=μ′
0, 1

....,2,1,
11!1!

1111

kj
r

j

kj
r r

ejkkjk
rk  

 (13) 

Proof. Let X be a random variable having density function (4). The rth 
non-central moment of ( )λβθα ,,,-ETEKw  distribution is given by 

( ) ( )∫
∞

λβθα==μ′
0 - .,,,; dxxfxXE ETEKw

rr
r  

Using (9), 

( ) ( ) ( )( )
( ) ( ) ( )( )∑

∞

=

+

−+θΓ−αΓ+
+θΓ+αΓθ−

=μ′
0,

1!1!
111

kj

kj
r jkkjk

k  

( )∫
∞

+ λβ×
0 1 .,; dxxfx jETE

r                                  (14) 

Then 

( ) ( ) ( )( )
( ) ( ) ( )( )∑

∞

=

+

−+θΓ−αΓ+
+θΓ+αΓθ−=μ′

0,
1!1!

111

kj

kj
r jkkjk

k  

 ( ) ( )∫
∞ −β−λ−

+
λ−

+−β×
0

1
1 .1 1 dxeex xe

j
r j  

Now, define the following substitution: 

( ) ( ) .11 11 dxedyxey jj
λ−

+
λ−

+ −β=⇒−β=  

Clearly, 

( )
.

11
λ−

+ −β
=

e
yx

j
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Thus, 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )∑ ∫

∞

=

∞ −
λ−

+

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−β−+θΓ−αΓ+
+θΓ+αΓθ−=μ′

0,
0 1 11!1!

111

kj

y
r

j

kj
r dye

e
y

jkkjk
k  

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )[ ( )]∑

∞

=
λ−

+

+
=

−β−+θΓ−αΓ+

+Γ+θΓ+αΓθ−=
0, 1

....,2,1,
11!1!

1111

kj
r

j

kj
r

ejkkjk
rk  

This completes the proof. 

The mean of the random variable X is obtained by putting 1=r  in (13). 
Hence, the mean is 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )∑

∞

=
λ−

+

+

−β−+θΓ−αΓ+

+θΓ+αΓθ−=μ
0, 1

.
11!1!

111

kj j

kj

ejkkjk
k  (15) 

The second non-central moment of the random variable X is obtained by 
putting 2=r  in (13). Hence, the second non-central moment is 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) [ ( )]∑

∞

=
λ−

+

+

−β−+θΓ−αΓ+

Γ+θΓ+αΓθ−=μ′
0,

2
1

2 .
11!1!
3111

kj j

kj

ejkkjk
k  (16) 

The variance of the random variable X is given by 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) [ ( )]∑

∞

=
λ−

+

+
μ−

−β−+θΓ−αΓ+

Γ+θΓ+αΓθ−=σ
0,

2
2

1

2 .
11!1!
3111

kj j

kj

ejkkjk
k  (17) 

Based on the first four non-central moments of the ( )λβθα ,,,-ETEKw  

distribution, the coefficient of skewness and kurtosis can be obtained as 

( )
( )2

32
2

3
23 23

μ−μ′

μ+μμ′−μ′
=XSkewness  
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and 

( )
( )

,364
22

2

42
234

μ−μ′
μ−μμ′+μμ′−μ′

=XKurtosis  

respectively. 

3.3. Moment generating function 

In this subsection, the moment generating function of a random variable 
X having a ( )λβθα ,,,-ETEKw  distribution was derived. 

Proposition 2. If X has ( )λβθα ,,,-ETEKw  distribution, then the 

moment generating function ( )tM X  has the form 

 ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( )[ ( )]∑

∞

=
λ−

+

+

−β−+θΓ−αΓ+

+Γ+θΓ+αΓθ−=
0,, 1

.
11!1!!
1111

rkj
r

j

rkj
X

ejkkjkr
trktM  (18) 

Proof. The moment generating function is obtained using the definition 

( ) ( ) ( )∫
∞

λβθα==
0 - .,,,; dxxfeeEtM ETEKw

txtx
X  (19) 

Using the Taylor series expansion of ,txe  (19) can be written as 

( ) ( )∑ ∫
∞

=

∞
λβθα=

0
0 - ,,,;

!
r

ETEKw
r

r
X dxxfx

r
ttM ∑

∞

=

μ′=
0

!
r

r
r

r
t  

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) [ ( )]∑

∞

=
λ−

+

+

−β−+θΓ−αΓ+

+Γ+θΓ+αΓθ−=
0,, 1

.
11!1!!
1111

rkj
r

j

rkj

ejkkjkr
trk  

This completes the proof. 

3.4. Incomplete moment 

In this subsection, the incomplete moment for a random variable X 
having a ( )λβθα ,,,-ETEKw  distribution was derived. The incomplete 

moment is useful in calculating the mean and median deviations, and 
measures of inequalities such as the Lorenz and Bonferroni curves. 
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Proposition 3. If X has ( )λβθα ,,,-ETEKw  distribution, then the 

incomplete moment ( )zM r  has the form 

( )
( ) ( ) ( )( ) ( ( ) )

( ) ( ) ( )( )[ ( )]∑
∞

=
λ−

+

λ−
+

+

−β−+θΓ−αΓ+

−β+γ+θΓ+αΓθ−
=

0, 1

1 ,
11!1!

1,1111

kj
r

j

j
kj

r
ejkkjk

zerk
zM  

 ...,,2,1=r       (20) 

where ( ) ∫ −−ϑ=ϑγ
z xdxexz
0

1,  is the lower incomplete gamma function. 

Proof. Let X be a random variable having density function (4). The 
incomplete moment of the ( )λβθα ,,,-ETEKw  distribution is given by 

( ) ( )∫ λβθα=
z

ETEKw
r

r dxxfxzM
0 - .,,,;  

Using (9), 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )∑

∞

=

+

−+θΓ−αΓ+
+θΓ+αΓθ−=

0,
1!1!

111

kj

kj
r jkkjk

kzM  

( )∫ λβ× +
z

jETE
r dxxfx

0 1,;  

( ) ( ) ( )( )
( ) ( ) ( )( )∑

∞

=

+

−+θΓ−αΓ+
+θΓ+αΓθ−=

0,
1!1!

111

kj

kj

jkkjk
k  

( ) ( )∫
λ−

+ −β−λ−
+ −β×

z xe
j

r dxeex j
0

1
1 .1 1  (21) 

Using similar concept for proving the moments 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )∑

∞

=

+

−+θΓ−αΓ+
+θΓ+αΓθ−

=
0,

1!1!
111

kj

kj
r jkkjk

kzM  

( )

( )
∫

λ−
+ −β −

λ−
+ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−β
×

ze y
r

j

j dye
e

y1

0 1

1 .
1
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Thus, 

( )
( ) ( ) ( )( ) ( ( ) )

( ) ( ) ( )( )[ ( )]∑
∞

=
λ−

+

λ−
+

+

=
−β−+θΓ−αΓ+

−β+γ+θΓ+αΓθ−
=

0, 1

1 ....,2,1,
11!1!

1,1111

kj
r

j

j
kj

r r
ejkkjk

zerk
zM  

This completes the proof. 

3.5. Mean and median deviations 

Let ( ).,,,-~ λβθαETEKwX  The amount of scatter in X is evidently 

measured by the totality of deviations from the mean and median. They are 
known as the mean deviation and median deviation defined by 

( ) ( )∫
∞

λβθαμ−=δ
0 -1 ,,,; dxxfxX ETEKw  

and 

( ) ( )∫
∞

λβθαϕ−=δ
0 -2 ,,,,; dxxfxX ETEKw  

respectively, ( )XE=μ  and ϕ is the median of X. The measures ( )X1δ  and 
( )X2δ  can be determined by ( ) ( ) ( )μ−μμ=δ 11 22 MFX EETE  and ( ) =δ X2  

( ).2 1 ϕ−μ M  It is easy to compute ( )μ1M  and ( )ϕ1M  from (20). 

3.6. Inequality measures 

The Lorenz and Bonferroni curves have many applications not only in 
economics to study income and poverty but also in other fields like 
reliability, medicine and insurance. The Lorenz curve, ( )xLF  can be defined 

as the proportion of total income volume accumulated by those units with 
income lower than or equal to the volume, and the Bonferroni curve, ( )xBF  

is the scaled conditional mean curve, that is the ratio of group mean income 
of the population. 

Proposition 4. If a random variable X has a ( )λβθα ,,,-ETEKw  

distribution, then the Lorenz curve ( )xLF  is given by 

   ( )
( ) ( ) ( )( ) ( ( ) )

( ) ( ) ( )( ) ( )∑
∞

=
λ−

+

λ−
+

+

−β−+θΓ−αΓ+

−βγ+θΓ+αΓθ−
μ

=
0, 1

1 .
11!1!

1,21111

kj j

j
kj

F
ejkkjk

zek
xL  (22) 
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Proof. By definition, the Lorenz curve can be obtained using the 
relationship 

( )
( )

.0
μ

=
∫

x

F

dttft
xL  

The integral ( )∫
x

dttft
0

 is the first incomplete moment which can be 

obtained from (20). Thus, this proof is complete. 

Proposition 5. If a random variable X has a ( )λβθα ,,,-ETEKw  

distribution, then the Bonferroni curve ( )xBF  is given by 

( ) ( )λβθαμ
= ,,,;

1
- xFxB
ETEKw

F  

( ) ( ) ( )( ) ( ( ) )

( ) ( ) ( )( ) ( )∑
∞

=
λ−

+

λ−
+

+

−β−+θΓ−αΓ+

−βγ+θΓ+αΓθ−
×

0, 1

1 .
11!1!

1,2111

kj j

j
kj

ejkkjk

zek
 (23) 

Proof. The proof can easily be obtained from the relationship 

( ) ( )
( ) ,xF

xLxB F
F =  

where ( )xF  is the CDF. This completes the proof. 

3.7. Entropy 

Statistical entropy is a probabilistic measure of uncertainty or ignorance 
about the outcome of a random experiment and is a measure of reduction in 
that uncertainty. Various entropy and information indices exist, among them 
the Rényi entropy has been developed and used in many disciplines and 
context. For a random variable X having a PDF ( ),xf  the Rényi entropy is 

defined by 

 ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡

δ−
=δ ∫ℜ

δ dxxfIR log1
1  (24) 

for 0>δ  and .1≠δ  
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Proposition 6. If a random variable X has a ( )λβθα ,,,-ETEKw  

distribution, then the Rényi entropy is given by 

( ) ( ) [ ( )]λ−−β−αθ
δ−

δ
=δ eIR 1loglog

1
 

 ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) .111!!

1111log1
1

0, ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−δ−+δθΓ+−−αδΓ+δ
+δ−+δθΓ+−αδΓ−

δ+
+ ∑

∞

=

+

kj

kj

jkkjkj
k  

(25) 
Proof. Using (24), the Rényi entropy is given by 

( ) { ( ) ( ) [ ( ) ]⎢
⎣

⎡
−−αθβ

δ−
=δ ∫

∞ −θ−β−−β−λ− λ−λ−

0
111 11log1

1 xexe
R eeeI  

  [ ( ( ) ) ] } .11 11
⎥
⎦

⎤
−−× δ−αθ−β− λ−

dxe xe  (26) 

Using the binomial expansion, (26) can be written as 

( ) ( ) [ ( )]
⎢
⎢
⎣

⎡
−βαθ

δ−
=δ δλ−δ eIR 1log

1
1

 

( ) ( )( ) ( )( )
( )( ) ( )( )∑

∞

=

+

+−δ−+δθΓ+−−αδΓ
+δ−+δθΓ+−αδΓ−

×
0,

111!!
1111

kj

kj

jkkkj
k   

  ( ) ( )
⎥
⎥

⎦

⎤
× ∫

∞ −+δβ− λ−

0
1 dxe xek  

( ) [ ( )]
⎢
⎢
⎢

⎣

⎡
−βαθ

δ−
= δλ−δ elog1

1  

( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

.
1111!!

1111

0, ⎥
⎥
⎥

⎦

⎤

+−δ−+δθΓ+−−αδΓ+δ−β

+δ−+δθΓ+−αδΓ−
× ∑

∞

=
λ−

+

kj

kj

jkkjekj
k  
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Thus, 

( )δRI ( ) [ ( )]λ−−β−αθ
δ−

δ= e1loglog1  

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) .111!!

1111log1
1

0, ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−δ−+δθΓ+−−αδΓ+δ
+δ−+δθΓ+−αδΓ−

δ−
+ ∑

∞

=

+

kj

kj

jkkjkj
k  

This completes the proof. 

3.8. Reliability 

The estimation of reliability is important in stress-strength models. If 1X  

is the strength of a component and 2X  is the stress, then the component fails 

when .12 XX >  Then the estimation of the reliability of the component R is 

( ).12 XXP <  When 1X  and 2X  are distributed independently as 

( )11111 ,,,-~ λβθαETEKwX    and   ( ),,,,-~ 22222 λβθαETEKwX  

then the reliability is given by 

 ( ) ( ) ( ) ( )∫ ∫
∞ ∞

−==
0 0 2121 .1 dxxSxfdxxFxfR  (27) 

Proposition 7. If 1X  and 2X  are the strength and stress of a component, 

respectively, and are distributed independently as 

( )11111 ,,,-~ λβθαETEKwX    and   ( ),,,,-~ 22222 λβθαETEKwX  

then the reliability of the component is given by 

( )
[ ( )( ) ( )]∑

∞

=
λ−λ−

λ−

−β+−+β
ω−βθ−=

0,,, 21
,,,11 ,

111
111

21
1

kji
kji

eej
eR  

 (28) 

where 

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) .111!!!!

11111
2211
2211

,,, +−θΓ+−αΓ−+θΓ−αΓ
+θΓ+αΓ+θΓ+αΓ−=ω

+++

iijkkkji
ikkji

kji  
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Proof. Using (27), 

( ) ( ) ,1
0 21∫
∞

−= dxxSxfR  

( ) ( ) ( ) ( ( ) ) 111
1111 111111 11 −θ−β−−β−λ− λ−λ−

−−βθα= xexe eeexf  

[ ( ( ) ) ] 11 111111 −αθ−β− λ−
−−× xee  (29) 

and 

 ( ) [ ( ( ) ) ] .11 2222 1
2

αθ−β− λ−
−−= xeexS  (30) 

Using the binomial series expansion, (27) can be written as 

( ) [ ( )( ) ( )]∑ ∫
∞

=

∞ −β+−+β−λ− λ−λ−
ω−βθ−=

0,,,
0

111
,,,11 ,11

22111

kji

xeej
kji dxeeR  

 (31) 

where 

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) .111!!!!

11111
2211
2211

,,, +−θΓ+−αΓ−+θΓ−αΓ
+θΓ+αΓ+θΓ+αΓ−=ω

+++

iijkkkji
ikkji

kji  

Thus, 

( )
[ ( )( ) ( )]∑

∞

=
λ−λ−

λ−

−β+−+β
ω−βθ−=

0,,, 21
,,,11 .

111
111

21
1

kji
kji

eej
eR  

This completes the proof. 

3.9. Probability weighted moments 

In this subsection, the probability weighted moments (PWMs) of the 
( )λβθα ,,,-ETEKw  distribution were derived. The PWMs method can be 

used generally to estimate parameters of a distribution whose inverse form 
cannot be expressed explicitly. For a random variable X with PDF ( )xf  and 

CDF ( ),xF  the ( ) th, sr  PWM of X ( )0,1for ≥≥ sr  is formally defined as 
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[ ( )] ( ) ( )∫
∞

==ρ
0, ., dxxfxFxxFXE srsr

sr  (32) 

Proposition 8. If a random variable X has a ( )λβθα ,,,-ETEKw  

distribution, then the ( ) th, sr  PWM of X ( )0,1 ≥≥ srfor  is given by 

( ) ( ) ( )( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( )[ ( )( )]∑

∞

=
λ−

++

−+β−+θΓ−+αΓ+−Γ+

+Γ+θΓ+αΓ+Γ−αθ=ρ
0,,

, .
11111!!!1

11111

kji
r

kji
sr

eiijjkkskji
rjks  

 (33) 

Proof. Using (32), 

[ ( )] ( ) ( ) ,,
0, ∫
∞

==ρ dxxfxFxxFXE srsr
sr  

( ) [ ( ( ( ) ) ) ] .111 1 sxes exF αθ−β− λ−
−−−=  

Using the binomial series expansion, (32) can be written as 

( )λ−−αθβ=ρ esr 1,  

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )∑

∞

=

++

−+θΓ−+αΓ+−Γ
+θΓ+αΓ+Γ−×

0,,
111!!!
1111

kji

kji

ijjkkskji
jks  

( ) ( )∫
∞ −+β− λ−

×
0

11 .dxex xeir  (34) 

Now, define the following substitution: 

( ) ( ) ( ) ( ) .1111
+

=−β⇒−+β= λ−λ−
i
dydxexeiy  

Clearly, 

( ) ( )
,

11 λ−−+β
=

ei
yx  
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sr,ρ
( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )∑
∞

=

++

−+θΓ−+αΓ+−Γ
+θΓ+αΓ+Γ−

αθ=
0,,

111!!!
1111

kji

kji

ijjkkskji
jks  

 
( ) ( ) ( )∫

∞ −
λ− +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+β
×

0 111 i
dye

ei
y y

r

 

( ) ( ) ( )( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( )[ ( )( )]∑

∞

=
λ−

++

−+β−+θΓ−+αΓ+−Γ+

+Γ+θΓ+αΓ+Γ−
αθ=

0,,
.

11111!!!1
11111

kji
r

kji

eiijjkkskji
rjks  

This completes the proof. 

4. Distribution of Order Statistics 

In this subsection, the PDF of the ith order statistic was derived. Let 

nXXX ...,,, 21  be a random sample from an EETE distribution and 

nnnn XXX ::2:1 ≤≤≤  denote the corresponding order statistics obtained 

from the sample. Then the PDF, ( ),: xf ni  of the ith order statistic niX :  is 

given by 

( ) ( ) ( )[ ] ( )[ ] ( ),11,
1 1

: xfxFxFiniBxf ini
ni

−− −
+−

=  

where ( )xF  and ( )xf  are the CDF and PDF given by (3) and (4), 

respectively, and ( )⋅⋅,B  is the beta function. Since ( ) 10 << xF  for ,0>x  

by using the binomial series expansion of ( )[ ] ,1 inxF −−  given by 

( )[ ] ( ) ( )[ ]∑
−

=

− ⎟
⎠
⎞

⎜
⎝
⎛ −

−=−
in

k

kkin xF
k

in
xF

0
,11  

we have 

( ) ( ) ( ) ( )[ ] ( )∑
−

=

−+⎟
⎠
⎞

⎜
⎝
⎛ −

−
+−

=
in

k

kik
ni xfxF

k
in

iniBxf
0

1
: ,11,

1  (35) 
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therefore substituting (3) and (4) into (35), one gets 

( ) ( ) ( ) ( )
( ) ( ) ( )∑ ∑

−

=

−+

=

+

−−−+
+Γ+Γ−=

in

k

ki

j

kj
ni kinijk

kinxf
0

1

0
: !!1!1!

11  

( ),,,,; 1- λβθα× +jETEKw xf  (36) 

where ( )λβθα + ,,,; 1- jETEKw xf  is the PDF of the Kw-ETE distribution 

with parameters ( ) βθ+α=α + ,,11 jj  and λ. Relation (36) revealed that 

( )xf ni:  is the weighted average of the Kw-ETE distribution with different 

shape parameters. 

Proposition 9. The rth non-central moment of the ith order statistic niX :  

is given by 

 ( ) ( )
[ ( ) ( )]∑ ∑ ∑

∞

=

−

=

−+

=
λ−

=
−+β

+Γϖθ=μ′
0, 0

1

0
,,,

: ...,,2,1,
11

1

m

in

k

ki

j
rkjm

ni
r r

em
r  (37) 

where 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) .1!!1!1!!!

1111

1

1
,,, mkinijmk

kin

j

j
mkj

kjm −+θΓ−αΓ−−−+
+θΓ+αΓ+Γ+Γ−

=ϖ
+

+
+++

 

Remark. The proof for Proposition 9 can be derived by using the 
concept for the rth non-central moment of the Kw-ETE distribution. 

5. Estimation and Inference 

In this section, the method of maximum likelihood estimation was 
established for estimating the parameters of the Kw-ETE distribution 
developed. Let nXXX ...,,, 21  be a random sample with observed values 

nxxx ...,,, 21  from Kw-ETE distribution with parameters βθα ,,  and λ. Let 

( )Tλβθα=Θ ,,,  be the parameter vector. The log-likelihood function is 

given by 
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( )λ−−+β+θ+α= ennnn 1lnlnlnln  

( ) ( ) [ ( ) ]∑ ∑
= =

−β−λ− λ−
−−θ+−β−

n

i

n

i

xe
i iexe

1 1

11ln11  

( ) [ ( ( ) ) ]∑
=

θ−β− λ−
−−−α+

n

i

xe ie
1

1 .11ln1  (38) 

The associated score functions are given by 

[ ( ( ) ) ],11ln
1

1∑
=

θ−β− λ−
−−+

α
=

α∂
∂

n

i

xe ien  (39) 

[ ( ) ]∑
=

−β− λ−
−+

θ
=

θ∂
∂

n

i

xe ien

1

11ln  

( ) ( ( ) ) [ ( ) ]

( ( ) )
,

11

1ln11
1

1

11

∑
=

θ−β−

−β−θ−β−

λ−

λ−λ−

−−

−−−α−
n

i
xe

xexe

i

ii

e

ee  (40) 

( ) ( ) ( ) ( )

( )∑ ∑
= =

−β−

−β−λ−
λ−

λ−

λ−

−

−
−θ+−−

β
=

β∂
∂

n

i

n

i
xe

xe
i

i
i

i

e

eexxen

1 1
1

1

1

111  

( ) ( ) ( ) ( ( ) )
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,
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111
1

1

111
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=
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−θ−β−−β−λ−

λ−

λ−λ−
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−−θ
−α−

n

i
xe

xexe
i

i

ii

e

eeex  (41) 

( )
( )

( )∑ ∑
= =

−β−

−β−λ−
λ−

λ−

λ−

λ−

λ−

−

β
−θ+β−

−
=

λ∂
∂
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i
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i
xe

xe
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i
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i
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exxe
e
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1 1
1

1

1
1

1
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( ) ( ( ) )

( ( ) )
∑
=

θ−β−

−θ−β−−β−λ−

λ−

λ−λ−

−−

−θβ
−α−

n

i
xe

xexe
i

i

ii

e

eex

1
1

111
.

11

11  (42) 
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The maximum likelihood estimate of ,Θ  say ,Θ̂  is obtained by equating 

(39), (40), (41) and (42) to zero and solving the non-linear system of 
equations numerically. For interval estimation and hypothesis tests on the 
model parameters, the information matrix is required. The information matrix 
is given by 

( ) .

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−=

λλλβλθλα

βλβββθβα

θλθβθθθα

αλαβαθαα

IIII

IIII

IIII

IIII

In Θ  

Let ( ) ( ) .1 1 ixe
i exG

λ−−β−−=  Then 

,22

2

α
−=

α∂
∂=αα

nI  (43) 

( )[ ] ( )[ ]
( )[ ]

,
1

ln

1

2

∑
=

θ

θ

αθ
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−=
θ∂α∂

∂=
n

i i

ii
xG

xGxGI  (44) 
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1
1

1

112
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i i

xe
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exGGexI
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⎤
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xGxG  (47) 
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( ) ( )
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Under conditions that are fulfilled for parameters in the interior of the 
parameter space but not on the boundary, the asymptotic distribution of 

( )ΘΘ −ˆn  is ( ( ) ),, 1
4

−Θ0 nJN  where ( )ΘnJ  is the expected information 

matrix. This asymptotic behavior is valid if ( )ΘnJ  is replaced by ( ),Θ̂nI  

that is, the observed information matrix is evaluated at .Θ̂  The asymptotic 

multivariate normal ( ( ) )1
4 ˆ, −Θ0 nIN  distribution can be used to construct 

approximate confidence intervals and confidence regions for the individual 
parameters. A ( )%1100 γ−  asymptotic confidence interval for each parameter 

iΘ  is given by 

( ),ˆˆ,ˆˆ
22

iiiiiii IZIZACI γγ −Θ−Θ=  
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where iiÎ  is the ( )ii,  diagonal element of ( ) 1ˆ −ΘnI  for ,3,2,1=i  and 
2
γZ  

is the quantile 21 γ−  of the standard normal distribution. The likelihood ratio 

(LR) test can be used to compare the fit of the Kw-ETE distribution with its 
sub-model for a given data set. For example, to test ,1=α  the LR statistic is 

[ ( ) ( )],~,~,~,1ˆ,ˆ,ˆ,ˆ2 λβθ−λβθα=ω  

where ,α̂  ,~
θ  ,~

β  λ~  are the unrestricted estimates, and ,~
θ  ,~

β  λ~  are the 

restricted estimates. The LR test rejects the null hypothesis if ,2
dχ>ω  where 

2
dχ  denotes the upper 100d% point of the 2χ  distribution with one degree of 

freedom. 

6. Application 

In this section, real data set was analyzed to illustrate the desirable 
performance of the Kw-ETE model in practice. The data set was cited from 
Lawless [7]. The data set consists of failure times for 36 appliances subjected 
to an automatic life test and are given as: 11, 35, 49, 170, 329, 381, 708, 958, 
1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451, 2471, 2551, 2565, 
2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 
6367, 6976, 7846, 13403. Here to illustrate that the Kw-ETE distribution can 
be a reasonable model, we compared it with modified Weibull distribution 
(MWD), exponentiated Weibull distribution (EWD), new generalized linear 
exponential distribution (NGLED), Erlang-truncated exponential distribution 
(ETE) and exponentiated Erlang-truncated exponential distribution (EETE). 
Table 1 displays the maximum likelihood estimates (MLEs) of the parameters 

of the fitted models, their standard errors and their log-likelihood ( ).  
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Table 1. Maximum likelihood estimates of the parameters of the fitted 
models 

Model Parameter estimates Standard error  
NGLED 110093.12ˆ −×=α  0.196  

 410480.3ˆ −×=λ  510233.6 −×  –358.99 

 110209.12ˆ −×=β  210668.4 −×   

 310263.6ˆ −×=γ  310466.7 −×   

EWD 587.4ˆ =α  1.003  
 306.1ˆ =β  0.234 –367.73 

 079.0ˆ =γ  210437.1 −×   

MWD 410452.3ˆ −×=λ  510208.6 −×   

 700.1ˆ =β  510714.1 −×  –381.95 

 310540.4ˆ −×=γ  310390.5 −×   

ETE 410629.3ˆ −×=β  510049.6 −×  –321.19 

 342.9ˆ =λ  1210922.1 −×   

EETE 960.0ˆ =θ  0.205  

 510535.3ˆ −×=β  510699.7 −×  –321.17 

 706.10ˆ =λ  710258.2 −×   

Kw-ETE 474.3ˆ =α  310631.2 −×   

 321.0ˆ =θ  210165.6 −×  –303.56 

 055.1ˆ =β  310193.9 −×   

 510718.3ˆ −×=λ  510256.1 −×   

The variance-covariance matrix of the MLEs under the Kw-ETE 
distribution is computed as 

( ) .

10578.110973.510005.410709.1
10973.510451.810667.510418.2

10005.410667.510800.310622.1
10709.110418.210622.110920.6

ˆ

10878

8545

7434

8546

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

××−××
×−××−×−
××−××
××−××

=

−−−−

−−−−

−−−−

−−−−

−ΘI  
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Therefore, 95% confidence intervals for βθα ,,  and λ are [ ],479.3,469.3  

[ ],442.0,200.0  [ ]073.1,037.1  and [ ],10180.6,10256.1 55 ×× −  respectively. 

In order to compare the fitted distributions, criteria like the Akaike 
Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), 
Bayesian Information Criterion (BIC) and 2−  were used. The better 

distribution corresponds to smaller AIC, AICc, BIC and 2−  values. The 

values in Table 2 indicate that the Kw-ETE distribution leads to a better fit 
than the other models. 

Table 2. Criteria for comparison 
Model 2−  AIC AICc BIC 

NGLED 717.986 725.986 727.276 732.320 
EWD 735.457 741.457 742.225 746.208 
MWD 763.898 769.898 770.648 774.649 
ETE 642.372 646.372 646.736 649.539 

EETE 642.335 648.335 649.085 653.086 
Kw-ETE 607.114 615.114 616.404 621.448 

Further, the likelihood ratio test was performed to compare the Kw-ETE 
distribution with its sub-models (EETE and ETE). The results from Table 3, 
clearly revealed that the Kw-ETE distribution provides a better fit than its 
sub-models. 

Table 3. Likelihood ratio test 
Model Test statistics P-value 

ETE versus Kw-ETE 35.260 0.000 
EETE versus Kw-ETE 35.220 0.000 

7. Simulation 

Simulation studies were performed in this section to investigate the 
performance of the accuracy of point estimates of ( )λβθα ,,,-ETEKw  

distribution. The simulation studies were performed with sample sizes 
400,300,200,100=n  and 500. For each of the true parameter value 
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,0.1=α  ,5.0=θ  5.1=β  and ,8.0=λ  we simulate 1000 samples. Table 4 

displays the Average Estimate (AE) and the Root Mean Square Error 
(RMSE). From the results, it was clear that as the sample size increases, the 
AE of the parameters approaches the true parameter values and the RMSE 
decay towards zero. 

Table 4. Simulation results (AE and RMSE) 
n Parameters AE RMSE 

α 1.380 0.399 
θ 0.420 0.796 
β 0.662 0.838 

100 

λ 0.541 0.259 
α 1.313 0.314 
θ 0.439 0.608 
β 0.963 0.807 

200 

λ 0.603 0.224 
α 1.297 0.295 
θ 0.536 0.438 
β 1.205 0.713 

300 

λ 0.672 0.135 
α 1.256 0.214 
θ 0.524 0.311 
β 1.443 0.543 

400 

λ 0.775 0.119 
α 1.013 0.187 
θ 0.511 0.251 
β 1.467 0.411 

500 

λ 0.813 0.103 

Also, we simulated random numbers of size 30=n  and employed the 
techniques of maximum likelihood estimate to compare the performance of 
Kw-ETE distribution with NGLED, EWD, MWD, ETE and EETE. Table 5 
displays the parameter estimates of the various models with their standard 
errors in bracket. It was obvious that the Kw-ETE distribution performs 
better than the other candidate models since it has the highest log-likelihood 
value and smallest AIC value. 
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Table 5. Estimates of model parameters for simulated data 
Model α̂  λ̂  α  γ̂  θ̂   AIC 

NGLED 0.025 0.058 5.991 0.012 - –329.18 666.36 
 (0.017) (0.023) (0.008) (0.003)    

EWD 0.013 - 4.204 0.244 - –330.88 667.76 
 (0.0026)  (0.0071) (0.104)    

MWD - 1.133 0.086 2.477 - –327.16 660.32 
  (0.00163) (0.036) (0.102)    

ETE  0.042 0.356 - - –321.51 647.02 
  (0.0013) (0.113)     

EETE - 0.0004 1.735 - 0.175 –320.80 647.60 
  (0.000006) (0.339)  (0.043)   

Kw-ETE 0.914 6.345 0.245 - 0.595 –314.80 637.60 
 (0.0051) (0.0001) (0.0005)  (0.128)   

8. Conclusion 

We introduced and studied a new lifetime model called the 
Kumaraswamy Erlang-truncated exponential distribution. The structural 
properties of this new model, including the expressions for the moments, 
moment generating functions and order statistics were derived. The method 
of maximum likelihood was employed for estimating the model parameters. 
We demonstrated the application of the new model using real data set. The 
new model provided a better fit than its sub-models and other competing 
models. It is our hope that the new model will attract wider application in 
different areas such as engineering and economics. 
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