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Abstract 

We propose the SHQC as a new order selection criterion based on 
both two information criteria, Schwarz information criterion (SIC) and 
Hannan-Quinn information criterion (HQC) for the selection in 
autoregressive models. The performance of our proposed criterion was 
investigated through a simulation study by comparing it with other 
well known order selection criteria. The simulation results show that 
the proposed criterion, SHQC is much better than other existing 
criteria in identifying the correct model order for moderate to large 
samples. Moreover, as the sample size increases, the SHQC converges 
to the true order which confirms the consistency of it and the 
probabilities of both under and over fitting of it are always the least 
among other criteria for all cases. Therefore, we can use the SHQC 
criterion as a safe alternative to any criterion. 
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1. Introduction 

Selection of the model order is an important part in time series analysis 
that aims to determine the true order for the model to be fitted. There are 
many criteria used in the literature to determine the order of autoregressive 
(AR) model which is one of the most common approaches for modelling of 
time series data. 

The common selection criteria based on information criteria (IC) due to 
Kullback and Leibler [23] who introduced asymmetric divergence known as 
I-divergence or the directed divergence to measure the distance between the 
true model and the candidate model and the best model which loses the least 
information relative to other models. These criteria such as Akaike 
information criterion (AIC) Akaike [3], Schwarz information criterion (SIC) 
Schwarz [25], Hannan-Quinn information criterion (HQC) Hannan and 
Quinn [14], Akaike information corrected criterion (AICc) Hurvich and Tsai 
[16] and so on. A briefly discussion about these criteria is existed in 
Beveridge and Oickle [4], Brockwell and Davis [6] and Burnham and 
Anderson [7]. Moreover, many of other selection criteria had been proposed 
based on IC. Chen et al. [10] proposed a resampling method for model 
selection of autoregressive models. Karimi [19] derived a new order selection 
criterion by using new approximations for the expectations of residual 
variance and prediction error. Haggag [12] proposed new criteria based on 
AIC by taking the average of it with each of some criteria such as AICc and 
HQC in linear regression models. 

Another divergence due to Kullback [22] called J-divergence which is 
symmetric divergence based on the sum of two directed divergences for the 
true and the candidate models. New criteria based on Kullback’s symmetric 
divergence had been proposed such as Kullback information criterion (KIC) 
due to Cavanaugh [8] and a corrected version of it called Kullback 
information corrected criterion (KICc) which introduced by Boosarawongse 
and Chongcharoen [5]. The KICc criterion had been justified for linear 
regression model Cavanaugh [9], nonlinear regression with normal errors 
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Kim and Cavanaugh [21] and autoregressive models Hafidi and Mkhadri 
[11]. 

In general, selecting the model order requires minimizing the estimated 
I-divergence or J-divergence. All of criteria involve the summation of two 
terms, the first is a measure of goodness of fit for the model to the data, and 
the second is a penalty term for overfitting which occurs when the criterion 
value for the true model of order p more than its value for the candidate 
model of order ,kp +  where 0>k  is the number of overfitted order. 

In other words, order selection criteria are based on minimizing the 
following loss function: 

( ) ( ) ( ),,ˆ 2 pnghp a +σ=δ  (1) 

where 2ˆ aσ  is an estimated variance of white noise a, n is the sample size, p is 

the order of the candidate model, ( )2ˆ ah σ  is a measure of goodness of fit for 

the candidate model to the data, and ( )png ,  is a penalty term for overfitting 
depending on n and p only. 

The objective of this paper is to provide a new order selection criterion 
which its penalty term based on the penalty term of SIC and HQC criteria for 
the selection of autoregressive models, and to investigate the performance of 
our proposed criterion with respect to other well known criteria through a 
simulation study. 

In Section 2, we discuss the order selection criteria for autoregressive 
models. In Section 3, the proposed criterion in this paper is introduced. This 
is followed by a simulation study to investigate the performance of this 
criterion with respect to other existing criteria in Section 4, and the 
simulation results are discussed in Section 5. Finally, the conclusions are 
presented in Section 6. 

2. Autoregressive Order Selection Criteria 

We consider the stationary AR model of order p, denoted by AR(p) for a 
time series { },...,2,1,0, ±±=tYt  



Enas Gawdat Yehia 172 

( ) ,ttp aYB =Φ  (2) 

where ( ) p
pp BBBB φ−−φ−φ−=Φ 2

211  is called an autoregressive 

operator and B is the backward shift operator such that ,ktt
k YYB −=  all the 

roots of the polynomial ( ) 0=Φ Bp  lie outside the unit circle. The 

{ }pii ...,,2,1, =φ  are autoregressive parameters and { }ta  are independent 

identically distributed normal random variables with zero mean and finite 

variance 2σ  which can be estimated by ( ) ∑
=

−−−=σ
n

t
ta apn

1

212 .ˆ1ˆ  Also, the 

{ }ta  satisfy that ( ) .4 ∞<taE  

There are many criteria used in determining the order of autoregressive 
model. First, Akaike [1] proposed the final prediction error (FPE) criterion 
for AR(p) based on minimizing the one-step ahead mean square forecast 
error and defined as follows: 

.ˆFPE 2 ⎟
⎠
⎞⎜

⎝
⎛

−
+σ= pn

pn
a  (3) 

This criterion is asymptotically efficient but it is not consistent due to Akaike 
[2]. Therefore, Akaike [3] suggested a new criterion based on Kullback-
Leibler information known as AIC, and defined as 

( ) ( ).2ˆlnAIC 12 pna
−+σ=  (4) 

Jones [18] showed that AIC is asymptotically unbiased and efficient, 
however, it has a tendency to overfit Shibata [26]. 

Another criterion based on Bayesian information was introduced by 
Schwarz [25] known as SIC. It also called Schwarz-Rissanen information 
criterion due to Rissanen [24] who arrived at the same criterion 
independently, it has the following form: 

( ) ( )( ).lnˆlnSIC 12 npna
−+σ=  (5) 
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According to another form of penalty term, Hannan and Quinn [14] 
suggested a new criterion denoted by HQC as follows: 

( ) ( )( )( )( ).lnln2ˆlnHQC 12 npna
−+σ=  (6) 

To speed up the convergence of this criterion, Hannan and Rissanen [15] 
replaced the term ( )( )nlnln  by ( ).ln n  However, Kavalieris [20] found that 

this modification led to overfit the true order. 

On the other hand, Hurvich and Tsai [16] suggested more extreme 
penalty to avoid the overfitting of the AIC through a new criterion known as 
Akaike information corrected criterion (AICc) which can be expressed as 

( ) ( ) ,21
1ˆlnAICc 2 ⎟

⎠
⎞⎜

⎝
⎛

+−
++σ= np

np
a  (7) 

but it tends to overfit when the sample size increases Hurvich and Tsai [17]. 

Indeed, Cavanaugh [8] introduced a new order selection criterion, KIC as 
an asymptotically unbiased estimate of Kullback’s symmetric divergence as 
follows: 

( ) ( ).3ˆlnKIC 12 pna
−+σ=  (8) 

As for AIC, KIC is strongly biased in small samples, therefore, a corrected 
version of KIC, KICc was introduced by Boosarawongse and Chongcharoen 
[5], and defined as 

( ) ( ) ( ) ( )[ ]
( ) ( ) ,2

2ˆlnKICc 2
pnpn
pnpnpn

a −−−
−−+−++σ=  (9) 

which is an approximately unbiased correction of KIC in small samples, but 
it is not consistent Karimi [19]. 

3. The SHQC for Autoregressive Models Selection 

We propose a new order selection criterion denoted by SHQC, for AR(p) 
model based on SIC and HQC to combine the strengths of them, which their 
penalty term lead to consistent criterion where 



Enas Gawdat Yehia 174 

( ) ( ),ln, nppngs =  (10) 

is the penalty term of SIC which make the minimize of SIC converges to p 
with probability one and 

( ) ( )( )( ),lnln2, nppngHQ =  (11) 

is the penalty term of HQC which lead to a consistent criterion as the sample 
size increases. 

The penalty term of the proposed criterion, SHQC has been chosen more 
extreme penalty term for extra parameters to avoid overfitting by taking the 
sum of two penalty terms of SIC and HQC. Consequently, the SHQC 
criterion can be expressed as follows: 

( ) ( ) ( )( )[ ],lnln2lnˆlnSHQC 12 nnpna ++σ= −  (12) 

where the minimum of the above function gives the estimate of the optimum 
model order. As we see from equations (10) and (11), SIC is always greater 
than HQC, thus the difference between SHQC and HQC is always greater 
than the difference between SHQC and SIC. Also, for all p, as n increases, 
the SHQC has the most rapid increase between SIC and HQC. Hence, the 
probability of overfitting of SHQC is always the least between these criteria. 

Theorem. For SHQC, the estimated order ,p̂  is weakly consistent if the 

last term from equation (12) is replaced by ,1
npcn−  where nc  increases to 

infinity. 

Proof. Under general conditions of Section 2, and from Hannan [13] we 

can see that nc  converges to infinity as ∞→n  and ,0lim =
∞→ n

cn
n

 where 

( ) ( )( )[ ].lnln2ln nncn +=  Hence, the resulting p̂  converges to p as .∞→n  

4. Simulation Study 

To investigate the performance of SHQC as a new criterion for the 
selection of AR models with respect to various criteria under study including 
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FPE, AIC, AICc, SIC, HQC, KIC and KICc, we generated 1000 data series 
from each AR(1), AR(2) and AR(3) models according to equation (2) at 

,3,2,1=p  respectively, for sample sizes 25, 50, 100 and 500 in each model 

with specific parameters were chosen to satisfy the stationary conditions 
through the following models: 

( ) ,9.0:1AR 1 ttt aYY += −  (13) 

( ) ,8.01.0:2AR 21 tttt aYYY ++−= −−  (14) 

( ) ,7.02.13.1:3AR 321 ttttt aYYYY ++−= −−−  (15) 

where { }ta  are ( )1,0... NDII  random variables. In all our simulations, we 

estimated the parameters and the residual variance of the candidate models 
by the least squares method. After that, we used each of above selection 
criteria to determine the estimated order ,p̂  in each sample. Also, for every 

sample in these models, the maximum order was cut-off of ten and the 
frequency distribution of selected model orders for the existing criteria was 
obtained for each case. Thus, the probability of estimating the true order 
denoted by ( ),ˆ ppP =  and defined as 

( ) ( ) .1000
ˆtimesofnumberˆ ppppP ===  (16) 

The probability of overfitting the true order denoted by ( ),ˆ ppP >  which is 

given by 

( ) ( ) ,1000
ˆtimesofnumberˆ ppppP >=>  (17) 

and the probability of underfitting the true order denoted by ( ),ˆ ppP <  and 

defined as follows: 

( ) ( ) .1000
ˆtimesofnumberˆ ppppP <=<  (18) 

All these simulation experiments are carried out by using MATHCAD 
program. 
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5. Simulation Results 

The frequency of the selected orders by the existing criteria at different 
sample sizes for AR(1), AR(2) and AR(3) models was shown in Tables 1-3, 
respectively. Moreover, the relative frequency curves of the correct model 
order selections of various criteria for each model as the sample size 
increases were plotted in Figures 1, 3 and 6, respectively. Also, the 
probabilities of overfitting the true order for AR(1), AR(2) and AR(3) 
models were presented in Figures 2, 4 and 7, respectively. As well as, the 
probabilities of underfitting the true order for AR(2) and AR(3) models were 
presented in Figures 5 and 8, respectively. 

Table 1. Frequencies of the estimated order for an AR(1) 

  Criteria 
n p̂  FPE AIC AICc SIC HQC SHQC KIC KICc 

25 1 796 779 786 868 798 961 868 874 
 2 117 117 143 87 106 36 89 101 
 3 35 36 44 17 31 2 19 18 
 4 23 24 20 10 21 0 10 5 
 5-10 29 44 7 18 44 1 14 2 

50 1 808 797 717 920 862 978 877 842 
 2 111 111 138 65 91 21 85 105 
 3 39 41 71 11 27 1 24 33 
 4 22 26 37 4 16 0 11 16 
 5-10 20 25 37 0 4 0 3 4 

100 1 800 791 650 962 906 986 904 829 
 2 101 105 125 36 67 13 68 101 
 3 46 49 81 1 16 1 16 39 
 4 20 19 51 1 6 0 7 15 
 5-10 33 36 93 0 5 0 5 16 

500 1 809 808 610 982 914 999 891 810 
 2 96 97 127 14 62 1 71 96 
 3 43 43 76 3 17 0 25 44 
 4 23 23 51 0 4 0 8 22 
 5-10 29 29 136 1 3 0 5 28 
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We see from Table 1 and from Figures 1 and 2, that for sample sizes, the 
proposed criterion, SHQC performs better than other criteria. It has the least 
probability of overfitting, whereas the other criteria have a tendency to 
overfit the true model. In addition, as the sample size increases, the 
performance of SHQC followed by SIC and HQC in identifying the correct 
model order improves, whereas AIC shows the worst performance at small 
size of ,25=n  as well as, AICc has the worst performance at moderate to 

large sample sizes of ,500,100,50=n  respectively. 

Table 2. Frequencies of the estimated order for an AR(2) 

  Criteria 
n p̂  FPE AIC AICc SIC HQC SHQC KIC KICc 

25 1 39 39 33 55 40 107 54 52 
 2 792 740 810 827 762 862 837 863 
 3 96 104 110 74 95 24 75 70 
 4 36 45 39 24 40 5 23 13 
 5-10 37 72 8 20 63 2 11 2 

50 1 1 1 1 2 1 3 1 1 
 2 817 798 724 918 864 977 883 855 
 3 110 116 148 62 93 18 85 102 
 4 42 48 68 15 32 2 22 33 
 5-10 30 37 59 3 10 0 9 9 

100 1 0 0 0 0 0 0 0 0 
 2 803 794 659 950 891 992 890 824 
 3 107 107 148 46 75 6 76 104 
 4 42 46 68 2 19 1 19 38 
 5-10 48 53 125 2 15 1 15 34 

500 1 0 0 0 0 0 0 0 0 
 2 780 779 612 977 914 997 873 785 
 3 122 125 141 19 63 3 87 121 
 4 49 46 80 3 18 0 22 48 
 5-10 49 50 167 1 5 0 18 46 



Enas Gawdat Yehia 178 

From Table 2 and from Figures 3, 4 and 5, we note that for small sample, 
25=n  the KICc and SHQC have the best performance which performs 

similarly at selecting the correct model order. On the other hand, for 
moderate to large sample sizes, the SHQC has the best performance followed 
by SIC, then KIC at 50=n  and followed by SIC, then HQC at 100=n  and 

500. Indeed the AIC criterion gives the worst selection of p at ,25=n  while 

the AICc is the worst at .500,100,50=n  Moreover, the tendency to overfit 

the true model for SHQC, SIC and HQC decreases as n increases. Also, for 
all criteria, the probability of underfitting decreases as n increases. 

The results of Table 3 demonstrate that for small sample, at ,25=n  all 

criteria have a tendency to overfit the true model, but the KICc criterion 
gives the best selection of p. While for moderate to large sample sizes 

500,100,50=n  respectively, the SHQC criterion outperforms other criteria 

in selecting the true order (see Figure 6), as well as, the overfit probability of 
SHQC is always the least and decreases when the sample size increases as 
shown in Figure 7. On the other hand, the probability of underfitting 
decreases as n increases for all criteria (see Figure 8). Also, we note that AIC 
gives the worst selection of p at small sample, but for moderate to large 
samples, the AICc is the worst performance among other criteria. 

Table 3. Frequencies of the estimated order for an AR(3) 

  Criteria 

n p̂  FPE AIC AICc SIC HQC SHQC KIC KICc 

25 1 18 16 13 32 17 99 31 32 
 2 81 65 75 96 69 142 97 103 
 3 724 683 795 727 685 721 740 811 
 4 90 101 89 69 96 29 70 45 
 5 23 31 19 17 28 1 17 8 
 6-10 64 104 9 59 105 8 45 1 
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50 1 0 0 0 1 0 4 0 0 
 2 0 0 0 4 1 14 3 1 
 3 836 825 782 941 873 963 904 883 
 4 95 95 120 40 72 18 60 74 
 5 33 39 49 11 28 1 20 26 
 6-10 36 41 49 3 26 0 13 16 

100 1 0 0 0 0 0 0 0 0 
 2 0 0 0 0 0 0 0 0 
 3 810 793 696 959 898 992 897 841 
 4 105 107 133 32 69 8 70 95 
 5 36 39 58 5 15 0 15 29 
 6-10 49 61 113 4 18 0 18 35 

500 1 0 0 0 0 0 0 0 0 
 2 0 0 0 0 0 0 0 0 
 3 798 796 641 985 925 997 881 807 
 4 112 112 135 13 59 2 87 111 
 5 39 39 73 1 8 1 18 40 
 6-10 51 53 151 1 8 0 14 42 

 

Figure 1. Probability of correctly estimating the true order for AR(1). 
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Figure 2. Probability of overfitting for AR(1). 

 
Figure 3. Probability of correctly estimating the true order for AR(2). 

 
Figure 4. Probability of overfitting for AR(2). 

 
Figure 5. Probability of underfitting for AR(2). 
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Figure 6. Probability of correctly estimating the true order for AR(3). 

 

Figure 7. Probability of overfitting for AR(3). 

 

Figure 8. Probability of underfitting for AR(3). 

6. Conclusions 

In this paper, we have proposed the SHQC criterion as a new order 
selection criterion based on both SIC and HQC criteria for the selection of 
autoregressive models. Moreover, a simulation investigation was carried out 
to compare the performance of our proposed criterion with the existing order 
selection criteria. The results showed that SHQC has the best performance in 
identifying the correct model order for moderate to large samples in all 
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models and for small sample in AR(1) model. Indeed, for all cases, the 
tendency to underfit and overfit the true order for SHQC decreases as the 
sample size increases. Therefore, the SHQC can be used as a safe alternative 
to any criterion. 
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