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Abstract 

In this paper, we introduce Borelian density of non-empty subset E of 
the set N  of natural numbers and make comparative study of this 
density with others. Further, we provide certain criteria and also the 
applications of this newly proposed density. 

1. Introduction 

The probabilistic Poisson law is the law of random variables which count 
the number of occurrences of a rare event. Its domain of application was 
limited for a long time to that of rare events. But, for some decades, its field 
of application considerably widened. It got used in telecommunications, the 
statistical quality control, study of the phenomena connected to the 
radioactive splitting, the biology, the medicine, the meteorology, the 
industry, and elsewhere. 
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The network of Poisson probability is met under diverse forms. That is, 
in several contexts. It is defined for all the subsets of all the sets =N  
{ }....,2,1,0  

Throughout the paper, E denotes a nonempty subset of the set ,N  and EI  

denotes the indicator function on E. 

In this work, we consider the family of measures of probability on ,N  
defined by 

( ) ( ) .,!
1; N∈λ= λ−

λ kkIekkEb E
k  

Definition 1.1. The family of Borelian or Poisson probability measures 
on the integers is defined as follows: 

( ) ( )

⎪⎩

⎪
⎨
⎧ =λ

=
λ−

λ
.otherwise,0

,...,1,0for,!
1

;
kkIekkEb E

k
 

These can be made diffuse by letting .∞+λ  

We calculate the measure of probability of E. Then we diffuse this 
measure by passing onto the limit on λ, as λ goes to ,∞+  namely, .∞+λ  

We obtain what we shall call the Borelian density. 

We then study the link of these densities, for E, with the binomial, 

asymptotic and ∗∈ NpH p ,  densities. 

The Borelian density related to the Poisson probabilistic law is strictly 
defined in the next section. 

2. Main Results 

2.1. Borelian density of subset E of N  

We calculate the measure of probability of E. Then we diffuse this 
measure by passing onto the limit on λ, as λ goes to ,∞+  namely, .∞+λ  

Thus, we obtain the Borelian density. 
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We then study the link of these densities with the binomial, asymptotic 

and ∗∈ NpH p ,  densities introduced in [3, 6, 7] and [9]. More precisely, 

we show that the binomial density implies the Borelian density for E. The 
converse is false, in general. So, if we denote a class of subsets of N  which 
admits binomial density by B  and a class of subsets of N  which admits the 
Borelian density by ,P  then we obtain a strict inclusion .PB ⊂  

Definition 2.1. Let 

( ) ( )∑ λ= λ−
λ

k
E

k
kIkeEB .!  

We say that E has the number  as the Borelian density related to the 
Poisson measure probabilistic law if 

( )
( )EBλ∞+λ

lim  exists and equals  as 

( ).∞+λ  If this is the case, then we shall denote this density by ( )Eβ  and 

write 

( )
( ) ( ).lim EEB β==λ∞+λ

 

We write P  for a class of subsets of N  which having the Borelian density. 

Theorem 2.1 (Comparison between densities). If E admits a binomial 
density ( ) =Eb  [3], then it has the Borelian density ( ) .=β E  

Proof. Suppose E has a binomial density .  Then 

( )
( ) ( ).;lim EpEBn

n
b==

∞+→
 

We have 
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Moreover, 
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where 
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Therefore, 

( ) ( ) ( ) ( )∑ ∑ λ=λ λλ−λ−λ−
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E
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qqp

E
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p kIk
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( )∑ λ= λ−

n

n
n npEBe .!;  

But 

( )
( ) ,;lim =

∞+→
pEBnn

 

according to the Toeplitz lemma (see [10, Chap. 3]). Hence 

( ) ( )∑ ∞+λ→λλ−

n

n
n npEBe .as!;  

So, the subset E has the Borelian density ( ) .=β E  ~ 

Remark 2.1. It is not well known, at the moment, if the binomial density 
is strictly weaker than that of the Borelian density. 

Proposition 2.2. The set E of natural integers of multiples of m has the 

Borelian density ( )Eβ  and ( ) .1
mE =β  
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Proof. Follows from Proposition 2.5 [3, p. 138] and Theorem 2.1. ~ 

Definition 2.2. We have 

(a) Césaro summability means that 

( ) ( )∑ =
k

sCkb ;;  

(b) Hölder’s summability means that 

( ) ( )∑ =
k

sHkb .;  

We need following theorems connecting the asymptotic density and the 
pH -density for :∗∈ Np  

Theorem 2.3 [6, 7: Theo. 2.1, p. 63]. For [ ],1,0∈  the following two 

statements are equivalent: 

( )1p  E admits  as 1H -density and ( )( );1 =Ed  

( )2p  E admits  as pH -density for all ∗∈ Np  and ( ( ) ).=Ed p  

More generally, we have the following theorem: 

Theorem 2.4. For [ ]1,0∈  and ,∗∈ Ns  the following two statements 

are equivalent: 

( )1p  E admits  as an asymptotic density of order s and ( ( ) );=Ed C
s  

( )2p  E admits  as sH -density and ( ( ) ).=Ed H
s  

Theorem 2.5 [10, p. 211]. If ( ) ( )nonb =  and ( ) ( )∑ ==
k

Bkb  

( ),Eβ  then 

( ) ( ) ( )∑ ==
k

C EdCkb .2; 2  
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Theorem 2.6. If E admits the Borelian density ( ),Eβ  then it admits an 

asymptotic density ( )Ed  and the two limit values are equal, namely, ( ) =β E  

( ) .=Ed  

Proof. From Borel summability, 

( ) ( )∑ =
k

Bkb .  

This implies that 

( ) ( )∑ ∞+λ→λλ−

k

k

kkBe ,as!  

where 

( ) ( )∑
=

=
k

i
ibkB

1
.  

Thus, E has an asymptotic density  if and only if 

( ) ( ) ( )∑ ==
k

EdCkb ,1;  

where 

( ) ( ) ( ) ( ).1−−=Δ= kakakakb  

To see this, consider 
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Suppose E admits the Borelian density .  Because ( ) ( ),kakB =  

( ) ( )∑ ∞+λ→λλ−

k

k

kkBe .as!  
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Also, 

( ) .1or0 +=nb  

Thus, from Theorems 2.3 and 2.4, we have 

( ) ( )∑ =
k

Ckb ,2;  

and hence 

( ) ( )∑ =
k

Hkb .2;  

Finally, according to [6, Theorem 2.1, p. 63] or Theorem 2.3 above, we have 

( ) ( )∑ =
k

Ckb .1;  

Thus, E admits an asymptotic density. ~ 

2.2. Applications 

Criterion. Let [ [nn
n

qpE ,
1≥

= ∪  be a subset of ∗N  neither finite nor 

cofinite and 

( ) ( ).11, 01 =≥−=σ−=ρ − qnqqpq nnnnnn  

Let the following properties hold: 

( )1p  1~ −nn qp  as ( );∞+→n  

( )2p  →
σ
ρ

n
n  as ( ).∞+→n  

Then E admits the Borelian density ( )Eβ  and ( ) .=β E  If ,0=  then the 

only condition ( )2p  implies that ( ) .0=β E  

As applications, we have the following: 
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Proposition 2.7. Let ( ) ( )[ [,,
1

kQkPE
k≥

= ∪  where ( )kP  and ( )kQ  are 

polynomials with positive integral coefficients in k, defined by 

( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

++=

++=
−−

−−

,

,
11

11

nnn

nnn

kockakkQ

kobkakkP
 

where ∗∈ Nn  is the common degree of P and Q. 

Suppose that 

.10 <−< na
bc  

Then E admits the Borelian density ( )Eβ  and ( ) .na
bcE −=β  

Proof. Follows from previous Criterion, Proposition 4.1 [7, p. 527] and 
the above theorem (Theorem 2.6). ~ 

We have the following particular case of Proposition 2.7. 

Proposition 2.8. Let [ [nnE
n

2,12
1

−=
≥
∪  be the set of odd integers. 

Then E admits the Borelian density ( )Eβ  and ( ) .2
1=β E  

Proof. For this purpose, we put 

⎪
⎩

⎪
⎨

⎧

=−=σ

=−=ρ

=−=

− ,2
,1

,2,12

1nnn

nnn

nn

qq
pq

nqnp
 

and verify that 

( )1p  1~ −nn qp  as ( );∞+→n  

( )2p  2
1→

σ
ρ

n
n  as ( ).∞+→n  ~ 
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Proposition 2.9. Let 2E  be the set of square-free numbers. Then 2E  has 

the Borelian density ( )2Eβ  and ( ) ( ) .2
1

2 ζ
=β E  

Proof. Follows from Proposition 2.8 [3, p. 140] and Theorem 2.1. ~ 

Remark 2.2. This gives a new proof of the well known fact [11, 
Theorem 333, p. 269] that the square-free numbers have an asymptotic 

density ( ) ( ) .2
16

22 ζ
=

π
=Ed  
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