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Abstract 

This work studies an interconnection between Dedekind domains and 
Dedekind modules. The interconnection will be investigated as an 
adoption of Noetherian and hereditary properties. Particularly, we 
show that a domain is a Dedekind domain if and only if its finitely 
generated torsion free uniform modules are Dedekind. The obtained 
result includes the case of noncommutative rings. 

1. Introduction 

The first study of Dedekind notion in the module theory was documented 
in Naoum and Al-Alwan [6]. It introduced Dedekind modules by 
generalizing the concept of invertible ideals to invertible submodules. Let R 
be a commutative ring with identity and M be an R-module. 

Let the sets 

{ }0,0 =⇒∈=|∈= sRsrsRrS  

{ }0,0 =⇒∈=|∈= mMmrmStT  
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denote respectively the set of all regular elements of R and a multiplicative 

subset of it. We have the set { }TtRrrtRT ∈∈|= −− ,11  is a quotient ring 

of R. According to Naoum and Al-Alwan [6], a nonzero submodule N of an 

R-module M is said to be invertible if MNN =−1  where { ∈=− xN 1  

},1 MxNRT ⊆|−  and the R-module M is called a Dedekind module if every 

nonzero submodule of M is invertible. 

Following the above definition several authors were interested in finding 
properties of invertible submodules and Dedekind modules. For instance, 
Alkan et al. [1] introduced the concept of integrally closed modules and used 
it to characterize Dedekind modules and Dedekind domains. In another work, 
Saraç et al. [7] investigated relations between a finitely generated torsion free 
Dedekind module and a prime module over an order of the Dedekind 
module. 

Other researchers generalized the properties of Dedekind rings to analyze 
properties of Dedekind modules. One of these results was obtained by 
Garminia et al. [2]. They proved that every Dedekind projective R-module is 
an HNP (hereditary, Noetherian, and prime) module. 

Proceeding the above results, in this article we discuss a characterization 
of Dedekind modules by adapting Noetherian and hereditary concepts. In 
Noetherian area, it is known that a ring R is a Noetherian ring if and only if 
every finitely generated R-module is a Noetherian module. Similar to the 
result, a characterization of hereditary ring is related to its projective 
modules; a ring R is a hereditary ring if and only if every projective R-
module is a hereditary module. Due to those two properties, it is natural to 
investigate connections between Dedekind modules and Dedekind domains. 
One may conjecture that an integral domain D is a Dedekind domain if and 
only if every finitely generated torsion free uniform D-module is a Dedekind 
module. In this article, we present the answer of this conjecture. 

Throughout this note, D will denote an integral domain, { }0−= DS  the 

set of all nonzero elements of D, and { }SbDbaabDSK ∈∈|== −− ,,11  
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be the field of fractions of D, and M be a D-module. The set nxxx ...,,, 21  

denotes the submodule N of M generated by { } ,...,,, 21 Mxxx n ⊆  that is 

{ }....2211 DxxxN inn ∈α|α++α+α=  We follow [6] in using the 

definitions of invertible submodules and Dedekind modules for the 
commutative ring case. On the noncommutative term, we define a rather 
different definition of invertible submodules in the third section. 

2. Ideals and the Field of Fractions of a Commutative Dedekind Domain 

In this section we clarify some characterizations of ideals and the field of 
fractions of a commutative Dedekind domain. We will restrict our attention 
to fractional ideals and finitely generated ideals of a commutative Dedekind 
domain D regarded as D-modules. The obtained properties will be needed to 
analyze the main result in the third section. 

Lemma 2.1. Let D be a commutative Dedekind domain. Every nonzero 
ideal I of D regarded as a D-module is Dedekind. 

Proof. Consider an ideal I of D as a D-module. Let L be a nonzero 

submodule of I. Then L is an ideal of D. Note that { }DxLKxLD ⊆|∈=−1  

is the inverse of L as an ideal of D and { }IxLKxLI ⊆|∈=−1  is the inverse 

of L as a submodule of I. Since D is a Dedekind domain, we have .1 DLLD =−  

It is easy to check that .11 −− = ID LIL  We thus get ( ) ( ) ILLLILLL DDI
111 −−− ==  

.IDI ==  That is L as a submodule of I is invertible. ~ 

Now let N be a nonzero submodule of the field of fractions K regarded as 

a D-module. By definition, we see at once that { }KxNKxN ⊆|∈=−1  

.K=  For any nonzero elements 1−ab  in K and 1−cd  in N, we have 

( ) .111 −−− = abcdbcad  This clearly force .1 KKNNN ==−  This fact 

provides the following result. 

Lemma 2.2. For any integral domain D, the field of fractions K is a 
Dedekind D-module. 
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Now we recall another relation between a Dedekind module and its field 
of fractions (or the total quotient ring) which was stated by Alkan et al. [1] as 
follows. 

Lemma 2.3. Let M be a Dedekind module and let m be a nonzero 

element of M. Then M is isomorphic to the R-submodule ( ) 1−Rm  of .1−RT  

The result ensures that every Dedekind torsion free D-module M is 
isomorphic to a D-submodule of field of fractions K. This lemma makes it 
legitimate to study the properties of Dedekind modules by observing the 
class of submodules of K. 

One may ask which class of D-submodules of K are Dedekind                   
D-modules. To answer this question, we begin with the class of fractional         
D-ideals. 

Definition 2.4. Let R be a ring and 1−RS  be a quotient ring of R. A 

submodule I of 1−RS  is a fractional right R-ideal if the following conditions 
hold: 

● ,RaI ⊆  

● IbR ⊆  

for some units a, b in .1−RS  

McConnell and Robson [4] introduced and studied properties of inverse 
of fractional ideals. This inspires to the investigation of invertibility of any 
fractional ideals. 

Lemma 2.5. Let D be a commutative Dedekind domain. Every fractional 
D-ideal I viewed as D-module is Dedekind. 

Proof. Suppose that J is a submodule of I. We have DaI ⊆  and IbD ⊆  
for some units ., Kba ∈  Note that aI is an ideal of D and so aI is a Dedekind 

D-module. 

Hence aJ, being a submodule of aI, is invertible. Denote ( ) =−1
aIaJ  
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{ }.aIxaJKx ⊆|∈  We have ( ) ( ) .1 aIaJaJ aI =−  Meanwhile the inverse of J 

as a D-submodule of I is 

{ }IxJKxJ ⊆|∈=−1  

{ }aIxaJKx ⊆|∈=  

( ) .1−= aIaJ  

Hence ( ) .11 aIaJaJaJJ aI == −−  Which results in .1 IJJ =−  ~ 

The next interest is to investigate the class of finitely generated                    
D-submodules of K and their relation with the class of fractional D-ideals 
where D is Dedekind. 

Let I be a fractional D-ideal. We thus have DaI ⊆  and IbD ⊆  for 
some units ., Kba ∈  It is a fact that any ideal in a Dedekind domain D is 

generated by two elements. Hence aI is an ideal of the form ,, 21 nnaI =  

for some ., 21 aInn ∈  For every ,aIam ∈  we obtain ,2211 nnam α+α=  for 

some ., 21 D∈αα  Therefore 
a
n

a
nm 2

2
1

1 α+α=  and ., 21
a
n

a
nI =  This 

yields I is a finitely generated D-module. Thus any fractional D-ideal is 
finitely generated D-module. 

Conversely, let L be a finitely generated submodule of K. 

We have ,...,,,
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For every ,Du ∈  we get 
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nyyya …21=  

and 

n
i i ni nn

yyy

yxyxyx
b …21

1 2 2211 ...∏ ∏ ∏≠ ≠ ≠
+++

=  

we may get DaL ⊆  and .LbD ⊆  

Finally, L is a fractional D-ideal. 

Above relation between fractional D-ideals and finitely generated                
D-submodules of K is summarized in the following proposition. 

Proposition 2.6. Let D be a commutative Dedekind domain and K be the 
quotient field of D. A submodule I of K is a fractional D-ideal if and only if I 
as a D-submodule of K is finitely generated. 

3. Main Results 

This section discusses a relation between Dedekind property of modules 
and Dedekind domains. A part of this relation was discussed by Khoramdel 
and Hesari [3]. However our results focus on the property of a class of 
modules being Dedekind and the property of its underlying ring being 
Dedekind. In addition we show that torsion-freeness of modules is necessary 
for being Dedekind, hence the class of modules under consideration is 
torsion free. 
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This section is divided into two subsections. In the first subsection we 
restrict our discussion for the case the underlying domain is commutative. 
We show that uniform property is a necessary condition for any module 
being Dedekind. Then we use this class of modules to investigate our main 
result. In the second subsection we generalize the obtained results to the case 
of noncommutative rings. 

3.1. Commutative Dedekind domains 

By analyzing properties of invertible submodules, we find a fact that 
every invertible submodule is an essential submodule. We know that the 
concept of essential submodules is related to uniform modules. This fact 
provides a relation between Dedekind modules and uniform modules. 

Lemma 3.1.1. Every Dedekind module is a uniform module. 

Proof. Let M be a Dedekind D-module and ., 21 Mmm ∈  Denote =N  

.1m  Since M is Dedekind, ∑
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 that the set { }21, mm  is linearly 

dependent. As a consequent M is uniform. ~ 

The above lemma provides a criterion of Dedekind modules. That is the 
class of Dedekind modules is included in the class of uniform modules. By 
this fact, for the rest of this paper, we restrict our discussion to the class of 
uniform submodules. 

Lemma 3.1.2. Let D be a principal ideal domain (PID for short) and P 

be a nonzero prime ideal in D. For any positive integer e, the D-module eP
D  

is not Dedekind. 
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Proof. Consider eP
DPN =  as a D-submodule of .eP

D  It can be shown 

that for any ,1−∈ DTx  eP
DxN ⊆  implies .Dx ∈  Hence DN =−1  and 

.1
eP

DNDNNN ==−  So, the D-submodule eP
DP  is not invertible. ~ 

Corollary 3.1.3. Let D be a commutative Dedekind domain and M be a 
finitely generated torsion D-module. If M is not simple, then M is not 
Dedekind. 

Proof. Without loss of generality suppose eP
DM =  for some DP ⊆  a 

prime ideal and e a positive integer [5]. Thus, M is not Dedekind by Lemma 
3.12. ~ 

The results above lead us to our main theorem. This theorem expresses 
an interconnection between Dedekind domain and Dedekind module. 

Theorem 3.1.4. A ring D is a commutative Dedekind domain if and only 
if every finitely generated torsion free uniform D-module is Dedekind. 

Proof. By regarding D as a D-module, it is clear that D is finitely 
generated, torsion free, and uniform. Hence D is Dedekind. Conversely, let D 
be a commutative Dedekind domain and M be a finitely generated torsion 

free uniform D-module. Note that 1−MS  is a vector space over K with 

( ) .1dim 1 =−MS  The transformation KMS →ϕ −1:  with ( ) 11 =ϕ −ms  is a 

K-isomorphism, particularly being a D-isomorphism. Hence KMS ≈−1  and 
( ) MM ≈ϕ  as D-modules. We obtain ( )Mϕ  is a finitely generated submodule 

of K. By Proposition 2.6 and Lemma 2.5, ( )Mϕ  is a Dedekind D-module, 

which implies M is a Dedekind D-module. ~ 

The above paragraph clarifies a whole class of Dedekind module over a 
commutative Dedekind domain. The explanation provides us that every 
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module of a commutative Dedekind domain needs to be torsion free for being 
Dedekind. 

3.2. Dedekind domains 

In this part, we generalize the obtained characterization above to the 
class of modules such that the underlying ring is noncommutative. First, we 
need to define the concept of Dedekind module over a domain (do not need 
to be commutative). 

Let R be a domain and M be an R-module. That means the set of all 
regular elements is { } { }00,0 −==⇒∈=|∈= RsRsrsRrS  and let 

{ }.0,0 =⇒∈=|∈= mMmrmStT  Hence we have the set =−1RT  

{ }TtRrrt ∈∈|− ,1  is a quotient ring of R. Adopting the definition of the 

inverse of ideals in [4], for any submodule N of M we define the left and 
right inverses of N as follows. 

{ }MxNRTxNl ⊆|∈= −− 11  

{ }.11 MNxRTxNr ⊆|∈= −−  

A nonzero submodule N of M is said to be invertible if 11 −− == rl NNMNN  

and an R-module M is called a Dedekind module if every nonzero submodule 
of M is invertible. 

Applying the above definition we examine the previous properties in the 
section 2 and subsection 3.1 for the class of noncommutative rings. This 
leads us to the following results. 

Lemma 3.2.1. Let R be a Dedekind domain. Every ideal (two sided 
ideal) I of R regarded as an R-module is Dedekind. 

Proof. Consider R as an R-module. Since R is a domain, we have ST =  

and 1−RS  is the total quotient ring of R. Consider an ideal I as an R-module. 

Let L be a submodule of I. Then L is an ideal of R. The set { ∈=− xL
Rl
1  
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}RxLRS ⊆|−1  is the left inverse of L as an ideal of R and { ∈=− xL
Il
1  

}IxLRS ⊆|−1  is the left inverse of L as a submodule of I. The similar 

definition for the right. We see at once that 11 −− =
IR ll LIL  and .11 −− =

IR rr LIL  This 

clearly leads to IIRLILLL
RI ll === −− 11  and .11 IRIILLLL

RI rr === −−  So, L 

is an invertible submodule of I. ~ 

Lemma 3.2.2. For any Dedekind domain R, the quotient ring 1−RS  is a 
Dedekind R-module. 

The proof of the above lemma is straightforward. It follows easily that 

the left and right inverses of any submodule of the quotient ring 1−RS  is 
1−RS  itself. 

Replacing the class of Dedekind modules by uniform modules we can 
generalize Lemma 2.3 as follows. 

Lemma 3.2.3. Let R be a domain and M be a torsion free uniform             

R-module. Then M is isomorphic to a submodule of the quotient ring .1−RS  

Proof. Let .0 Mn ∈≠  For any Mm ∈≠0  there are non-zero 

elements R∈βα,  such that nm β=α  or .nm
α
β=  By an R-monomorphism 

→Mf :  1−RS  defined by ( )
α
β=mf  we get ( ),MfM ≈  and the lemma 

is proved. ~ 

Lemma 3.2.4. Let R be a Dedekind domain. Every fractional R-ideal 
(two sided fractional R-ideal) I viewed as an R-module is Dedekind. 

Proof. Let J be a submodule of I. We have RIa ⊆  and RbI ⊆  for 

some units ., 1−∈ RSba  Both Ia and bI are ideals of R and so they are 

Dedekind R-modules. It is clear that ( ) 11 −− ⊆
IIa ll JJa  and ( ) .11 −− ⊆

IbI rr JbJ  As 
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Ia and bI are Dedekind R-modules we have ( ) ( ) ( )JaJJaJaIa
IIa ll
11 −− ⊆=  and 

( ) ( ) ( ) .11 −− ⊆=
IbI rr JbJbJbIbI  Therefore JJI l

1−⊆  and .1−⊆ rJJI  This is 

the desired conclusion. ~ 

The same manner as the proof of Proposition 2.6 enables us to write the 
following properties. 

Proposition 3.2.5. Let R be a Dedekind domain and 1−RS  be the 

quotient ring of R. A submodule I of 1−RS  is a fractional R-ideal if and only 
if I is finitely generated. 

We can now use the above results to formulate our last main theorem. 
The proof is immediate by applying the above properties. 

Theorem 3.2.6. A ring R is a Dedekind domain if and only if every 
finitely generated torsion free uniform R-module is a Dedekind module. 
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