JP Journal of Algebra, Number Theory and Applications

© 2016 Pushpa Publishing House, Allahabad, India

Published Online: May 2016

http://dx.doi.org/10.17654/NT038030227

Volume 38, Number 3, 2016, Pages 227-247 ISSN: 0972-5555

QUASITRIANGULAR STRUCTURES ON POINTED
HOPF ALGEBRAS OF RANK ONE

Yanyan Xiao

Department of Mathematics
Taizhou College

Nanjing Normal University
Taizhou 225300, P. R. China
e-mail: yzyanyanxiao@163.com

Abstract

In this paper, the quasitriangular structures on a finite dimensional
pointed Hopf algebra of rank one are investigated. A sufficient and
necessary condition for a finite dimensional pointed Hopf algebra of
rank one to be quasitriangular is given. As an example, all
quasitriangular structures on a finite dimensional pointed Hopf algebra
of rank one such that the group of group-like elements is cyclic are
completely described. In particular, quasitriangular structures on
Sweedler’s four dimensional Hopf algebra are recovered.

1. Introduction

Quasitriangular Hopf algebras constitute a very important class of Hopf
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algebras, which were introduced by Drinfeld [5] in order to supply solutions
to the quantum Yang-Baxter equation that arises in mathematical physics.
The finite dimensional representations of quasitriangular Hopf algebras form
a braided rigid tensor category, which are naturally related to low
dimensional topology. Furthermore, Drinfeld showed that any finite
dimensional Hopf algebra can be embedded in a finite dimensional
quasitriangular Hopf algebra, known as its Drinfeld double or quantum
double.

A general classification of quasitriangular Hopf algebras is not known
yet. However, the problem was solved for triangular Hopf algebras in the
semisimple case [8], in the minimal triangular pointed case [11], and more
generally for triangular Hopf algebras with the Chevalley property [9].

A family of finite dimensional pointed Hopf algebras, called finite
dimensional pointed Hopf algebras of rank one, has been studied by many
authors. The classification of this family of Hopf algebras over an
algebraically closed field k of characteristic O is described by means of a
group datum [17], see also [3]. Indeed, a quadruple D = (G, y, g, 1) is
called a group datum, if G is a finite group, y is a k-linear character of G, g
is a central element of G, and p e k satisfying some conditions (see
Definition 2.1 below). Given a group datum D, there is a finite dimensional
pointed Hopf algebra of rank one, denoted Hp, associated to D. Conversely,
every finite dimensional pointed Hopf algebra of rank one has the form Hp.
The representations of Hp have been carried out in [3, 17, 20]. The Hopf
algebra Hp is a Nakayama algebra of finite representation type. It is neither
unimodular nor symmetric, and it has the Chevalley property if the group
datum D is of nilpotent type (see [20] for details).

In this paper, we focus on quasitriangular structures on Hp. As we shall
see the quasitriangular structures on Hp, are determined largely by the order
of x(g). If the order of x(g) is equal to 1, then Hp is nothing but a group
algebra kG. If the order of y(g) is greater than 2, then there is no
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quasitriangular structures on Hp. If the order of x(g) is equal to 2, then a
sufficient and necessary condition for Hp to be quasitriangular is given. In

the case where the group G in the group datum D is cyclic, we completely
determine the quasitriangular structures on Hp. Especially, we recover all

quasitriangular structures on Sweedler’s four dimensional Hopf algebra.
2. Preliminaries

In this section, we first recall the construction and classification of any
finite dimensional pointed Hopf algebra of rank one in terms of group datum.
We then give basic definitions and results about quasitriangular Hopf
algebras used in this paper.

A Hopf algebra H is called pointed if all its simple left or right
comodules are one dimensional. This is equivalent to saying that the
coradical of H is a group algebra [14]. Let Hy be the coradical of Hopf

algebra H. We define
Hi = AY(H ® H;_; + Hy ® H) for i > 1.

Then {H;|i > 0} is called the coradical filtration of Hopf algebra H. If H is

pointed, then its coradical filtration is a Hopf algebra filtration (cf. [14,
Lemma 5.2.8]). Coradical filtration is important in the classification of
pointed Hopf algebras, more details can be found in [1, 2], etc.

Let {H;|i > 0} be the coradical filtration of Hopf algebra H. We assume
that the coradical Hg is a Hopf subalgebra of H. Then each H; is a free
Hgy-module. Consider k as the trivial right Hg-module, if H is generated as

an algebra by Hj; and dimy (k ®,, Hy) =n+1 then H is called a Hopf
algebra of rank n [17].

Krop and Radford defined the notion rank so as to give a measure of
complexity for Hopf algebras. One family of pointed Hopf algebras
mentioned here is so-called finite dimensional pointed Hopf algebra of rank
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one. The (generalized) Taft algebras, the Radford Hopf algebras and the half
guantum group [12] are typical examples of such Hopf algebras. Every finite
dimensional pointed Hopf algebra of rank one can be obtained via a group
datum stated as follows (cf. [3, 17]):

Definition 2.1. A quadruple D = (G, ¥, g, ) is called a group datum if
G is a finite group, y is a k-linear character of G, g is an element in the

center of G, and p € k subject to " =1 or p(g" —1) = 0, where n is the
order of y(g). If u(g" —1) = 0, then the group datum D is said to be of
nilpotent type. If u(g" —1) = 0, and %" =1, then it is of non-nilpotent type.
For any group datum D = (G, %, g, n), denote by Hp the associative
algebra generated by y and all h in G such that kG is a subalgebra of Hp

and
y" =n(g" -1, yh=y(hhy (2.1)

for any h € G. In addition, Hp is endowed with a Hopf algebra structure,
where the comultiplication A, the counit ¢ and the antipode S are given,
respectively, by

Ay)=y®g+1®y, &y)=0, S(y)=-yg™,
A(h)=h®h, gh)=1 S(h)=ht
forall h € G.

The Hopf algebra Hp is finite dimensional with a canonical k -basis

{y'h|h e G,0<i<n-1. Thus, dimHp = n|G |, where |G| is the order
of G. It is easy to see that G is the group of group-like elements of Hp and

Hp is a finite dimensional pointed Hopf algebra of rank one.

Remark 2.2. Note that if the order of y(g) is n =1, then Hp is nothing
but the group algebra kG. To avoid this, we always assume that n > 2
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throughout this paper. In this situation x(g) = 1, this implies that g = 1 and
X # €.

Example 2.3. Let G be a cyclic group of order m with a generator g,
o € k a primitive mth root of unity and y a k-linear character of G given
by %(9) = o

(1) The group datum D = (G, ¥, g, u) is of nilpotent type and the Hopf
algebra Hp associated to D is nothing but a Taft algebra [4].

(2) Suppose d >1 and is a divisor of m. Then the group datum D =
(G, 7, gd, ) is of nilpotent type and the Hopf algebra Hp associated to
D is a generalized Taft algebra [13].

(3) Suppose d >1 and is a divisor of m. Then the group datum D =
(G, Xd, g, 1) (u = 0) is of non-nilpotent type and the Hopf algebra Hp
associated to D is exactly a Radford Hopf algebra [15].

The k-linear character y induces an automorphism o of kG as follows:

o(a) = Xx(a)ap (2.2)
for any a € kG with the comultiplication A(a) = Zal ® ay. In view of this,
we have

yja = csj(a)yj forany j > 0. (2.3

The family of finite dimensional pointed Hopf algebras of rank one coincides
with the family of non-semisimple monomial Hopf algebras discussed in [3].
The classification of such Hopf algebras over an algebraically closed field k
of characteristic 0 has been given, respectively, in [3, 17]. We follow the
work of Krop and Radford in [17, Theorem 1] and present the classification
results of such Hopf algebras as follows:

Proposition 2.4. We have the following classification result:

(1) For any group datum D, the Hopf algebra Hp, associated to D is a
finite dimensional pointed Hopf algebra of rank one.
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(2) Every finite dimensional pointed Hopf algebra of rank one over an
algebraically closed field k of characteristic 0 is isomorphic to Hp for

some group datum D.

(3) Let D=(G, %, g, u) and D' =(G', ¥/, ¢, u') be two group data.
Then Hp and Hpy are isomorphic as Hopf algebras if and only if there is a
group isomorphism f :G — G’ such that f(g)=g9g', x=yof and
B (g™ —1) = u(g™ —1) for some non-zero B € k, where n is the order of
1(9).

In the case when the characteristic of k is p > 0, the classification of

finite dimensional pointed Hopf algebras of rank one was given by
Scherotzke in [16]. The classification of infinite or finite dimensional pointed
Hopf algebras of rank one over an arbitrary field k was obtained in [21].

In the following, we recall the definition and basic results of a
quasitriangular Hopf algebra.

Definition 2.5. Let H be a finite dimensional Hopf algebra over the field
k and R = Zi aj ® by be an invertible element of H ® H. If H satisfies
A°P(a) = RA(a)R™* forany a e H, (2.4)

where AP =T oA and T is the flip map, then H is called a quasi-
cocommutative Hopf algebra.

If H is a cocommutative Hopf algebra, then H is quasi-cocommutative
with the trivial R =1® 1.

Definition 2.6. The pair (H, R) is said to be a quasitriangular Hopf
algebra if H is quasi-cocommutative and satisfies the following conditions:

(A®id)(R) = Ri3Rp3, (2.5)
(id ® A)(R) = RigRp2, (2.6)

where Rj3 = > .a; ®1®b;, Ryg=>.1®4a; ®b; and Ry = .a; ®b; ®1.
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The element R above is called a universal R-matrix of H. A
quasitriangular Hopf algebra (H, R) is said to be triangular if R1 = Ro1,
where Ry = )" by ® aj. Let u = .S(b)a;. Then u is called a Drinfeld

element of (H, R). It is known that u is invertible and S?(a) = uau™ for
any a € H, see, e.g., [6]. Moreover, (H, R) is triangular if and only if u is a
group-like element of H.

If (H, R) is quasitriangular, then R{5R13R23 = Ry3Ri3R2, known as
the guantum Yang-Baxter equation in statistical mechanics. The invertible
element R has the additional properties (S ®id)(R) = (id ® S*)(R) = R4,
(S®S)(R)=R and (¢®id)(R) = (id ® ¢)(R) =1. The Radford’s $*
formula has a special form: for any a € H, S4(a) = hah™, where h =

u(S(u))_1 is a group-like element of H (cf. [6]).
3. Quasitriangular Structures

In this section, we work over an algebraically closed field k of
characteristic 0. We investigate the quasitriangular structures on Hopf
algebra Hp associated to the group datum D = (G, y, g, u). It turns out

that if the order of x(g) is n >3, then the Hopf algebra Hp has no
quasitriangular structures. If the order of x(g) is n =2, then a sufficient
and necessary condition for Hp to be quasitriangular is given. As an
application, we determine all quasitriangular structures on Hp such that the
group G in the group datum D is cyclic.

Proposition 3.1. Let (kG, R) be a quasitriangular Hopf algebra with the

universal R-matrix R. Then Hp is quasitriangular with the same universal
R-matrix R of kG if and only if ( ® id)(R) = g and (id ® x)(R) = g%,

Proof. Note that Hp is generated as an algebra by h € G and vy, then

Hp is quasitriangular with the same R-matrix of kG if and only if the
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equality
AP(y)R = RA(y)
holds since the other equalities are automatically satisfied with the
assumption that (kG, R) is quasitriangular. Suppose R :Zi a; ®bj e

kG ® kG. Then the equalities (2.5) and (2.6) can be written explicitly as
follows:

Z(ai)l@)(ai)z ®bi = Zai ®aj ®bibj! (31)
i i,j
Zai®(bi)l®(bi)2=2aiaj®bj®bi. (32)
i i, j

Note that AP (y)R = (g ® y)R+ (y ® 1)R and RA(y) = R(y ® g) +
R(1® y). Then A°P(y)R = RA(y) ifand only if (g ® y)R = R(1® y) and
(y ®1)R = R(y ® g). By the observation of equality (3.2), we have that

(9®y)R=(g® y)(zai ®biJ =D 03 ® yb

- Z ga; ®o(by)y = Z ga; ® x((b)y) (0y),y

= Zgaiaj ® x(bj)by = R(gzan(bj)(@lJ(l@ y)-
i ] j

Thus, (g ® y)R = RA® y) if and only if (id ® x)(R) = g~L. The same
argument as above shows that (y®1)R =R(y® g) if and only if
(x ®id)(R) = g, as desired. O

Remark 3.2. The equality (y ®id)(R)=g is not equivalent to
(id ®x)(R) = 97! in general, see the equalities (3.3) and (3.4) below.
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However, if (kG, R) is triangular, then it is easy to verify that (x ® id)(R)
= g ifand only if (id ® x)(R) = g~ using the equality R = Ro1.

Example 3.3. Let G be a cyclic group of order m generated by the
element g. Then all the universal R-matrices of kG are given by
1 m-1 L .
Ry =— Z o gl @ gl
i, j=0

where ® € k is a primitive mth root of unity and 0 <d <m -1, see [19,
Lemma 2.3]. Let x be a k-linear character of G determined by y%(g) = o.
Suppose the Hopf algebra Hp associated to the group datum D =

(G, xk, h, n) is quasitriangular with the universal R-matrix Ry for some
0<k <m-1and h e G. Note that

m_l . . .
(K @id)(Ra) == > ok Digh = g%, 33)
i,]=0
1 m-1 L
(id ® 1) (Rg) = > o Vigl =g, (3.4)
i,]=0

where 0 <r <m -1 satisfies that m|dk —r. Then h = gdk =g~ ". This
implies that m|dk + r. Together with m|dk — r, we obtain that m|2r. If m

is odd, then r =0 and hence h =1, which is contradiction to the fact that

m
h = 1 (see Remark 2.2). If m is even, then r = % In this case, h = g2 and
dk = % We conclude that the Hopf algebra Hp associated to the group

datum D = (G, xk, h, n) is quasitriangular with the universal R-matrix Ry

m

if and only if mis even, h = 97 and dk = %

Lemma 3.4. Let Hp be the Hopf algebra associated to the group datum
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D =(G, y, h, n) and n be the order of y(g). If Hp is quasi-cocommutative
with an invertible element R € Hp ® Hp, then R has the form R = R©)
+ Z.”;f ROyl ® y" 1), where RV ¢ kG ® kG for 0<i <n-1.

Proof. Let R be an invertible element of Hp ® Hp. Then R can be

written as the following form:

[y

n_ -
R = hy' @ vV,
i=0 heG

where for each h and i, Yhi) € Hp. Observe that A°P(g)R = RA(g). It

follows that
n_l - - n_l - - .
SN gyt el =3 gy @q'yg.
i=0 heG i=0 heG

Hence, ngfi) = qurSi)g forany 0 <i<n-1and h eG. We assume that
Yh(i) :erj)zteeuj,ttyj- It follows from gYh(i) = quh(i)g that pjytgtyj =
uj|tqi+jgtyj. Thus, pj ¢ = uj|tqi+j foranyte G and 0< j<n-1. We
conclude that wj ¢ =0 if i+ j is not divisible by n. This argument shows
that ero) =D 4ot and Yh(i) :(ZIEG Mn—i,tt) y"™". Thus, the element

R can be simplified as follows:
n-1 _
R=RO+3 ROy @y,
i=1

where R(i) e kG ®KkG for 0 <i<n-1, asdesired. O

Proposition 3.5. Let Hp be the Hopf algebra associated to the group
datum D = (G, y, 9, u). If (Hp, R) is quasitriangular and the order of x(g)

is n > 3, then the universal R-matrix R of Hp is contained in kG ® kG.
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Proof. By Lemma 3.4, the universal R-matrix of Hp has the form
n-1 _
R=RO+3 ROy @y,
i=1

where RY ¢ kG ® kG for 0 <i < n —1. This enables me to compute the
terms of both sides of equation (2.5). On the one hand, observe from [17,
equation (1)] that
. L .
A(V1) = i—k ® i—k k.
(v kzg(kj y " ®g' ™y
= q

Then

n_l - - -

(A®id)(R) = (a®@id)(R®)+ Y (A ®id)(RY)(a(y) @ y")
i=1
n-1

= (2 ®id)(RO)+ > (A ®id)(RD)

i=2
L i ik o oK K o i
XZ@ (Y eg ™y @y"
k=0 q
+(Aid)RM(yegeoy"t+ioyey™™l

= (A®id)(R©) + ni(A ®id)(R1)
i=2

i-1,:
| P P i
% (j(ylk@)gl kyk®yn|)
q

n-1 . . i . . .
> (a® i) RN (Y @ g @ y" T +1@ y' ® y" ).
i=1

On the other hand, we have that yja = csj(a)yj for any a € kG (see (2.3)).
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It follows that

n-1 ) .
Ri3Rp3 = LR{Q) +Y REGY @10 y”")J
i=1

n-1 . )
x [ng +Y RYA®Y ® y”")}

i=1

n-1 . ) .
= RIPRY + > RORP® y © y")
i=1

+ Rl(i3)(yi ®1® y”_i)Rgg)

1
i1
n-1 . _ _
+ Z Rl('3)(y' ®1® y”")z Rgé)(l(@ yl @ y" )

i-1 j=1

n-1 . . )
= RIPRY + > RORB® y © y")
i=1

+Y R ®id @ ") (RY) (Y @10 y")
i=1

+ Y R ®@id®c" )R (Y @yl @y ),
i, j=1

>

By comparing the elements of the forms kG ® kG ® kG, kG ® ]kGyi
®kGy"™ and kGy' ® kG ® kGy"', respectively, in both sides of the
equality (2.5), we obtain that

. 0 0)p(0
(A®id)(R®) = RORD,
n-1

. . . n_l . . .
Y aeidrRMeey ey )= rIrfee yi oy,
i=1 i=1
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n-1 o _ )
> (aeid)RY)(y ©g¢ ©y")
i=1

-1
Rl(')(c ®id ® s" (R (y @10 y" ).

:S

N
N

Omitting the above equations from the equality (2.5), we obtain that
n-1 . i—1 | . . X
>ee®)Y (] o ed ey e
i=2 k=1""d

n-1

= Z R1(i3)(5i ®id ®Gn—i)(R(J))(y ® yJ ® y2n- i j) (3.6)
i j=1

Note that the expression (3.5) has no terms of the form kGyi ®]1<sGyj
® Hp such that i+ j>n. It follows that such forms in (3.6) are zero,
namely,

3 RYG ®id @ " HRY)( © yI © y" i)~

i+j>n
In view of this, the expression (3.6) now can be reduced to be

> R @ides")RY)(Y @yl @y

2<i+j<n-1

= Z R]g))(cl ®id ®Gn_i)(R(J))(y ® yJ ®“(g 1)yn—i—j)

2<i+j<n-1

I MD

SZ Rl(g_j)((ss_j ®id ® Gn—s+j)

xRy T @yl @pug"-1)y"®)
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-li-1
REM( ™ ®@id ® o" 1K)
k=1

3

i
N

I
x (RN (Y ® v ® u(g" —1)y" ).

As a consequence, the equality (3.5) = (3.6) becomes

Z(A ® nd)(R('))Z[ ] (Y reg ™y ey
q

i=2

-1i-1 i
REMG ™ ®id ® ") RE) (Y @ yK @ u(g" - 1)y ).
k=1

:S

i
N

Comparing each terms of this equality, we have that

(A® id)(R(‘))@ 1®g o1 (3.7)
q

-RIMG* @id @ ") RE)A@1®U(G" 1)  (3.8)

for2<i<n-land 1<k <i-1. Applying e ®id ® ¢ to both (3.7) and
(3.8), we obtain that (¢ ® id ® £)(A ® id)(RW)) = 0 since &(g" —1) = 0.
Note that (£ ® id ® £) (A ® id)(RW) = (id ® &) (RD). It deduces that

(id®e)(RV)y=0for2<i<n-1. (3.9)

Similarly, by comparing the terms of the form kGyi ® kG ® kGyn_i in the
equality (id ® A)(R) = Ri3R;,, we obtain the following equation:

(id ® A)(RD) = RD(6' ®id ® ") (RY), (3.10)

Applying id ® id ® ¢ to both sides of (3.10), we obtain that R0 =
(id ®s)(R(i))(csi ® id)(R(O)). The observation of (3.9) shows that R =0
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for 2 <i < n-1. Thus, the universal R-matrix of Hp is reduced to be

R=R%+RO(y®y" 1)

Note that n > 3. It is straightforward to verify that the following expressions
: @y(N-1 n-1-k o .n-1-k k
(d®A)RT) | yoy ®gy)

q

for 1<k <n-2 are summands of (id ® A)(R), while they are not appeared

in Ry3Ry». Hence, (id ® A)(R(l)) =0 and thus (R(l)) =0 since the map
id ® A is injective. We complete the proof. O

As an immediate consequence of Proposition 3.1 and Proposition 3.5, we
have the following result:

Theorem 3.6. If the order of y(g) is n > 3, then the Hopf algebra Hp
associated to the group datum D = (G, y, g, u) admits no quasitriangular
structures.

Proof. If (Hp, R) is quasitriangular and the order of x(g) is n > 3, by
Proposition 3.5, the universal R-matrix R of Hp is contained in kG ® kG,

and therefore (kG, R) is quasitriangular. Let R = Zi 3; ® b € kG ® kG.
It follows from Proposition 3.1 that . 7(aj)bj = g and > ajx(b;) = gt
Note that the Drinfeld element of (kG, R) is u = » . S(bj)a;. We obtain
that

x(u) = X[Z S(bi)aiJ = X(S(ZX(ai)biD =x(g™H. (311

Similarly, it follows from Zi ajx(b) =gt and S?|,g =id that

%(S(u)) = %(9). 3.12)
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Note that kG is semisimple and cosemisimple over k. Then u = S(u) [10,
Lemma 2.1.1]. It follows from (3.11) and (3.12) that x(g) = x_l(g). Thus,

the order of y(g) is n = 2, a contradiction. O

There exists a group datum D = (G, %, g, u) with the order of %(g)
being n =2 such that the Hopf algebra Hp is quasitriangular. Sweedler’s

four dimensional Hopf algebra gives such an example [18, p. 174]. In the
following, we shall describe the quasitriangular structures on Hp such that

the order of x(g) is n = 2. By Lemma 3.4, the universal R-matrix R of Hp
has the following form

R=RO+RU(y®Yy)
for R® and RY in kG ® kG. 1f RY = 0, by the same argument as the

proof of Proposition 3.1, we can see that (Hp, R) is quasitriangular if and
only if (kG, R) is quasitriangular, (x ®id)(R)=g and (id ® x)(R) =g
In the following, we only need to determine the universal R-matrix of Hp

such that R(l) in R is not 0.

Theorem 3.7. Let Hp be the Hopf algebra associated to the group
datum D = (G, y, g, n) with the order of y(g) being n = 2. Then (Hp, R)

is quasitriangular with the universal R-matrix R = RO 4 R(l)(y ®y) and

R - 0 if and only if the following hold:
@) RY = 2RO ® g1), where & = (£ ® £)(RY) = 0.
(2) The group datum D = (G, y, g, ) is of nilpotent type.

3 R is a universal R-matrix of kG.

(4) The order of y and the order of g are both equal to 2.

©) (x®id)(R®) = (id ® 1) (R?) = g.
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Proof. It is direct to verify that (A ® id)(R) = Ry3Ro3 if and only if the
following four equalities hold:

(a®id)(R) = RFRY, (3.13)
A®id)RY)1®g®1) =RY(c®id ® 6)(RY), (3.14)
(A ®id)(RY) = RORSY, (3.15)
RE(c®id ® 0)(RE) (1®1® p(g? - 1)) = 0. (3.16)

Similarly, (id ® A)(R) = Ry3Ry, holds if and only if the following hold:

(id ® A)(R®) = RIYRY), (3.17)
(id ® A)RWY1®1® g) = RIYRD, (3.18)
(id ® A)(RY) = RY(c ® id ® 5)(RY), (3.19)
RY(c®id ® o) (RY) (w(g? -)®1®1) = 0. (3.20)

Note that

e®id)(RO) = (¢ ®id)(R-RV(y®@ y) = (¢ ®id)(R) = 1. (3.21)
Then (3.13) and (3.21) show that RO s invertible, see [19, Lemma 2.2].
Denote by A = (¢ ® s)(R(l)). Applying id ® e® ¢ and e ® e ®id to the
equalities (3.15) and (3.18), respectively, we obtain that (id ® s)(R(l)) =2
and (¢ ®id)(RW) = 41 ® g1). Applying id ® ¢ ®id to (3.15), we obtain
that R%Y = RO ® (e ®id)(RY)) = RO ® 1 ® g™). It follows that

RW = 3RO g™ (3.22)

This is exactly the condition (1). The equality (3.22) means that RW js
invertible since it is not zero by assumption. Accordingly, the equality (3.16)
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implies that u(g2 —1) =0, and therefore the group datum D is of nilpotent

type (ie, y2 = 0), so we obtain the condition (2). Now the universal

R-matrix of Hp can be written as
R=RO +rRO(y®y)=ROQ®1+1y ®gly).

Note that A°°P(h)R = RA(h) if and only if A°P(h)R(® = R A (h)
and A°P(M)RO(y ® g7ly) = ROy ® g~ty)A(h) for any h e G. This
is equivalent to saying that

A (n)RO) = RO)A (h) and (3.23)

v2(h) =1 (3.24)

for any h € G. It follows from (3.13), (3.17) and (3.23) that (kG, R) is
quasitriangular. This is exactly the condition (3). Finally, note that
AP (y)R = RA(y) if and only if A%P(y)R(® =R A(y)since y? = 0. By
Proposition 3.1, this is equivalent to (y ® id)(R(O)) =g and (id ®x)(R(0))
= g1, However, it is straightforward to check that (id ® c)(R(O)) = RO
-(id ®X)(R(0)) and (G®id)(R(O))=(x®id)(R(0))R(0). By the observation
of (3.14) and (3.19), we obtain that (id ® x)(R©®) = g and (y ®id)(R®)

= g% It follows that
g2 =1 and (3.25)

(x ®id)(R©) = (id ® y)(R®) = g. (3.26)

Then the equalities (3.24) and (3.25) give the condition (4) and the equality
(3.26) gives the condition (5).

Conversely, if R = RO 4 R(l)(y ® y) satisfies the conditions (1)-(5), it

is straightforward to verify that R is the universal R-matrix of Hp. O
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As an example, we use Theorem 3.7 to determine all quasitriangular
structures on a finite dimensional pointed Hopf algebra of rank one such that
the group of group-like elements is a cyclic group.

Example 3.8. Let G be a cyclic group of order m generated by the
element g. If m is odd, then the condition (4) in Theorem 3.7 does not hold
since there is no non-trivial element of G of order 2. In the following, we
assume that m is even. The universal R-matrices of kG are described as
follows:

= o i
_ 4 —ij ] i
i, j=0
where o € k is a primitive mth root of unity and 0 <d <m -1, see
Example 3.3. Let y be a k-linear character of G defined by %(g) = . Then

m m
g 2 is the unique non-trivial element of G of order 2 and 2 is the unique

m m
non-trivial character of G of order 2. Let D = (G, 2, g2, 0). Then D isa

group datum of nilpotent type. Note that

i LS 2 S
(2 ®id)Ry)=— D o TgY=g2, (327)
i, j=0
m m-1 d_m_j)i (L 2|d,
(id © 7 2)(Ry) =+ w(z g‘={ m (3.28)
mi,go g2, 2td

By Theorem 3.7, the Hopf algebra Hp associated to D is quasitriangular
with the universal R-matrix

m
R, =R +AR(1®g2)(y®Yy),

where Ry = %Zr]io o gl ®¢' and A € k. Itis obvious that (Hp, R)
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is triangular if and only if A = 0. In particular, if m = 2, then we recover

the universal R-matrices of Sweedler’s four dimensional Hopf algebra [18,
Example 2, p. 174].

Remark 3.9. It follows from Proposition 3.1 and Theorem 3.7 that the
classification of triangular structures on (Hp, R) is reduced to the

classification of triangular semisimple Hopf algebras (kG, R) satisfying

some special conditions. The classification of triangular semisimple Hopf
algebras was solved in [7, 8]. However, the key result about such
classification is that every triangular semisimple Hopf algebra can be
obtained by twisting a group algebra of a finite group [7, Theorem 2.1]. From
this point of view, it seems not clear how to classify triangular structures on
(kG, R) (satisfying some special conditions).
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