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Abstract 

In this paper, we mainly use Nevanlinna theory of the value 
distribution of meromorphic functions or algebroid functions and the 

property ( )( ) ( )nn waw =−  of higher-order derivative of functions to 

investigate the problem of the value distribution of algebroid solutions 
of some algebraic differential equations. A result of the deficient 
values of a type of higher-order algebraic differential equations is 
obtained on the condition that the equations exist admissible algebroid 
solutions and meet some proper conditions, and the result of paper [3] 
is generalized. 
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1. Introduction 

We assume that the readers are familiar with the standard notions of the 
Nevanlinna theory of the value distribution of meromorphic functions, such 
as the characteristic function ( ),, frT  proximity function ( ),, frm  counting 

function ( ),, frN  the first and second main theorems (see, e.g., [1-3]). 

An analytic function ( )zw  with v branches is an algebroid function if the 

function ( )zw  satisfies an equation of the form 

( ) ( ) ( ) ( ) ,0, 0
1

1 =+++=ψ −
− zAwzAwzAwz v

v
v

v  

where ( )zAj ( )vj ...,,1,0=  are regular functions in z with no common 

zeros and ( ) .0≠zAv  Especially, when ,1=v  ( )zw  is a meromorphic 

function; when ( ) ( )vjzAj ...,,1,0=  are polynomials, ( )zw  is an algebraic 

function. In general, we consider the case that at least one of ( )zAj  is 

transcendental function. 

Recently, many authors studied a large number of algebraic differential 
equations, and they have obtained some good results (see, e.g., [3-10]). In 
paper [3], He and Xiao investigated the value distribution of admissible 
algebroid solutions of a type of higher-order algebraic differential equation 
of the form 

( ) ( ),,, wzRwz =Ω  (1) 

where ( ) ( ) ( ) ( ( ) )
( )
∑ ′=Ω
i

inii
i nwwwawz 10,  is a differential polynomial 

with meromorphic coefficients. (i) is a finite set of multi-indices, =i  

( )....,,, 10 niii  ( )
( )

( )∑
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=
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0,  is an irreducible rational function in 

( )zw  with the meromorphic coefficients ( )zai  and ( ).zb j  
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Also, they obtained the following result: 

Theorem A [3]. Let ( )zw  be an admissible algebroid solution of (1) 

with v branches and .λ+> qp  Then ( ) 0, =∞δ w  and ( ) −≤∞Θ 1,w  

( ) .
µν

λ+− qp  

For any ,C∈α  there exists an α satisfying ( ) ,0, ≠αzP  

if ,0≠α  then we have ( ) 0, =αδ w  and 

( ) { } ;min1, 21
µν

+++
−≤αΘ niiiw  

if ,0=α  then we have ( ) { } .min10, 10
µν

+++
−≤Θ niiiw  

For differential polynomial ( ) ( ) ( ) ( ( ) )
( )
∑ ′=Ω
i

inii
i nwwwawz ,, 10  we 

denote 

( ) .1max,max,max
000 
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In addition, we have 

( ) ( ) ( ) ( )
( ) ,,

,lim1,,,

1,
lim, wrT

arNawwrT
awrm

aw
rr ∞→∞→

−=Θ







−=δ  

( ) ( ( ) ) ( ) ( )
( )
∑ ∑ ∑

= =

++=
i

p

k

q

j
jki brTarTarTrS

0 0
.,,,  

Definition. Let ( )zw  be an algebroid solution of differential equation (1) 

with v branches. If ( )zw  satisfies the following condition: ( ) ( ){ },, wrTorS =  

outside a possible exception set E with a finite linear measure, we say that 
( )zw  is an admissible algebroid solution of (1). 
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In this paper, with the aid of ( )( ) ( ),nn waw =−  we will mainly 

investigate the problem of the value distribution of algebroid solution on 
higher-order nonlinear differential equation of the following form: 

( )
( )

( ),,, wzR
aw
wz

s =
−

Ω  (2) 

where ( ) ( )wzRwz ,,,Ω  are same as what we have denoted in (1). 

We obtain the following result: 

Theorem 1. Let ( )zw  be an admissible algebroid solution of (2) with v 

branches, λ+>+ qsp  and { }.min 21 niiis +++<  Then 

(a) ( ) 0, =∞δ w  and ( ) ( ) .1,
µν

λ+−+−≤∞Θ qspw  

(b) For any ,C∈α  there exists an α satisfying ( ) .0, ≠αzP  Then 

( ) ,0, =αδ w  

if ,0, ≠α=α a  then we have ( ) { } ;min1, 21
µν

−+++
−≤αΘ

siiiw n  

if ,0, =α=α a  then we have ( ) { } ;min10, 10
µν

−+++
−≤Θ

siiiw n  

if ,0, ≠α≠α a  then we have ( ) { }
;

2min
1, 21

µν
−+++

−≤αΘ
siii

w n  

if ,0, =α≠α a  then we have ( ) { } .2min10, 10
µν

−+++
−≤Θ

siiiw n  

Note. (1) Compared with Theorem A, equation (2) we investigate is 
more general. 

(2) As ,0=s  we can find Theorem A is a special case of Theorem 1. 



The Value Distribution of Algebroid Solution … 277 

2. Several Lemmas 

In order to prove our result, we need the following lemmas. 

Lemma 1 [4]. Let ( )zw  be an admissible algebroid solution and ( )wzP ,  

( ) ( ) ( )∑∑
==

==
q

j

j
j

p

i

i
i wzbwzQwza

00
.,,  Then 

( )( ) ( ) ( ),,,,, wrSwrpmwzPrm −≥  

( )( ) ( ) ( ).,,,, wrSwrqmwzQrm +≤  

Lemma 2 [3]. Suppose that ( ) ( ) ( )∑
=

=
p

i

i
i zwwzawzP

0
,,  is an algebroid 

function solution. Then 

( )( ) ( ) ( ) .,,,,
0 











+= ∑
=

p

i
karTOwrpTwzPrT  

Lemma 3. Suppose that ( )zw  is an algebroid function with v branches. 

Then 
( )

( ).,, wrSaw
wrm =








−

α
 

Proof. The procedure is similar to the proof of 
( )

( )wrSw
wrm ,, =







 α
 in 

paper [3]. 

3. The Proof of Theorem 1 

Proof. We first prove (a). Let ( )zw  be an admissible algebroid solution 

of (2) with v branches. We rewrite equation (2) as follows: 

( )
( )

( ) ( ).,,, wzPwzQ
aw
wz

s =
−

Ω  (3) 
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By Lemma 1, we get 

( )( ) ( ) ( ),,,,, wrswrpmwzPrm −≥  (4) 

( )( ) ( ) ( ).,,,, wrswrqmwzQrm +≤  (5) 

By applying the property of the positive logarithm to ( ),aw −  we have 

.2loglogloglog ++≤− +++ awaw  

Hence, 

( ) ( ) ( ).1,, Owrmawrm +≤−  (6) 

Using the fact that 
( ) ( )( )

,aw
aw

aw
w nn

−
−=

−
 we have 

( )
( )

( ) ( ) ( ( ) )
( )

( )s
i

inii
i

s aw

wwwa

aw
wz

n

−

′

=
−

Ω
∑ 10

,  

( )
( ) ( )( )

( )( )

( )
∑ −+++−








−

−










−

′−=
i

siii
ini

i
i n

n
awaw

aw
aw
awwa .21

1
0  

 (7) 

Combining (7) with Lemma 3 and (6), we get 

( )
( )

( ) ( ) ( ),,,,, wrSwrms
aw
wzrm s +−λ≤









−

Ω  (8) 

it follows from (3), (4), (5) and (8) that 

( ) ( ) ( ).,, wrSwrmqsp ≤−λ−+  (9) 

Then, according to the definition of admissible solutions, both sides of (9) 
are divided by ( )wrT ,  and take the lower limit, this yields 

( ) ( ) .0, =∞δ−λ−+ wqsp  
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Noting that ,0>−λ−+ qsp  we have 

( ) .0, =∞δ w  

We proceed to rewrite equation (2) as follows: 

( ) ( ) ( ) ( ) ( ),,,, 1 zPwzPawwzQwz s =−=Ω  where ( ) .deg 1 spzPw +=  

Thus, we have 

( ) ( )
( ) 









−
− s

s

aw
awwzPrT 1,,  

( ( ) ( ) )
( ) 









−
+−≤ s

s

aw
rTawwzPrT 1,,,  

( ( ) ( ) ) ( ( ) ) ( ),1,,, OawrTawwzPrT ss +−+−≤  

i.e., 

( ( ) ( ) ) ( )( ) ( ) ( ).1,,,,, OwrsTwzPrTawwzPrT s +−≥−  (10) 

Since 

( ) ( )( ) ( ) ( ) ( ) ( ),,,,,,, wrSwrNwrTqwzQwzrT +µν++λ≤Ω  (11) 

it follows from (10) and (11) that 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ).,,,1,,, wrSwrNwrTqOwrsTwzPrT +µν++λ≤+−  

By Lemma 2, we get 

( )[ ] ( ) ( ) ( ).,,, wrSwrNwrTsqp +µν≤+λ+−  (12) 

According to the definition of admissible solutions, both sides of (12) are 
divided by ( )wrT ,  and take the upper limit, we obtain 

( ) ( ) .1,
µν

+λ+−−≤∞Θ sqpw  
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To prove (b) in Theorem 1, set 

.1 α+= uw  

Then 

( ) .11
u

uaauaw −α+=−α+=−  (13) 

Substituting (13) into the right hand side of equation (2), we have 

( ) ( ) ( )
( ) ( )

( )
( ) .,

,
,

,
wzQ
wzP

zBuzQ

zAuzP
u

q
q

p
p

pq =
++α

++α−  

Since ( ) ( ( ) )
1

...,,,
+

′
= j

j
jj

u

uuuP
w  ( ),...,,2,1 nj =  where ( ( ) )j

j uuuP ...,,, ′  

is a homogeneous in u of degree j, we obtain the general term of ( )
( )saw

wz
−

Ω ,  as 

follows: 

( )( ) ( ) ( ( ) )
( )

( )( ) ( ( ) )

( )
.

1

...,,,1
1
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10
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uuuP

u
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wwwza
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 +−α
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 +α

=
−

′ +
 

 (14) 

Next, we discuss (14) with the following cases: 

Case (1) Suppose first that .a=α  

If ,0≠α  then we have 

( )( ) ( ) ( ( ) )

( )s

inii
i

aw

wwwza n

−

′ 10
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( )(
( ) ) ( )( ) ,...,,,; 12 10 siniin

j nuuuuzP +++++−′=  

it shows at once that the left hand side of equation (2) becomes 

( ( ) ) ....,,,;1
sn uuuuz +∆−′Ω  

Again, for differential polynomial ( ),, wzΩ  we have 

( ) ,max,1max
00 











=λ












+α=∆ ∑∑
=α

α
=α

α

nn
ii  

then 

( ) .min0 λ−δ≤λ−δ≤ ii  

Since ,2 2121 nnii iiiniii +++≥+++=λ−δ  

{ },min 21 niiil +++≥=λ−δ  when .0≠α  

If ,0=α  then we have 

( )( ) ( ) ( ( ) )
( )

( )( ) ( ( ) ) s
i

n

n
n

i
is

inii
i u

u
uuuP

uza
aw

wwwza nn










 ′





=

−

′
+1
...,,,1 010

 

( )(
( ) ) ( )( ) ....,,,; 12 10 siniin

i nuuuuzH +++++−′=  

Then we get the left hand side of equation (2) as following form: 

( ( ) ) ....,,,; 02
sin uuuuz +−∆−′Ω  

By a similar deduction, when ,0=α  we get 

{ }.min 10 niiil +++≥=λ−δ  

Combining with the argument above, we find that equation (2) becomes 

( )( ) ( ) ( ( ) ) ( ) ( )
( )
∑ ∑∑

=

−λ++

=

=′
i

q

j

j
j

slq

k

k
k

inii
i uzbuzauuuzb n

00
,ˆˆ10  (15) 
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where ( ) ( ) { },min,0,ˆ 21 nslq iiilzPza +++≥≠α=−+λ+  as 0≠α  and 

{ },min 10 niiil +++≥  as .0=α  

Now, we note equation (15) as ( ( ) ) ( )
( ) .,

,...,,,;ˆ 1
uzQ
uzPuuuz n =′Ω  

Then we have 

( )( ) ( )( ) ( ) ( )( ) ( ( )).,ˆ,,,,ˆ,,,, 1 uzrmuzQrmuzuzQrmuzPrm Ω+≤Ω=  

Using Lemma 1, we deduce that ( ) ( ) ( ) ( ).,,,1 urSurmqurmp +λ+≤  

Since ,sl >  we use again the definition of admissible solution, both 
sides of the equation are divided by ( )urT ,  and take the lower limit, this 
gives 

( ) .0, =∞δ u  

Furthermore, we have 

( )( ) ( ( ) ( )) ( )( ) ( ( )).,ˆ,,,,ˆ,,,, 1 uzrTuzQrTuzuzQrTwzPrT Ω+≤Ω=  

By Lemma 2, we get 

( ) ( ) ( ) ( ) ( ).,,,,1 uzSuzNurTpurTp +µν+λ+≤  

Similarly, both sides of the equation are divided by ( )urT ,  and take the 
upper limit, we obtain 

( ) ( ) { } ,min1,, 21
µν

+++
−≤∞Θ=αΘ niiiuw  when ,0≠=α a  

( ) ( ) { } ,min1,0, 10
µν

+++
−≤∞Θ=Θ niiiuw  when .0==α a  

Case (2) Suppose ,a≠α  we have 

( )( ) ( ) ( ( ) )
( )

( )(
( ) ) ( )( )

( ( ) )
.

...,,,;
1

1010

s

sinin
i

s

inii
i

au

uuuuzP
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wwwza nn

−

++++−

−α+

′
=

−

′
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So the left hand side of equation (2) becomes 

( ( ) )
( ( ) )

....,,,;~

1
s

s

n
u

au
uuuz +∆−
−−α+

′Ω  

Hence, we make a transformation of equation (2) as follows: 

( )( ) ( ) ( ( ) )
( ( ) )

( )

( )( )
,

0

0
1

10

∑
∑

∑

=

−+λ+

=
− =

−α+

′

i
q

j

j
j

slq

k

k
k

s

inii
i

uzd

uzc

au

uuuzc n
 (16) 

where ( ) ( ) { },min,0, 21 nslq iiilzPzc +++≥≠α=−+λ+  as 0≠α  and 

{ },min 10 niiil +++≥  as .0=α  

Applying (a) in Theorem 1 to (16), we get ( ) ( ) ,0,, =∞δ=αδ uw  

( ) ( ) { } ,2min1,, 21
µν

−+++
−≤∞Θ=αΘ

siiiuw n  when ,0≠α  

( ) ( ) { } ,2min1,0, 10
µν

−+++
−≤∞Θ=Θ

siiiuw n  when .0=α  

In summary, 

if ,0, ≠α=α a  then ( ) { } ;min1, 21
µν

−+++
−≤αΘ

siiiw n  

if ,0, =α=α a  then ( ) { } ;min10, 10
µν

−+++
−≤Θ

siiiw n  

if ,0, ≠α≠α a  then ( ) { } ;2min1, 21
µν

−+++
−≤αΘ

siiiw n  

if ,0, =α≠α a  then ( ) { } .2min10, 10
µν

−+++
−≤Θ

siiiw n  

This is the proof of Theorem 1. 
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