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Abstract

The second-order wave loads are computed for the diffraction of
monochromatic waves by a surface-piercing vertical cylinder in the finite
and infinite fluid depths. The Weber’s transform method which is
essentially a Hankel’s transform method with a more general kernel, is
applied to compute the second-order force due to the second-order
velocity potential. Suitable closed contours in the complex plane are used
to derive the analytical solution of the improper integrals involved in
this study. This makes the present solution distinct from the other
available solution of the second-order forces.

1. Introduction

The fluid viscosity and the irrotational flow are important in
determining the wave induced loads on offshore structures. The wave
loading estimations for small volume structures are based on the well-
known “Morison Equation” which involves both viscous drag and inertia
forces. If the characteristic dimension of the structure is comparable to
the wavelength, the diffraction theory should be applied to find the wave
induced loads upon the structure.



w
w

w
.p

ph
m

j.c
om

MATIUR RAHMAN and S. HOSSEIN MOUSAVIZADEGAN322

There are some fundamental second-order phenomena that cannot be

predicted in the linearized wave theory. The second-order phenomena in

monochromatic waves are the steady mean drift forces and the oscillating

forces with a frequency twice the first-order frequency. The force

oscillating with the difference of frequencies that cause slow-drift motion

of moored structures and the loads with sum frequencies that cause

springing on TLPs are the second-order phenomena in multi-chromatic

waves.

Hunt and Baddour [2] derived a second-order solution for the

diffraction of a nonlinear progressive wave in fluid of infinite depth,

incident on a vertical, surface-piercing, circular cylinder. They applied a

modified form of Weber’s integral theorem to obtain the second-order

diffracted velocity potential and the associated wave force. Newman [5]

analyzed the second-order wave force on a vertical cylinder by the

application of the Weber’s transformation to derive the second-order

potential. Solutions for the second-order forces associated with the first

and the second-order velocity potentials are evaluated directly from

pressure integration over the cylinder surface for the case of infinite fluid

depth. He extended the solution to the case of finite fluid depth.

Rahman [6] extended the Lighthill’s [3] second-order theory to the

cases of intermediate and shallow fluid depth waves. Buldakov et al. [1]

studied the diffraction problem of a unidirectional incident wave group by

a bottom-seated cylinder. The amplitude of the incoming wave was

assumed to be small in comparison with other linear scales of the

problem to develop the corresponding second-order perturbation theory.

They used the Fourier transform to treat time variation and separated

spatial variables in solving the non-homogeneous second-order problem.

The Weber’s transform is adopted to find the solution of the second-order

velocity potential and the associated wave force. The computations are

carried out in fluid of finite and infinite depths.

2. Governing Mathematical Equations

A rigid vertical cylinder of radius b is acted upon by a train of regular

progressive surface waves of amplitude A (Figure 1). It is assumed that
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the fluid is incompressible, inviscid and the motion is irrotational. The

fluid flow field can be defined by a scalar function called velocity potential

and denoted by ( ).,,, tzr θΦ  If the analysis is approximated up to the

second-order, it can be written that ,qΦ+Φ=Φ  where Φ  and qΦ  are

the linear and the quadratic diffraction velocity potentials. The motion of

the fluid is subjected to the Laplace equation in fluid domains, a free-

surface kinematic boundary condition and a free-surface dynamic

boundary condition. The fluid flow field is also subjected to a bottom

condition that indicates no flux of mass through the bottom of the fluid, a

radiation condition at a large distance from the body and a body surface

boundary condition.

The total horizontal force acting upon the surface of the cylinder is

obtained by the integration of the pressure along the surface of the

cylinder. The fluid pressure is determined using Bernoulli’s equation.

The second-order force is partly due to the contribution of the first-order

potential and partly due to the effect of the second-order potential. Using

Weber’s transform the contribution of the second-order potential is

derived and computed by direct integration of the attributed pressure

along the surface of the cylinder.

3. The Second-order Velocity Potential

This section is devoted to obtain the explicit expression of the second-

order potential with the help of Weber’s transform for the infinite and

finite depth ocean. The mathematical developments are given below for

each case.
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Figure 1. Schematic diagram of the circular surface-piercing cylinder

of radius b.

3.1. Infinite fluid depth

The second-order velocity potential may be written in the form of

.2 ti
qq e ω−φ=Φ  The time independent quadratic potential qφ  can be

expressed by the Fourier series in the form of

( ) ( )( )∑
∞

=

θφ=θφ
0

,cos,,,
n

n
qq nzrzr (1)

where the Fourier coefficients ( )( ) ( )∫
π

θθθφ
π

α
=φ

2

0
cos,,

2
, dnzrzr q

nn
q  in

which 10 =α  and 2=αn  for .1≥n

The modified Weber’s transform that is an extension of the Hankel’s
transform with a more general kernel is applied to find the solution of the

second-order velocity potential. If the term ( )kφ̂  is denoted as the

transformation of ( ),rφ  the transform pairs are

( )( ) ( )( ) ( ) ,,ˆ ∫
∞
φ=φ

b
n

nn rdrkrkbWrk



w
w

w
.p

ph
m

j.c
om

THE SECOND-ORDER WAVE LOADS … 325

( )( ) ( )( ) ( )
( ) ( )∫

∞

′+′
φ=φ

0 22
,

,ˆ kdk
kbYkbJ

krkbW
kr

nn

nnn (2)

where ( ) ( ) ( ) ( ) ( )kbJkrYkbYkrJkrkbW nnnnn ′−′=,  is the kernel for the

integral transformation.

Substituting (1) in the Laplace equation in cylindrical coordinates

and taking the Weber’s transform of it, an ordinary differential equation

is obtained,

( )( ) ( )( ) .0,ˆ,ˆ 2 =φ−φ zkkzk nn
zz (3)

The solution ( )( ) ( )( ) kznn ekzk φ=φ ˆ,ˆ  satisfies (3). Using the transformation

(2), a solution for the θ-independent quadratic velocity potential is

constructed in the form

( )( ) ( )( ) ( )
( ) ( )∫

∞

′+′
φ=φ

0 22
.,ˆ,

kbYkbJ

kdkkrkbWekzr
nn

n
kzn

q
n

q (4)

This solution satisfies the body surface boundary and bottom boundary

conditions. The multiplication of the solution (4) by θncos  also satisfies

the Laplace equation. The solution (4) satisfies the free surface boundary

condition provided that

( )( ) ( )( ),ˆ
4

2ˆ
2

kS
k

A
k nnn

ν−
αων

=φ (5)

where ( )( )kS nˆ  is the transformation of ( )( ).rS n ν  The function ( )( )rS n ν  is

defined by

( )( ) ( ) ( ) ( )∑ ∑∞

=

−

=

+
+ ν+ν−=ν

0

1

1

1
1 ,

2
1

m

n

p pn

n

mn
mnn rCirBirS (6)

where

( ) ( ) ( ) ( ) ( )rArArArArB nmmnmmmn ν′ν′+νν=ν ++

 ( ) ( ) ( ),
22

rArA
r

nmm
nmm νν

ν
++ +
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( ) ( ) ( ) ( ) ( )rArArArArC pnppnppn ν′ν′+νν=ν −−

 ( ) ( ) ( ).
22

rArA
r

pnp
pnp νν

ν
−− −

The time-independent quadratic velocity potential may be expressed in
the form

( )
( )( ) ( )∑ ∫

∞

=

∞

ν−
θαων=θφ

0 0

2 ,
4

ˆ
cos2,,

n n
kz

n

nq krkbWe
k

kS
nAzr

( ) ( )kbYkbJ

kdk

nn
22 ′+′

× (7)

that satisfies the governing equations and all the boundary conditions.

3.2. Finite fluid depth

The second-order time-independent velocity potential may be
expressed for the case of finite fluid depth as

( ) ( )( ) ( )∑ ∫
∞

=

∞

ν−
+θα

ω
=θφ

0 0

22

cosh4sinh
coshˆcos2,,

n
n

nq kdkdk
dzk

kTnAgKzr

( )
( ) ( )

,
,

22
kdk

kbYkbJ

krkbW

nn

n

′+′
× (8)

where ( )( )kT nˆ  is the Weber’s transform of ( )( )KrT n  and

( )( ) ( )( ) ( )( ).sech
2
3 21 KrKdEiKrSKrT nnnn ++= (9)

The function ( )( )KrS n  is expressed in (6) and ( )( )KrE n  is the extra term

due to the limitation of the fluid depth,

( )( ) ( ) [ ( )( ) ( )∑∞

= +λ−=
0

11
m nmmm

mn KrAKrHKrE

( ) ( ) ( )]KrJKrH mnmnm ×λ+ ++
1

[ ( )( ) ( ) ( ) ( ) ( )]∑ −

= −−− λ+λ+
1

1
11 .

n

p ppnpnpnpp KrJKrHKrAKrH

The complete derivation of the velocity potentials in infinite and finite
fluid depths can be found in Mousavizadegan [4].
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4. The Quadratic Force

This section contains the evaluation of second-order forces for the

infinite and finite depth ocean. The analytical solutions are described

below.

4.1. Infinite fluid depth

The quadratic force may be expressed in the form

{ },2 ti
qq efF ω−ℜ= (10)

where ℜ  stands for the real part. The contribution of the solution

( )zrq ,, θφ  to the time-independent quadratic force stems only from the

term 1=n  in (7). The non-dimensional time independent quadratic force

bAg

f
f q
q 2
ˆ

ρ
=  can be obtained by integrating the transient second-order

pressure along the surface of the cylinder. Carrying out the integration, it

can be written that

( ) ( )( )∫
∞

ννν−=
b

q rdrrSrG
b
if ,4ˆ 1 (11)

where

( ) ( )
( ) ( ) ( )∫

∞

ν−′+′
ν=ν

0 2
1

2
1

1 .
4

,
4

kk
dk

kbYkbJ

krkbW
rG (12)

The integral in (12) is evaluated by the contour integration in the complex

k-plane. The suitable contour for this problem is the semi-circular contour

of infinite radius on the right side of the imaginary axis which contains

the first and fourth quadrants. There exists one singularity ν= 4k  which

lies on the path of integration along the real axis.

Finally, the quadratic force can be obtained from

( ) ( )
( ) ( )

( )( )
( )( )

( )( )
( )( ) 























ν′

ν
+

ν′

νπ−
ν′+

ν
ν
ν

= ∫
∞

0 1
1

1
0

2
1

2
0

1
22

00

4

4

4

4
241

4ˆ
bH

bH

bH

bH
dy

byKyy

byK
b

bid
fq
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( )
( ) ( )∫ ∫

∞ ∞







ν′+

ν
+

b
dy

byKyy

ryK
b
i

0 1
2
1

41

44

( )( )
( )( )

( )( )
( )( )

( ) ,
4

4

4

4
2 1

1

1
1

2
1

2
1 drrZ

bH

rH

bH

rH
ν



















ν′

ν
+

ν′

νπ− (13)

where

( ) ( ) ( ) ( ) ( )( ) ( )∑ ∑∞

=

∞

=
ννν=νλε−

π
=ν

0 1
1

0 ,,12
m m mmmmm

m rArHbdrZibd

( ) ( ) ( ) ( )
( )( )

.,1,1
111

1

bH

bJ
mmbd

m

m
mmm

m
m

ν′

ν′
=λ≥λ−λ−=ν −+

+

This result is similar to the one obtained by Newman [5]. The difference

is in the solution of the contour integral for ( ).rG ν  Here, the solution is a

combination of the first and second kind of Hankel’s functions. In
contrast, Newman’s result is expressed only by the second kind of the
Hankel’s function.

Figure 2. Real and imaginary parts of the non-dimensional quadratic
force in infinite fluid depth.

4.2. Finite fluid depth

Because of orthogonal properties of the cosine functions, only the
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term proportional to θcos  in (8) contributes to the second-order force due

to the second-order potential. The second-order force coefficient can be
obtained for the case of finite fluid depth by

( ) ( )( )∫
∞

−=
b

q rdrKrTKrG
b
iKf ,4ˆ 1 (14)

where

( )
( )( )
( )( )

( )( )
( )( )∫

∞ −

ν−











′
−

′
=

0

1

1
1

1
1

2
1

2
1

cosh4sinh
sinh2

kdkdk
kddkk

kbH

krH

kbH

krH
i
KKrG

( ).2
12 II

i
K −= (15)

The integral 1I  can be computed by using the contour integration

along a semicircular contour above the real axis. The integral 2I  is

computed using a semicircular contour below the real axis. The integrand
contains a singular point along the real axis and infinite number of
singular points along the imaginary axis.

The final solution for the quadratic force coefficient is found for the
case of finite fluid depth as

( ) ( )
( )

( )( )
( )( )

( )( )
( )( ) 























κ′

κ
+

κ′

κ
κ

−
κ′κ
κ

= ∑∞

=1
0

2
1

0
2

0

0
1

1

0
1

0

0

0

1

004ˆ
n nn

nn
q

bH

bH

bH

bHg
bK
bKg

b
Kbid

f

( )
( )∫ ∑

∞ ∞

=





κ′
κ

+
b n n

n
n bK

rK
g

b
i

1 1

14

( )( )
( )( )

( )( )
( )( )

( )drKrZ
bH

rH

bH

rH
g

b 

















κ′

κ
+

κ′

κ
− ∫

∞

0
2

1

0
2

1

0
1

1

0
1

1
0

( )
( )∫ ∑

∞ ∞

=





κ′
κ

+
b n n

n
n bK

rK
gKd

b
iK

1 1

12sech6

( )( )
( )( )

( )( )
( )( )

( )( ) ,1

0
2

1

0
2

1

0
1

1

0
1

1
0



















κ′

κ
+

κ′

κ
− ∫

∞

b
rdrKrE

bH

rH

bH

rH
g (16)
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where coefficients 0g  and ng  are defined by

.
164

4
4,

164

4
2

2222
0

0
0













ν+ν−κ

κν
π=













ν−ν+κ

κν
π=

dd
Kg

dd
Kg

n

n
n (17)

The terms denoted by 0κ  and ,nκ  ...,3,2,1=n  are the roots of the

transcendental equations ν=κκ 4tanh 00 d  and ,4tan ν−=κκ dnn

respectively. The first and the second part of (16) are the same as the

force equation (13) for the infinite fluid depth case. The last part is an

extra term due to the limitation of the fluid depth.

Figure 3. Real and imaginary parts of the extra term due to the

limitation of the fluid depth.

5. Results and Discussion

The solutions contain considerable interactions of the Bessel and the

modified Bessel functions of various kinds and orders. These functions

are evaluated with double-precision routines. All computations are

carried out using a PC with an Intel(R) Pentium(R) 4 CPU 1.80 GHz and

total memory of 384 MB.
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The second-order force coefficient qf̂  is obtained through the solution

of (13) for the case of infinite fluid depth. The force equation (13) consists

of four parts. The calculation of the second part is straightforward. There

are three infinite integrals. The integrand of the first consists of a

combination of the modified Bessel function of second kind. The second

integral is a double infinite integral. The integrand of this integral

consists of a combination of the modified Bessel function of the second

kind of order one and an infinite series. This series consists of the Bessel

and Hankel’s functions of the first kind of different orders. The integrand

of the third infinite integral consists of a combination of the Hankel’s

function of the first and the second kinds. It also consists of the infinite

series as explained already. These integrals are calculated by the

Simpson three-eights rule.

The computation of the first integral is straightforward. The solution

for each const.=νb  is carried out in two steps. First the infinite interval

is divided into small segments of ...,2,1,0,22 1 =− − kkk  and .01 ≥−k

The result on each subinterval is obtained for a convergence error in

order of .10 6−  The solutions for the segments are added together to reach

an error less than .10 8−  The second integral is a double infinite integral.

The computations are carried out for each step ( ),const.=νb  while r is

varied from b to infinity. The result for the infinite series is obtained with

an error less than .10 8−  The result of the infinite internal integral is

obtained in the same way as mentioned in the last paragraph. The third

integral is also found by the Simpson method of three-eights rule with an

error less than .10 6−  However, the integrand of this integral has a very

oscillatory nature. The computations are very time-consuming for large

values of νr.
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Figure 4. Real and imaginary parts of the quadratic force in various
depth to radius ratios.

The solutions for the real and imaginary parts of the second-order

force coefficients qf̂  are displayed in Figure 2. They are compared with

the published results of Newman [5]. The imaginary part of both
solutions has the same sign and almost the same value. The real part of
solutions has a different sign due to the different direction of the

incoming waves. The values of the real part for small values of the νb are

also different. The differences are due to the different contours that are
used in the integration process. It seems that our computations are more

reliable due to the fact that the function ( )rG ν  in (10) is a real function.

Newman’s solution [5] for (10) is a complex function, while ours is a real
one.

The quadratic force coefficient in finite depth is obtained through the
solution of (16) for different depth-radius ratios. The first and second
parts in (16) are the same as (10) in the case of infinite fluid depth.
However, the infinite integrals from zero to infinity are replaced by an
infinite series that has very good convergence properties and makes the
computations faster. The third part is an extra term due to the limitation
of the fluid depth.
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The extra part is denoted by .ˆ
exqf  This part consists of two infinite

integrals. The computation of the first integral is quite fast due to the

proper behavior of the modified Bessel function. The second integral is

very oscillatory and converges slowly. This part of the computation is the

most time-consuming part. The real and imaginary parts of 
exqf̂  are

depicted in Figure 3. The contribution of this part is relatively small to

the quadratic force. The quadratic force coefficient qf̂  is shown in Figure

4. The infinite integral was solved using the Simpson three-eights rule

with an error less than .105 6−×  The infinite series converged with an

error of order 810−  or less. The effect of the limitation of depth is obvious

and diminishes with an increase in the depth to radius ratio. This part of

the wave force is affected by the limitation of fluid depth in a wide range

of frequency spectrum.

6. Conclusions

Using the Weber’s transform, the second-order diffraction potential is

evaluated in both cases of infinite and finite fluid depths. The quadratic

force coefficients, due to the effect of the second-order velocity potential,

are obtained using the direct integration of the related transient pressure

around the cylinder surface. The resulting force coefficient is an integral

along a horizontal distance from the vicinity of the cylinder to infinity.

The integrand of this integral contains an improper integral from zero to

infinity of a real function. The expected solution is also a real function for

the internal integral. The contour integration rule is adopted to obtain

the solution of the internal integrals. The solutions are real functions for

both infinite and finite fluid depths.
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