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Abstract 

Variable neighborhood search (VNS) is a simple meta-heuristic that 
systematically changes the size and type of neighborhood during the 
search process in order to escape from local optima. In this paper, 
enhanced versions of tabu search and memetic algorithm with variable 
neighborhood search for combinatorial optimization problems are 
introduced. The set of constructed neighborhoods satisfies the property 
that each small neighborhood is a subset of a larger one. Most of the 
work published earlier on VNS starts from the first neighborhood and 
moves on to higher neighborhoods without controlling and adapting 
the ordering of neighborhood structures. The order in which the 
neighborhood structures have been selected in this paper during the 
search process offers a better mechanism for performing 
diversification and intensification. A set of industrial and random 
problems is used to test the effectiveness of the two enhanced meta-
heuristics using the maximum satisfying problem as a test case. 
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1. Introduction 

Complex optimization problems arise in several areas of artificial 
intelligence and computer science. In their full generality, these problems are 
NP-complete and consequently algorithmically intractable. With the growing 
popularity of artificial intelligence (AI), several researchers have applied AI 
techniques in extensive various fields and brought benefits to our societies 
such as expert systems, neural network, genetic algorithms, supervised 
learning methods, multi-agent systems, and fuzzy set theory to various 
problems. AI methods have been applied in the field of high energy physics 
where the goal is to discover the fundamental properties of the physical 
universe [44], predicting hard drive failures to allow users to back up their 
data [31]. The field of software engineering turns out to be a fertile ground 
where many software development tasks could be formulated as learning 
problems and approached in terms of AI learning algorithms [47]. AI 
methods have proved to provide better accuracy than statistical methods for 
the prediction of tumor behavior [33]. AI techniques have shown their 
superiority compared to logistic regression when predicting the childhood 
obesity [46] by over 10%. In the field of logistics, travel-time information is 
essential to reduce the delivery costs, increase the reliability of delivery, and 
improve the service quality. Many research studies revealed the good 
capacity of AI techniques to estimate and predict travel-time. The expected 
travel-time prediction error with AI methods is approximately 4% of 
practical travel-time [23]. Predicting energy production and consumption is 
an elusive task since it has a major impact to policy and high-stakes decision 
making. Artificial neural networks were used for the first time to build a 
predictive model to forecast United States natural gas production [28]. In 
recent years, artificial intelligence, in its many integrated flavors from 
artificial neural networks to memetic algorithms to fuzzy logic, has been 
making solid steps toward becoming more and more accepted in the field of 
oil and gas industry such as reservoir characterization [12], production 
engineering issues [1], and drilling [3]. Memetic algorithms (MAs) and tabu 
search (TS) like other meta-heuristics offer the advantage of being flexible as 
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they can be applied to any problem (discrete or continuous). While the 
combination of a population of solutions and genetic operators constitutes the 
main component of MAs that act as diversification factor on the search 
space, the use of local search methods helps to quickly identify better 
solutions in a localized region of the search space. Nevertheless, even MAs 
may still suffer from either slow or premature convergence [37]. On the other 
hand, TS which is based on explicit memory structures, uses memory to 
record the search trajectory and guide the search in order to consider both 
intensification and diversification. In TS, exploration is achieved by 
examining new candidate solutions by a tabu-restricted neighborhood search, 
while exploitation takes place when there is a move to the best of these 
candidates to start a new search cycle. The key components in meta-heuristic 
algorithms for optimization are local intensive exploitation and global 
diverse exploration, and their interaction can significantly affect the 
efficiency of a meta-heuristic algorithm. However, up to date there exists no 
simple rule for how to balance these important components. Mladenović and 
Hansen [27] have recently proposed a new meta-heuristic called variable 
neighborhood search. VNS overcomes local optimality using a combination 
of a local search with systematic changes of neighborhood. Unlike many 
standard meta-heuristics where only a single neighborhood is employed, 
VNS systematically changes different neighborhoods within a local search. 

In this paper, two new versions of MA and TS enhanced with VNS are 
introduced. The resulting versions offer two main advantages which enable 
GA and TS to become much more powerful in the variable neighborhood 
context. The neighborhoods designed in VNS are constructed in a such 
manner that the process of switching from one neighborhood to another 
allows the possibility for both MA and TS to explore different regions in the 
search space in a structured manner while intensifying the search by 
exploiting the solutions from previous neighborhoods in order to reach better 
solutions. 

The paper is organized as follows. Section 2 defines the maximum 
satisfiability problem. Sections 3 and 4 describe the enhanced versions of TS 
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and MA with variable neighborhood search together with the experimental 
results. Finally, Section 5 discusses the main conclusions and provides some 
guidelines for future work. 

2. The Maximum Satisfiability Problem (MAX-SAT) 

The MAX-SAT problem which is known to be NP-complete [10] is 
defined as follows. Given a set of n Boolean variables and a conjunctive 
normal form (CNF) of a set of m disjunctive clauses of literals, where each 
literal is a variable or its negation which takes one of the two values True or 
False and a positive constant k, the task is to determine whether there exists 
an assignment of truth values of the variables that satisfies the maximum 
number k of clauses. MAX-SAT still deserves much research attention from 
a wider community of researchers due to its theoretical and practical 
importance. MAX-SAT is a widely used modeling framework for simulating 
complex systems that turn out to be of combinatorial nature. Examples 
include model-checking [4] of finite state systems, design debugging [38], AI 
planning [34] to name just a few. Different state-of-the-art local search 
algorithms for solving MAX-SAT have been developed. Several of these 
algorithms are enhanced versions of earliest GSAT [36] and WalkSAT [35] 
algorithms. Examples include GSAT/Tabu [25], Walk-SAT/Tabu [26], 
Novelty+ [18] and R-Novelty+ [24] heuristics, variable and clause weighting 
algorithms [19, 32, 41], dynamic parameter tuning algorithms [17], adaptive 
memory-based local search hybrid approaches (GASAT) [20], larger 
neighborhood search algorithms [45], learning automata [15], adaptive 
memory-based local search algorithms [48], Iterated Robust Tabu Search 
(IRoTS) [39], new algorithms based on a new diversification scheme to 
prevent cycling [6-8], variable neighborhood search [5], CCLS which is a 
local search solver based on the configuration checking strategy [22]. 

3. Variable Neighborhood Search Tabu-based Algorithm (VNS-TS) 

3.1. VNS-TS in detail 

Variable neighborhood search [5, 27] is a relatively recent meta-heuristic 
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jointly which has been applied to a wide variety of combinatorial 
optimization problems such as feature selection in data mining [30], 
scheduling [21], vehicle routing problem [13] and maximum satisfiability 
problem [5]. Unlike many standard meta-heuristics where only a single 
neighborhood is employed, VNS systematically changes different 
neighborhoods within a local search. The idea is that a local optimum 
reached within one neighborhood structure is not necessarily the same local 
optimum of another neighborhood structure, thus the search can 
systematically explore different search areas which are defined by different 
neighborhood structures. Tabu search algorithm was proposed by Glover 
[14]. The main feature of the algorithm is the ability to avoid returning in a 
previous state by keeping a trace of the optimization history. Algorithm 1 
shows TS working in a variable neighborhood context. Let L denote the set 
of variables of the MAX-SAT problem to be solved. The first phase of the 
algorithm consists in constructing a set of neighborhood satisfying the 
following property: ( ) ( ) ( ).max21 xNxNxN k⊂⊂  The starting (default) 

neighborhood with 1=k  consists of a move based on the flip of a single 
variable. A flip means assigning the opposite state to a variable (i.e. change 
True → False or False → True). The first neighborhood 2N  is constructed 

from L by merging variables. The merging procedure is computed using a 
randomized algorithm. The variables are visited in a random order. If a 
variable iv  has not been matched yet, then a randomly unmatched variable 

jv  is selected, and a cluster kv  consisting of the two variables iv  and jv  is 

created. The set 2N  consists of moves based on flipping predefined clusters 

each having 12  variables. The new formed clusters are used to define a new 
and larger neighborhood 3N  and recursively iterate the process until the 

desired number of neighborhood ( )maxk  is reached (lines 3, 4, 5 of 

Algorithm 1). A random initial solution of the problem is computed (line 7 of 
Algorithm 1). Then, during each pass of the algorithm, given the current 
solution, one examines its corresponding neighborhood and chooses to move 
to the solution that most improves the objective function. At the end of each 
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pass, the variable with the highest gain is selected (lines 10-17 of Algorithm 
1) (break ties randomly). The gain of a variable iv  is defined as the number 

of clauses that would be unsatisfied if iv  is flipped. To avoid getting stuck in 

a local minimum, historical information from the last j iterations is used. The 
value j may be fixed or a variable that depends on the search. The set of 
moves determined by this information forms a tabu list. Hence, the method 
has a short term memory remembering which trajectories have been recently 
explored. To prevent the method from cycling between the same solutions, 
one forbids the reverse of any move contained in the tabu list. The algorithm 
proceeds by choosing a random unsatisfied clause (line 11 of Algorithm 1). 
Thereafter, a non-tabu and unvisited variable is chosen randomly and flipped 
(lines 12, 13 of Algorithm 1). The tabu list is updated before the start of 
every new pass (line 17 of Algorithm 1). The selected variable during each 
pass is inserted into the tabu list together with a tabu-value that will 
determine the number of iterations it will remain tabu. During each pass, the 
tabu-value assigned to each tabu variable is decremented by 1. When tabu-
value reaches the value 0, its corresponding variable becomes non-tabu. The 
effectiveness of VNS is strongly affected by the ordering in which a given 
type of neighborhood is considered. Both the choice and the order of 
neighborhood structures are critical for the performance of the algorithm. 
Most of the work published earlier on VNS starts from the first neighborhood 
and moves on to higher neighborhoods without controlling and adapting the 
ordering of neighborhood structures. The strategy adopted in this work is to 
let the search process start from the largest neighborhood maxkN  and 

continues to move towards smaller neighborhood structures. The motivation 
behind this strategy is that the order in which the neighborhood structures 
have been selected offers a better mechanism for performing diversification 
and intensification. This issue will be explained when presenting the 
experimental results. 
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Algorithm 1: Variable Neighborhood Search Tabu-based Algorithm 

 

 
Figure 1. VNS-TS vs TS: (left) alu4mul.miter.shuffled-as.sat03-344.cnf: 

,304654736 == CV  (right) C6288mul.miter.shuffled-as.sat03-346.cnf: 

.614219540 == CV  Evolution of the mean satisfied clause over time. 

3.2. Experimental results 

The performance of VNS-TS is evaluated against TS using a set of real 
industrial problems. This set is taken from the sixth MAX-SAT 2011 
organized as an affiliated event of the Fourteenth International Conference 
on Theory and Applications of Satisfiability Testing (SAT-2011). Due to the 
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randomization nature of both algorithms, each problem instance was run 100 
times with a cut-off parameter (max-time) set to 60 minutes. The symbols 
V  and C  denote, respectively, the number of variables and the number 

of clauses. The tests were carried out on a DELL machine with 800 MHz 
CPU and 2 GB of memory. The code was written in C++ and compiled with 
the GNU C compiler version 4.6. The length of tabu list is set to be equal to: 

8125.201875.0 +× n  as proposed in [25] where n is the number of variables 
in the problem. The cardinality of the neighborhood maxk  is set such that the 

number of the formed clusters is 10% of the size of the problem instance 
(i.e., a problem with 100 variables will lead to maxk  equals to 3). TS is 

assumed to have reached convergence and switch to a smaller neighborhood 
if the best solution remains unchanged during 50 consecutive iterations. 
Figure 1 shows the development of the mean satisfied clause for both 
algorithms. Both algorithms start from nearly identical initial solutions. The 
plots show immediately the dramatic improvement obtained with VNS. The 
curves show no crossover implying that VNS-TS dominates TS. The mean 
number of unsatisfied clauses improves rapidly at first and continues to 
improve before it flattens off as we mount the plateau marking the start of the 
second phase. The plateau spans a region in the search space where flips 
typically leave the best assignment unchanged, and occurs more specifically 
once the refinement reaches the default neighborhood. Comparing VNS-TS 
against TS, VNS-TS is far better than TS, making it the clear leading 
algorithm. The key success behind the efficiency of VNS-TS relies on the 
VNS context. VNS-TS draws its strength from coupling the optimization 
process across different neighborhoods. This paradigm offers two main 
advantages which enables TS to become much more powerful in the VNS 
context. During the refinement phase, TS applies a local a transformation 
(i.e. a move) within the neighborhood (i.e. the set of solutions that can be 
reached from the current one) of the current solution to generate a new one. 
The variety of neighborhoods offers a better mechanism for performing 
diversification (i.e. the ability to visit many and different regions of the 
search space) and intensification (i.e. the ability to obtain high quality 
solutions within those regions). By allowing TS to view a cluster of variables 



Enhanced Meta-heuristics with Variable Neighborhood Search … 133 

as a single entity, the search becomes guided and restricted to only those 
configurations in the solution space in which the variables grouped within a 
cluster are assigned the same value. As one moves from a larger 
neighborhood to a smaller one, the size of the clusters varies and the size of 
the neighborhood becomes adaptive and allows the possibility of exploring 
different regions in the search space while intensifying the search by 
exploiting the solutions from previous neighborhoods in order to reach better 
solutions. Tables 1-2 show the results of comparing VNS-TS against TS. The 
tables show that VNS-TS shows a better asymptotic convergence compared 
to TS in 32 cases out of 50 with an improvement lying within 9%. The cases 
where TS gives better results than VNS-TS, the difference in quality does not 
exceed 2%. 

Table 1. Comparison of VNS-TS against TS 
Instances | V | | C | TS VNS-TS 

aim-200-34 − yes1 − 2 200 680 673 663 
alu4mul.miter.shuffled-as.sat03-344 4736 30465 28698 29613 
am4-4.shuffled-as.sat03-360 433 1458 1457 1404 
am5-5.shuffled-as.sat03-361 1076 3677 3610 3544 
am6-6.shuffled-as.sat03-362 2269 7814 7589 7493 
am7-7.shuffled-as.sat03-363 4264 14751 14032 14055 
am8-8.shuffled-as.sat03-364 7361 25538 22416 23249 
am9-9.shuffled-as.sat03-365 11908 41393 35318 35933 
bw-large.c 3016 50457 46631 50450 
bw-large.d 6325 131973 107713 118272 
c3540mul.miter.shuffled-as.sat03-345 5248 33199 30958 31734 
c6288mul.miter.shuffled-as.sat03-346 9540 61421 54941 55752 
c7552mul.miter.shuffled-as.sat03-347 11282 69529 62258 62450 
cnt10.shuffled-as.sat03-418 20470 68561 58204 58683 
comb1.shuffled-as.sat03-419 5910 16804 14653 15505 
comb3.shuffled-as.sat03-421 4774 16331 14968 15556 
c880mul.miter.shuffled-as.sat03-348 1612 9373 9342 9188 
dalumul.miter.shuffled-as.sat03-349 9426 59991 54188 54940 
ewddr2-10-by-5-1 21800 118607 104713 104835 
f2clk40.shuffled-as.sat03-424 27568 80439 63674 64028 
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ferry8.shuffled-as.sat03-384 1918 12311 12306 12116 
ferry8u.shuffled-as.sat03-385 1875 11915 11909 11728 
ferry9.shuffled-as.sat03-386 2410 16209 16197 15954 
ferry9u.shuffled-as.sat03-387 2342 15747 15735 15502 
ferry10.shuffled-as.sat03-378 2958 20791 20768 20410 

Table 2. Comparison of VNS-TS against TS 
Instances | V | | C | TS VNS-TS 

ferry11.shuffled-as.sat03-380 3562 26105 25355 25656 
ferry12u.shuffled-as.sat03-383 4133 31515 30069 30866 
frg1mul.miter.shuffled-as.sat03-351 3230 20575 20360 20103 
frg2mul.miter.shuffled-as.sat03-352 10316 62943 56680 57198 
gripper13u.shuffled-as.sat03-395 4268 38965 37229 38337 
gripper14.shuffled-as.sat03-396 4758 45056 42412 43167 
gripper14u.shuffled-as.sat03-397 4584 43390 40967 42688 
homer17.shuffled-as.sat03-428 286 1742 1738 1731 
homer18.shuffled-as.sat03-429 308 2030 2014 2014 
homer19.shuffled-as.sat03-430 330 2340 2332 2313 
homer20.shuffled-as.sat03-431 440 4220 4202 4184 
i8mul.miter.shuffled-as.sat03-354 14524 91139 81541 81821 
i10mul.miter.shuffled-as.sat03-353 12998 77941 69475 70332 
k2mul.miter.shuffled-as.sat03-355 11680 74581 66791 67367 
logistics.d 4713 21991 19522 20952 
mot-comb2-red-gate-0.dimacs.seq.filtered 5484 13894 11219 11391 
motcomb3-red-gate-0.dimacs.seq.filtered 11265 29520 23249 23460 
qg6-11 1331 49204 49104 49203 
qg6-12 1728 69931 69786 69930 
rotmul.miter.shuffled-as.sat03-356 5980 35229 32469 32819 
term1mul.miter.shuffled-as.sat03-357 3504 22229 21809 21664 
vdamul.miter.shuffled-as.sat03-358 5444 34509 32320 32656 
x1mul.miter.shuffled-as.sat03-359 8760 55571 50310 50861 
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4. Variable Neighborhood Search Memetic-based Algorithm (VNS-MA) 

4.1. VNS-MA in detail 

Memetic algorithms (MAs) [29] are population-based meta-heuristic 
optimization methods inspired by biological evolution. They simultaneously 
examine and manipulate a set of possible solutions. These are usually 
randomly initialized across the search space, although heuristics may also be 
used. In the context of MAs, the objective function assigning values to each 
solution is termed a fitness function, and is used to guide the search. MAs are 
characterized by the importance they place on recombination (crossover, 
mutations) of solutions. In a well-designed MA, crossover is able to combine 
successful sub-solutions (parent solutions) to form new solutions (off-
springs) with the best of both. In other words, once a sub-solution is 
discovered by any member of the population, it can be propagated to the rest 
of the population without needing to be rediscovered. This is considered to 
be the primary source of novel solutions in a MA, though small mutations are 
usually used as well. Hence, designers of memetic algorithms are careful to 
design the problem representation and crossover operator to work well 
together. After the initialization, four different components are iteratively 
performed until a convergence criterion is reached: selection, reproduction 
(which encompasses recombination and mutation), replacement, and local 
search. Algorithm 2 shows the general outline of a MA combined with a 
variable neighborhood search. 
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Algorithm 2: Variable Neighborhood Search Memetic-based Algorithm 

 

• Representation and search space 

A representation is a mapping from the state space of possible solutions 
to a state of encoded solutions within a particular data structure. The 
chromosomes which are assignments of values to the variables are encoded 
as strings of bits, the length of which is the number of variables. The values 
True and False are represented by 1 and 0, respectively. In this 
representation, a chromosome X corresponds to a truth assignment and the 

search space is the set { } .1,0 nS =  

• Fitness function 

The notion of fitness is fundamental to the application of memetic 
algorithms. It is a numerical value that expresses the performance of an 
individual (solution) so that different individuals can be compared. The 
fitness of a chromosome (individual) in the population is equal to the number 
of clauses that are unsatisfied by the truth assignment represented by the 
chromosome. All the individuals of the initial population are evaluated and 
assigned a fitness (line 8 of Algorithm 2). 
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• Construction of neighborhoods 

The procedure for generating the different neighborhoods (lines 3, 4, 5 of 
Algorithm 2) is similar to the one describe for TS in Subsection 3.1. 

• Optimization cycle 

The following four components describe an optimization cycle 
performed by a MA within a specific neighborhood. 

- Choosing starting neighborhood 

VNS-MA starts the search from the largest neighborhood maxkN  (lines 

9-16 of Algorithm 2) as VNS-TS and continues to move towards smaller 
neighborhood structures. 

- Selection 

The selection component aims to determine the candidate solutions to be 
used to create new solutions or off-springs. Selection often operates in 
relation with the best fitness value. The best fitness value reflects typically 
amounts the extent to which the solution maximizes/minimizes the objective 
function. In this work, selection is performed in a random manner. The 
individuals are visited in random order. An unmatched individual ki  is 

matched randomly with an unmatched individual li  (line 11 of Algorithm 2). 

- Crossover operator 

The task of the crossover operator (line 12 of Algorithm 2) is to reach 
regions of the search space with higher average quality. The two-point 
crossover operator is applied to each matched pair of individuals. The two-
point crossover selects two randomly points within a chromosome and then 
interchanges the two parent chromosomes between these points to generate 
two new offspring. Recombination can be defined as a process in which a set 
of configurations (solutions referred as parents) undergoes a transformation 
to create a set of configurations (referred as offspring). The creation of these 
descendants involves the location and combinations of features extracted 
from the parents. The reasons behind choosing the two-point crossover are 
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the results presented in [43] where the difference between the different 
crossovers is not significant when the problem to be solved is hard. The work 
conducted in [40] shows that the two-point crossover is more effective when 
the problem at hand is difficult to solve. 

- Mutation 

The purpose of mutation (line 13 of Algorithm 2) is to generate modified 
individuals by introducing new features in the population. By mutation, the 
alleles of the produced child have a chance to be modified, which enables 
further exploration of the search space. The mutation operator takes a single 
parameter ,mp  which specifies the probability of performing a possible 

mutation. Let mcccC ...,,, 21=  be a chromosome represented by a binary 

chain where each of whose gene ic  is either 0 or 1. In our mutation operator, 

each gene ic  is mutated through flipping this gene’s allele from 0 to 1 or 

from 1 to 0 if the probability test is passed. In case of a large neighborhood 
( ),1>k  the mutation is applied to a cluster of variables. The mutation 

probability ensures that, theoretically, every region of the search space is 
explored. If, on the other hand, mutation is applied to all genes, the 
evolutionary process will degenerate into a random search with no benefits of 
the information gathered in preceding generations. The mutation operator 
prevents the searching process form being trapped into local optimum while 
adding to the diversity of the population and thereby increasing the 
likelihood that the algorithm will generate individuals with better fitness 
values. 

- Local search 

By introducing local search at this level (line 14 of Algorithm 2), the 
search within promising areas is intensified. The local search should be 
designed to quickly improve the quality of a solution produced by the 
crossover operator, without diversifying it into other areas of the search 
space. In the context of optimization, this rises a number of questions 
regarding how best to take advantage of both aspects of the whole algorithm. 
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With regard to local search there are issues of which individuals will undergo 
local improvement and to what degree of intensity. In order to balance the 
exploration against exploitation a fast and simple heuristic is used for one 
iteration during which it seeks for the new variable-value assignment which 
best decreases the number of unsatisfied clauses is identified. 

- Replacement 

The replacement component (line 16 of Algorithm 2) acts on individuals 
in the current population. Based on each individual quality (fitness), it 
determines the next population. In the roulette method, the selection is 
stochastic and biased toward the best individuals. The first step is to calculate 
the cumulative fitness of the whole population through the sum of the fitness 
of all individuals. After that, the probability of selection is calculated for 

each individual as being ∑= N
iiSelection ffP i 1 ,  where if  is the fitness of 

individual i (line 15 of Algorithm 2). 

• Move to a new neighborhood 

Once MA has reached the convergence criterion with respect to a 
neighborhood ,iN  it switches to another neighborhood and the assignment 

reached on the neighborhood iN  must be projected on its parent 

neighborhood .1−iN  The projection algorithm (line 17 of Algorithm 2) is 

simple; if a cluster mi Nc ∈  is assigned the value of true, then the merged 

pair of clusters that it represents, 1, −∈ mkj Ncc  are also assigned the true 

value. 

4.2. Experimental results 

Table 3. Benchmark instances 
Cases Instance Number of variables Number of clauses 

1 bmc-ibm-1.cnf 9 658 55 870 
2 bmc-ibm-2.cnf 3 628 14 468 
3 bmc-ibm-3.cnf 14 930 72 106 
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4 bmc-ibm-5.cnf 9 396 41 207 
5 bmc-ibm-7.cnf 8 710 39 774 
6 bmc-galileo-8.cnf 58 074 294 821 
7 bmc-galileo-9.cnf 63 624 326 999 
8 bmc-ibm-10.cnf 61 088 334 861 
9 bmc-ibm-11.cnf 32 109 150 027 

10 bmc-ibm-12.cnf 39 598 194 778 
11 bmc-ibm-13.cnf 13 215 65 278 
12 g125.18.cnf 2 250 70 163 
13 g125.17.cnf 2 125 66 272 
14 g250.15.cnf 3 750 233 965 
15 g250.29.cnf 7 250 454 622 

The performance of the VNS-MA is evaluated against MA using a set of 
instances taken from real industrial problems (bmc instances) and random 
graph coloring problems (g125-g250). This set is taken from (http://www. 
informatik.tu-darmstadt.de/AI/SATLIB). Table 3 shows the instances used in 
the experiment. IBM SPSS Statistics version 19 was used for statistical 
analysis. Due to the randomization nature of the algorithms, each problem 
instance was run 100 times with a cut-off parameter (max-time) set to 15 
minute. The 100 runs were chosen because pilot runs had shown the size of 
the difference to be so large that 100 runs were enough for an acceptable 
statistical power ( ),95.>power  this is in accordance with the suggestions 

given in a recent report on statistical testing of randomized algorithms [2]. 

The following parameters have been fixed experimentally and are listed 
below: 

• Mutation probability = 0.1. 

• Population size = 50. 

• Stopping criteria within a specific neighborhood: If there is no 
observable improvement of the fitness function of the best individual during 
10 consecutive generations, MA is assumed to have reached convergence and 
moves to a new neighborhood. 
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Table 4. VNS-MA vs MA: mean, standard deviation and range of unsolved 
clauses 

 VNS-MA MA 

#Case Mean (SD) Range Mean (SD) Range 

1 3872.8 (233.7) 3632-4830 5700.5 (427.6) 5184-7773 

2 157.8 (8.1) 137-185 234.6 (16.1) 190-273 

3 3320.9 (279.1) 2911-4187 10049.3 (356.8) 9547-11559 

4 1125.8 (138.1) 976-1675 3282.5 (276.0) 3024-4651 

5 1475.9 (101.3) 1167-1668 3107.1(152.3) 2870-4044 

6 12232.9 (2464) 9809-23178 51062.3 (814.1) 49375-53517 

7 14412.6 (2877.1) 11318-22705 57301.2 (877.1) 55292-59723 

8 2206.1 (1117.6) 20621-25275 63720.2 (475.3) 62575-64626 

9 13730.9 (547.5) 13045-15413 26207.8 (353.7) 25461-27311 

10 17477.0 (410.7) 17079-18908 35289.7 (440.3) 34363-36871 

11 3875.7 (273.4) 3529-5055 8233.4 (384.2) 7886-10080 

12 37.8 (3.5) 29-48 323.9 (47.4) 225-481 

13 40.7 (3.5) 30-50 154.2 (20.7) 92-222 

14 193.7 (30.9) 173-425 29565.3 (1068.7) 27587-33040 

15 214.8 (64.3) 177-637 85410.6 (1759.2) 80704-89626 

Table 5. VNS-MA vs MA: mean difference and the 99% confidence interval 

 Bootstrapped inferential statisticsa 
#Case MD [99%CI ] Cohen’s delta 

1 1895.2 [1827.6, 1962.8] 5.3 
2 76.8 [71.9, 81.3] 6.02 
3 6728.4 [6610.1, 6844.2] 21.01 
4 2156.7 [2082.4, 2238.7] 9.88 
5 1631.2 [1585.7, 1682.1] 12.61 
6 38829.4 [38119.8, 39450.1] 21.16 
7 42888.6 [42100.6, 43645.6] 20.17 
8 41713.8 [41396.1, 42020.2] 48.57 
9 12476.9 [12314.7, 12614.4] 27.07 

10 17812.7 [17656.6, 17963] 41.83 
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11 4446.7 [4329.1, 4571.1] 13.33 
12 286.1 [274.0, 298.4] 8.51 
13 113.6 [108.3, 119.0] 7.66 
14 29371.6 [29097.1, 29650.6] 38.85 
15 85195.8 [84753.5, 85638.3] 68.44 

a: Based upon 10000 bootstrapped samples. 

 

Figure 2. The range from observed minimum ( )MAMA-VNS MaxMin −  to 

maximum ( )MAMA-VNS MinMax −  differences for each case. 

The comparison of the MA and the VNS-MA algorithms for each 
instance is shown in Table 4. The table shows the mean, standard deviation 
and the range of unsolved clauses for VNS-MA and MA for each instance. 
Table 5 also shows the mean difference and the 99% confidence interval for 
the difference between MA and VNS-MA. Bootstrapping [11] was chosen 
due to the lack of knowledge regarding the statistical distribution of the 
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underlying population. Bootstrapping is a non-parametric re-sampling 
method that can be used to estimate statistical parameters without strong 
assumptions about the distribution of the populations from which the data 
samples have been drawn. Bootstrapping works by random sampling with 
replacement from the observed empirical distribution. This re-sampling 
procedure creates new data sets that are estimates of the original sampling 
distribution. Because of the random re-sampling each re-sample would be 
likely to be similar but slightly different from the original empirical 
distribution. Each sample would contain a largely similar distribution as the 
original sample, but with some observations missing and other observations 
present several times. This procedure allows for an evaluation of the 
sampling variability inherent in the observed data set and allows for a 
computer-intensive but conceptually simple estimation of statistical 
parameters that otherwise would be difficult to calculate using standard 
parametric estimation techniques [16]. As can be observed from Table 4, 
there is no overlap between the ranges of MA and VNS-MA. VNS-MA 
completely dominates MA in all instances. The performance of VNS-MA is 
strengthened by the fact that none of the confidence intervals for the mean 
difference between VNS-MA and MA contains zero (0)1. The standardized 
effect size measure Cohen’s delta [9] is very high2 and indicates that the 
effect of adding a variable neighborhood search strategy to a memetic 
algorithm leads to a great improvement of the solutions. To create a 
visualization of the difference between VNS-MA and MA, we computed the 
observed minimum ( )MAMA-VNS MaxMin −  and maximum ( MA-VNSMax  

                                                           
1We used mean-based statistics to evaluate the difference between the two algorithms because 
there was no overlap between the compared data sets. This is not in accordance with recent 
recommendations [2] but was found to be necessary because non-parametric rank-based tests 
of significance such as Mann-Whitney U-test would not entail extra information as non-
overlapping data sets would give identical solutions for different instances. 
2The mean-based effects size measure Cohen’s delta [9] was used because we used mean-
based t-tests to evaluate the difference between the data sets. We also included Cohen’s delta 

because the common language effect size measure 12Â  [42] would entail no extra information 

as one model would always be better, e.g., ( ) 1=>− MAMAVNSP  for all instances. 
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)MAMin−  differences in solved clauses, see Figure 2. The range from 

minimum to maximum differences does not include zero, hence showing that 
VNS-MA produced uniformly better solutions than MA in all instances. The 
relationship between the size of problem spaces and the output from the 
VNS-MA and MA is also an interesting parameter for evaluating the success 
of the variable neighborhood concept. The correlation between the size of the 
problem spaces (number of clauses) and the difference in mean solved 
clauses for VNS-MA and MA (mean percentage solved clauses for VNS-MA 
minus the mean percentage solved clauses for MA, see Table 1 for the data) 
was very high ( )001.;969. <ρ=r  indicating that enhancing the memetic 

algorithm with a variable neighborhood search leads to a improvement that 
increases for larger problem spaces. Even though it seems like there is a 
positive correlation between the sample space and the quality of solutions we 
cannot determine the exact shape of this relationship because of the small 
sample space ( ).15=n  To test possible causes for the difference in solution 

quality the relationship between the number of clauses and the quality of 
solutions provided by the two algorithms was analyzed. The relationship 
between the mean percentage of unsolved clauses and the number of clauses 
in each instance was estimated using a linear regression. The relationship 
between the mean percentage of unsolved clauses and the number of clauses 
for the VNS-MA was much lower ( ( ) =15t  3.059, = 2.041-8, 95% CI [1.163-

8, 2.714-8], )633.,008. == rp  than for the MA ( ( ) =15t  10.067, = 9.341-7, 

95% CI [8.232-7, 1.04-6], )937.,001. =< rp  indicating that VNS-MA is 

less affected by the size of the problem than MA. 

5. Conclusion 

VNS follows a simple principle that is based on systematic changes of 
neighborhood within the search. In this work, enhanced versions of TS and 
MA with VNS are introduced. The set of neighborhoods proposed in this 
paper is designed so that each generated neighborhood will serve as the basis 
for generating a larger one. By allowing TS and MA to view a cluster of 
variables as a single entity, the search becomes guided and restricted to only 
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those configurations in the solution space in which the variables grouped 
within a cluster are assigned the same value. As the size of the clusters varies 
from one neighborhood to another, the neighborhood becomes adaptive and 
allows the possibility of exploring different regions in the search space while 
intensifying the search by exploiting the solutions from previous 
neighborhoods in order to reach better solutions. Starting the search from the 
largest neighborhood and moving systematically towards the smallest 
neighborhood provides a better strategy to cope with the diversification and 
intensification search. The results obtained ensure that VNS greatly improves 
MA and TS and always returns a better solution for the equivalent run-time 
compared to TS and MA. Future work aims at investigating other strategies 
for generating neighborhoods satisfying the property introduced in this paper 
and identifying other parameters which may improve their performances. 
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