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Abstract 

In this paper, we introduce new family distribution. Using the odds 
ratio model approach suggested by Marshall-Olkin [16], a new model 
called Marshall-Olkin flexible Weibull distribution is proposed. We 
discuss estimation of the model parameters under type I, type II and 
complete samples. An application to a real data set is presented for 
illustrative purposes. 

1. Introduction 

Statistical distributions are very useful in describing and predicting real 
world phenomena. In many practical situations, we find that several of usual 
probability distribution functions found in application or do not provide an 
adequate fit. 
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Adding parameters to a well-established distribution is an effective way 
to enlarge the behavior range of this distribution and to obtain more flexible 
family of distributions to model various types of data. This has motivated 
researchers seeking and developing new and more flexible distributions. 
Model of proportional odds ratio plays an important role in the survival and 
reliability analysis. It is defined as the ratio of the distribution function to 
survival function. Marshall and Olkin [17] introduced an interesting method 
of adding a new parameter to an existing distribution. The resulting 
distribution is known as Marshall-Olkin extended distribution. The Marshall-
Olkin family of distributions is also known as the proportional odds family 
“proportional odds model” or family with tilt parameter. 

In this paper, adding a new parameter in flexible Weibull distribution to 
introduce a new family of distributions is discussed. In particular, starting 
with a survival function ( ),xF  the one parameter family of survival functions 
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where .1 α−=α  Then ( ){ }0>xG  is said to be a proportional odds family 

with underling distribution ( ).xF  Note that ( ) ( ).1; xFxG =  

The probability density function of the Marshall-Olkin given by (1.1) has 
easily-computed densities. In particular, if ( )xF  has a density and hazard rate 

( ),xrF  then ( )xG  has the density ( )xg  given by 
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The odds ratio plays an important role in the survival and reliability 
analysis. It is mainly used to compare two groups. It is defined as the ratio of 
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the distribution function to survival function. In 1997, Marshall-Olkin 
proposed a new method for adding a parameter to a family of distributions. 
Some special cases discussed in the literature include the Marshall-Olkin 
extensions of the Pareto distribution (Ghitany [6]), Weibull distribution 
(Ghitany et al. [7] and Zhang and Xie [22]), Lomax distribution (Ghitany et 
al. [8]), gamma distribution (Ristić et al. [20]) and linear failure rate 
distribution (Ghitany and Kotz [9]). Also, Gupta et al. [11] compared this 
family and the original distribution with respect to some stochastic orderings 
and also investigated thoroughly the monotonicity of the failure rate of the 
resulting distribution when the baseline distribution is taken as Weibull. 
Gómez-Déniz [10] presented a new generalization of the geometric 
distribution using the Marshall-Olkin scheme. Economou and Caroni [5] 
showed that Marshall-Olkin extended distributions have a proportional odds 
property and Caroni [2] presented some Monte Carlo simulations considering 
hypothesis testing on the parameter α for the extended Weibull distribution. 
Maximum likelihood estimation in Marshall-Olkin family is given in Lam 
and Leung [14] and Gupta and Peng [12]. Nanda and Das [19] investigated 
the tilt parameter of the Marshall-Olkin extended family. 

The article is organized as follows. In Section 2, we demonstrate the 
maximum likelihood estimates and the asymptotic variance-covariance 
matrix of the unknown parameters from the different sample schemes. 
Finally, some lifetime data sets are used to illustrate that the Marshall-Olkin 
flexible Weibull distribution can be used for the data under analysis by using 
simulation results which are performed in Section 3. 

2. Censored Data 

A random variable X is said to have a flexible Weibull distribution with 
parameters 0, >βλ  if its probability density function, cumulative function 

and survival function are given by 
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respectively. 

Now using (1.1) and (2.3), the survival functions of Marshall-Olkin 
flexible Weibull distribution with parameters 0, >βλ  and ∞<α<0  take 

the form as following: 
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Also, the probability density function with parameters λ, β and α becomes 
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In a typical life test, n specimens are placed under observation and as 
each failure occurs the time is noted. Finally, at some pre-determined fixed 
time T or after pre-determined fixed number of sample specimens fail r, the 
test is terminated. In both of these cases, the data collected consist of 
observations ( ) ( ) ( )rxxx ...,,, 21  plus the information that ( )rn −  specimens 

survived beyond the time of termination, T in the former case and ( )rx  in the 

latter. When T is fixed and r is thus a random variable, censoring is said to be 
of single censored type I; also, when r is fixed and the time of termination T 
is a random variable, censoring is said to be of single censored type II. In 
both type I and type II censoring, Cohen [4] gave the likelihood function as 

 ( ( ) ) [ ( )]∏ =
−∝

r
i

rn
i xGxgL

1 0 ,  (2.6) 
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where ( ( ) )ixg  and ( )0xG  are the density and survival functions, respectively, 

and in type I, the time of termination at Tx =0  and in the type II at ( ).0 rxx =  

If ,nr =  then equation (2.6) reduces to complete samples. 

In general, likelihood function in different sample schemes will be 
obtained as follows: 
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Taking logarithm likelihood function with survival function ( )0xG  and 

probability density function ( ( ) )ixg  based on equation (2.6) is given by 
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Taking the partial derivative of the log-likelihood function with respect to 
( ),,, βλα=Θ  where Θ is an unknown parameter which corresponds to new 

distribution where ( )βλ,  corresponds to the parameter of the baseline 

distribution. The log-likelihood function for Θ is 
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After the previous equation is equal to zero α̂  is 
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Setting above equations to zero and solving them simultaneously yields 

the maximum likelihood estimate ( )βλα=Θ ˆ,ˆ,ˆˆ  of ( ).,, βλα=Θ  These 

equations cannot be solved analytically and statistical software can be used to 
solve them numerically. 

The asymptotic variance-covariance matrix of the estimators of the 
parameters is obtained by inverting the Fisher information matrix in which 
elements are negative of expected values of the second partial derivatives of 
the logarithm of the likelihood function. 

Therefore, the approximate sample information matrix will be 
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(see Cohen [3]). For large n ( ),50≥n  matrix (2.11) is a reasonable 

approximation to the inverse of the Fisher information matrix. Not that 
closed form expressions of the expected values of these second order partial 
derivatives are not readily available. These terms can be evaluated by using 
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numerical methods. Furthermore, define ( ).ˆ,ˆ,ˆlim 1
1 βλα= −

∞→
nIV

n
 The joint 

asymptotic distribution of the maximum likelihood estimators of α and θ is 
multivariate normal (see Lawless [15]). 

3. Data Analysis 

In this section, we provide an application of Marshall-Olkin flexible 
Weibull distribution and their submodels. We provide a data analysis in order 
to assess the goodness-of-fit of a model which works in practice. The data 
have been obtained from the time between failures of secondary reactor 
pumps, Suprawhardana et al. [21]. The data are as follows. 

Table 1. Time between failures (thousands of hours) of secondary reactor 
pumps 

2.160 0.746 0.402 0.954 0.791 6.560 4.992 0.347 
0.150 0.358 0.101 1.359 3.465 1.060 0.614 1.921 
4.082 0.199 0.605 0.273 0.070 0.062 5.320  

The analysis of least square estimates for the unknown parameters in 
these distributions namely: Marshall-Olkin flexible Weibull distribution (M-
OFWD), flexible Weibull distribution (FWD), Marshall-Olkin flexible 
exponential distribution (M-OFED) and exponential distribution (ED) by 
using the methods of least squares is defined. The least square estimators of 
the unknown parameters for Marshall-Olkin flexible Weibull distribution 

(M-OFWD), coefficient of determination ( )2R  and the corresponding mean 

square error (MSE) are given in Table 2. 

Table 2 shows that the Marshall-Olkin flexible Weibull distribution has 
the smallest MSE among these models which indicates that the Marshall-
Olkin flexible Weibull distribution provides the best fit for the given data 
among all these models. Another check is to compare the respective 
coefficients of determination for these regression lines. We have supporting 
evidence that the coefficient of determination of M-OFWD is 0.982, which is 
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higher than the coefficient of determination of M-OFED, FWD and ED. 
Hence, the data point from the M-OFWD has better relationship and hence 
this distribution is good model for lifetime data. 

Table 2. Estimated parameters of different models 
Least square estimators 

Distribution 
α β λ θ 

MSE R2 

M-OFWD 0.971 3.369 0.451 --- 0.000889 0.982 
FWD --- 3.393 0.413 --- 0.000956 0.938 
M-OFED 1.098 --- --- 0.0094 0.000937 0.974 
ED --- --- --- 0.718 0.006603 0.925 

Now, we apply the formal goodness-of-fit test in order to verify which 

distribution fits better to these data. We consider the Cramer-von Mises ( )∗W  

and Anderson-Darling ( )∗A  statistics. In general, in Table 3, the smaller the 

values of the statistics ∗W  and ,∗A  the better of fit to the data. 

Table 3. Goodness-of-fit test for different models 

Statistics 
Distribution 

W ∗ A∗ 
M-OFWD 0.087 0.042 
FWD 0.091 0.331 
M-OFED 0.089 0.047 
ED 0.097 1.001 

Also, estimate the parameters by using the bootstrap sampling method in 
Table 4 as follows: 
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Table 4. Point estimation based on bootstrap simulations 
Complete Type I censored Type II censored 

n α β λ r α β λ T α β λ 
 0.827 3.002 0.561 2 0.809 2.750 0.503 1.958 0.794 2.750 0.378 

5 0.827 3.003 0.562 3 0.809 2.780 0.503 1.967 0.794 2.780 0.409 
 0.829 3.005 0.572 4 0.81 2.835 0.503 1.971 0.794 2.835 0.421 
 0.830 3.006 0.574 5 0.811 2.894 0.503 1.998 0.795 2.894 0.443 

10 0.831 3.007 0.578 6 0.811 2.901 0.503 2.005 0.795 2.901 0.443 
 0.833 3.007 0.579 7 0.811 2.908 0.505 2.009 0.797 2.908 0.445 
 0.835 3.009 0.579 10 0.812 2.911 0.505 2.013 0.797 2.911 0.447 

30 0.838 3.011 0.58 15 0.813 2.914 0.506 2.018 0.800 2.914 0.449 
 0.838 3.013 0.582 20 0.814 2.940 0.509 2.031 0.800 2.940 0.451 
 0.840 3.029 0.584 30 0.816 2.946 0.514 2.041 0.800 2.946 0.451 

100 0.841 3.031 0.592 40 0.817 2.947 0.515 2.058 0.801 2.947 0.452 
 0.845 3.033 0.593 50 0.82 2.953 0.516 2.071 0.801 2.953 0.456 

Again, Table 5 shows asymptotic variance-covariance matrix of the 
maximum likelihood estimators and were calculated as described in Section 3 
and are given as α, β and λ. 

Table 5. Asymptotic variance-covariance matrix 
Asymptotic variance-covariance matrix 

Sampling 
V(α) V(β) V(λ) Cov(α, β) Cov(α, λ) Cov(β, λ) 

Complete 0.006 0.016 0.018 –0.513 –0.726 0.138 
Type I censored 0.137 0.748 0.074 –0.614 –0.742 0.179 
Type II censored 0.183 0.417 0.079 –0.912 –0.777 0.243 
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