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Abstract 

We provide the optimal value of the constant ( )mnK ,  in the 

Gagliardo-Nirenberg supnorm inequality 
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and its generalizations to the Sobolev spaces ( )nsH R  of arbitrary 

order 2ns >  as well. 
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1. Introduction 

In recent decades there has been a growing interest in determining the 
sharpest form of many important inequalities in analysis, see e.g. [1-5, 8, 10] 
and references therein. A noticeable miss is the fundamental Gagliardo-
Nirenberg supnorm inequality 
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for functions ( )nmHu R∈  when 2nm >  (see [7, 9]), as well as some of its 

generalizations. Here, as usual, ( )nmH R  is the Sobolev space of functions 

( )nLu R2∈  with all derivatives of order up to m in ( ),2 nL R  which is a 

Banach space under its natural norm defined by 
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(with iD  denoting the weak derivative with respect to the variable ).ix  In this 

brief note, we will review some basic results in order to derive the optimal 
(i.e., minimal) value for the constant ( )mnK ,  in (1.1) above. It will be seen 

in Section 2 that it turns out to be 
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 (1.3) 

where ( ) π=σ rr :  and ( )⋅Γ  is the Gamma function (for its definition, see e.g. 

[6, p. 7]). For example, we get, with 2=m  and ,3,2,1=n  the sharp 
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pointwise estimates 
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and so forth. (In [10], it is obtained that 
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which is also shown to be optimal.) Also, setting 
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for real ,0>s 1 where ( )⋅û  denotes the Fourier transform of ( ),⋅u  that is, 
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and letting ( ) { ( ) ( ) }∞<∈= nsH
nns uLuH RRR &:2  be the Sobolev space 

of order s, we get the following generalization of (1.1), (1.3) above. If >s  
,2n  then 
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for all ( ),nsHu R∈  with the optimal value of the constant ( )snK ,  being 

                                                           
1Note that (1.5) corresponds to (1.2b) when ms =  (m integral), that is: ( ) =nmHu R&  
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given by 
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for any ,2ns >  where, as before, ( ) .: π=σ rr  The proof of (1.1), (1.3), (1.7) 

and of the sharpness of the values for K given in (1.3), (1.7b) above is 
provided in the sequel; in addition, a second classical estimate for ( )nLu R∞  

when ( ) ,2, nsHu ns >∈ R  is also reexamined here (see (2.4) below), so as 

to be similarly presented in its sharpest form. 

2. Proof of (1.1), (1.3), (1.7) and Other Optimal Supnorm Results 

in ( )nsH R  

To obtain the results stated in Section 1, we first review the following 
basic lemma. We recall that û  denotes the Fourier transform of u, cf. (1.6) 
above. 

Lemma 2.1. Let ( ).2 nLu R∈  If ( ),ˆ 1 nLu R∈  then ( )nLu R∞∈  and 

 ( ) ( ) ( ).ˆ2 12 nn L
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Moreover, equality holds in (2.1) if û  is real-valued and of constant sign 
(say, nonnegative). 

Proof. Clearly, (2.1) is valid if ( ),nu RS∈  where ( )nRS  denotes the 

Schwartz class of smooth, rapidly decreasing functions at infinity ([6, p. 4]), 
since we have, in this case, the representation (see e.g. [6, p. 16]) 
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For general ( )nLu R2∈  with ( ),ˆ 1 nLu R∈  let { }mû  be a sequence of Schwartz 
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approximants to ( ) ( )nn LLu RR 21ˆ I∈  such that ( ) 0ˆˆ 1 →− nLm uu R  and 

( ) 0ˆˆ 2 →− nLm uu R  as ,∞→m  and let ( )n
mu RS∈  be the Fourier inverse 

of ,ˆmu  for each m. Applying (2.1) to { },mu  we see that { }mu  is Cauchy in 

( ),nL R∞  so that ( ) 0→− ∞ nLm vu R  for some ( ) ( ).0 nn CLv RR I∞∈  

Since we have ( ) ,02 →− nLm uu R  it follows that .vu =  This shows that 

( ) ( )nn CLu RR 0I∞∈  and, letting ∞→m  in (2.2), we also have 
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from which (2.1) immediately follows. In particular, in the event that ( )ξû  

0≥  for all ξ, we get from (2.2′) that ( ) ( ) ( ) ,ˆ20 12 nL
n uu R

−π=  so that (2.1) 

becomes an identity in this case. ~ 

We observe that the hypotheses of Lemma 2.1 are satisfied for ∈u  

( )nsH R  if .2ns >  An important consequence of this fact is the fundamental 

embedding property revisited next, where the norm in ( )nsH R  is set to be 

(in accordance with (1.2a) above): 
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Theorem 2.1. Let .2ns >  If ( ),nsHu R∈  then ( ) ( )nn CLu RR 0I∞∈  
and 
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where ( ) .π=σ rr  Moreover, equality holds in (2.4) when ( ) ( ),1ˆ 2scu ξ+=ξ  
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nR∈ξ∀  for some constant ,0≥c  so that the constant given in (2.4) above 

is optimal. 

Proof. Let ( ),nsHu R∈  with .2ns >  By (2.1) and Cauchy-Schwarz’s 

inequality, we have 
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by (2.3), since, using polar coordinates and the change of variable =t  
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where ( )22 2 nn
n Γπ=ω  is the surface area of the unit ball in nR  (see [6, 

p. 8]), and ( ) .π=σ rr  This shows (2.4). Finally, if ( ) ( )scu 21ˆ ξ+=ξ  for 

all ξ, for some 0≥c  constant, then equality holds in both steps (2.5a) and 
(2.5b) above, so that (2.4) is an identity in this case, as claimed. ~ 
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We are now in very good standing to obtain (1.1), (1.7a) with their 
sharpest constants. 

Theorem 2.2. Let .2ns >  If ( ),nsHu R∈  then 
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with ( )snK ,  defined in (1.7b). Moreover, equality holds in (2.6) if ( ) =ξû  

( ),1 2sc ξ+  ,nR∈ξ∀  0≥c  constant, so that the numerical value of K 

given in (1.7b) is optimal. 
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for 0>λ  arbitrary. Choosing λ that minimizes the last term on the right of 
the above expression gives us (2.6), with ( )snK ,  defined by (1.7b), as 

claimed. Now, to show that the value provided in (1.7b) is the best possible, 
we proceed as follows. First, we observe that, by Young’s inequality, 
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for all ( ).nsHu R∈  Therefore, taking ( )nsHw R∈  defined by ( ) =ξŵ  

( ) ,0,1 2 ≥ξ+ cc s  we get, with ( )snK ,  given in (1.7b): 
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 [by (1.7b), (2.7)] 

( ) ,nLw R∞=  [by Theorem 2.1] 

thus showing that we have ( ) ( )
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