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Abstract

Let f : N? > C be an arithmetic function of two variables. We study

the existence of the limit:

lim 5t 3 (),

k-1
x x2(logx)f L S

where k is a fixed positive integer. Moreover, we express this limit as
an infinite product over al prime numbers in the case that f is a
multiplicative function of two variables. This study is a generalization
of Cohen-van der Corput’s results to the case of two variables.

1. Introduction

Let n denote the Mobius function and let py = p*p*---*p be the
k
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k-folded Dirichlet convolution of y, that is,
n) = dy)u(dy)--- w(d
b (n) Zdldz...dk:n“( Du(dz)---pu(dy)
for every n. Cohen [2] proved that if f : N+ C is an arithmetic function

satisfying 3 [ (f *py)(n)|/n < oo, then

lim — Z f(n) (k 1)|Z(f * Hk)(n) (1.1)

> x(log x)

van der Corput [12] proved that if f : N C is a multiplicative

function satisfying ]_[pe73 (Zfzo | (f = w)(pY) |/ p") < oo, where P is

the set of prime numbers, then

ki =* f( V)
lim = 12 ()_(k 1)|H( )[Z p% } (1.2)

X—0 x(Iog X

We would like to generalize these results to the case in which f is an
arithmetic function of two variables and obtain several interesting examples.

Let gcd(ng, ny) denote the greatest common divisor of ny and n,, o(n)
the sum of divisors of n, and ¢(n) Euler’s totient function. Cohen [3] proved
that

3
Z o(gcd(ng, ny)) = xz(log X+ 2y — % - %2)) + O(xE log x), (1.3)

Ny, Ny <X

> olged(ng, np)) =

Ny, Np <X

_1 42 _2¢(@)
2)("’9’“Zy 3~ %))

+0(x2 log X), (1.4)

where ¢(n) is the Riemann zeta function.
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Next we consider two functions s and c, where s(ng, ny)=

zd1|n1,d2|n2 ng(dl’ d2) and C(n]_, n2) = Zd1|n1:d2‘n2 (P(ng(dli dZ))
Nowak and T6th [4] proved that

1117
—S~,TE&
E s(ng, ny) = %xz(log3 X + ay log? X + ay log X + ag) + (x 701 ),
T
ng, Ny <X

(1.5)

1117
_+
Z c(ng, ny) = % x2(log3 X+ by Iog2 X + by log x + bg) + (x 701 8),
T
Ny, No <X

(1.6)
where aq, a,, ag, by, by, by are explicit constants.

We would like to obtain these leading coefficients in (1.3) ~ (1.6) by a
systematic method. We will calculate those leading coefficients in Examples
3,4, 7 and 8 in Section 5. Although we cannot obtain remainder terms by our
theorems, our method for obtaining leading terms is very simple and is
applicable to many arithmetic functions of two variables.

2. Some Results

Let u(ng, ny) denote the Dirichlet inverse of the gcd function, that is,
p is the function which satisfies (i * gcd)(ng, ny) = 8(ng, ny) for every
Ny, N, € N, where 8(ny, ny) =1 or 0 according to whether ny =ny, =1 or

not. Let x A y denote min(x, y). We first establish the following theorem.

Theorem 1. Let f be an arithmetic function of two variables satisfying

o]

Z |(f *ﬁ)(nl’ n2)| < o0, (2.1)

nny

m,np=1
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Then we have

! > f(mmz)—% Z {1 * i), np)

lim xy log x A N
X, y—>o XYy 109 ynlsx,nzsy 1N2

(2.2)

The proof of Theorem 1 will be given in the next section. To proceed to
the next theorem, we need some notations. Let

(M, Np) = (LxL*---x1)(nyg, ny)
K

stand for the k-folded Dirichlet convolution of the function 1, where
1(n, ny) =1 for every ny, ny e N. Let p, = 1> denote the Dirichlet

inverse of 7). Note that py(ng, ny) = pu(ng)p(ny). Similarly, let

7 (ng, ny) = ged(ng, ny),

T(ng, o) = (1 *1*---x1xgcd)(ng, ny) if k > 2.
k-1

We also denote iy, = T~ the Dirichlet inverse of . Note that [i; = i

= gcd~! and Uk = Mg_q *p if k > 2. The next theorem is an extension of

Cohen’s theorem (1.1) to the case in which f is an arithmetic function of two
variables.

Theorem 2. Let f be an arithmetic function of two variables and let
k e N.

(i) Suppose

Z | (f =) (g, np)| < o, (2.3)
nmn;
n1’n2:1

Then we have
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lim L Z f(ng, ny)

x, y—o xy(log x log y)k_l

N <X,Np,<y
_ o (f * ) (g, np)
=C Y, oy , (2.4)
nl,nzzl
1
where C, = ————.
(k-2
(ii) Suppose
Z |(f *Hk)(”l-n2)| < 0. (25)
NNy
nl,n2=l

Then we have

lim ———— > f(ny, np) =G i (F i) (g, ng) 5 6

2 2k-1
X—00 X (IOQ X) ng, Ny <x Ny, np=1 M2
~ 1 1
where Cy = .
2) ((k —11?(2k - 1)
Remark. In part (ii), we do not deal with:
limy, y oo (xy(log xlog y)* logx A y) ™D f(m )

since it is too complicated and we cannot obtain a simple formula.

The proof of Theorem 2 will also be given in the next section.
3. Proof of Theorem 1 and Theorem 2
The following lemma is well known (cf. Cohen [2]) and will be needed

later.

Lemma 1. For fixed a > 0 and all x, we have

a+l

log*n _ log*™ x
> = ===+ 0(1). (3.1)

n<x



156 Noboru Ushiroya
: 2 2
It is also well known that an,nzgng(nl’ ny) = x“ log x/£(2) + cx

+ o(xz), where ¢ is a suitable constant (cf. Cesaro [1]). We would like to
modify this formula as follows.

Lemma 2.
] 1
lim ——— cd n 3.2
x, y—o Xy log X A'y Z ged(n, nz) = C(Z) 32
M <X,Ny <y
Proof. Let
A(x, y) =#{(n, np):1<m <x,1<ny <y, ged(ng, ny) =1}

>, HA((ged(n, m))?).

N <X,Ny<y

Applying Theorem 7 in Ushiroya [11] to the function pz((gcd(nl, n2))2) we
have

x'y"ﬂoox_y’*(X N =5g)

From this we have

> ged(ng, np)

m<X,N, <y

= Z d#{(n, np);1<m <x,1<n, <vy,ged(ng, ny) =d}

1<d<xAy

= Z d#{(ni, np)l<nm Sdl’ 1< Sdl’ ged(ny, n'z):l}

1<d<xay
_ X Y o 1 xy Xy
- 2 dA(d’dj_ > d(q(z)dd“’(d dD
1<d<xay 1<d<xay

C(Z) xy log x A 'y + o(xy log x A y),

which implies (3.2). O
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Lemma 3. Let a(ng, n,) be an arithmetic function of two variables
satisfying Z:Ol’nzzﬂ a(ny, ny)| < co. Then we have
1 X y S
Z a(n, n2)loga/\— = Z a(n, ny). (3.3)

lim logx Ay n
Xy N <X, Ny <y 2 ng, np=1

Proof. We put M = Z;i nz:la(nl, ny). Then for any &> 0, there

exists N > 0 such that ‘Z a(ng, np)— M ‘ < ¢ If we take x and y

n, n2<N

sufficiently large such that x A y > N, then we have

Z a(ny, n2)logn—x1 A

ny
N <X,Ny<y

= Z a(n, nz)(logn—xl/\%—logx/\yj

nl,n2<N

+logx Ay Z a(ng, ny)

M, n2<N

+ Z a(n, n2)logn—X1/\%:: L+ 15 + 13,

N <X,Ny <y
mAng=N
where
n "
lp<| sup logl2—21| > a(n,ny) < logN,
XAY
N, Np<N ny, Ny <N

I, =M logx A y|<elogx Ay,

and

I3 < logx Ay Z a(n, ny) < elogx Ay.

N <X,Ny,<y
mAng2=N
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Therefore, we have

limsup
X, y—0

1 Xy
logx Ay Z a(”l'”2)|09n—l/\ M| < 2e.

o

M<X, N, <y 2

Since ¢ is arbitrary, (3.3) holds. O
Now we can prove Theorem 1.

Proof of Theorem 1. We put g = f * . Noting that p * Ty = & we have

doofem) = D> (FrR*T) (g, np)

Mm<X, Ny <y M<X, Ny <y

D (g*)(n, np)

m<X, Ny <y

D 9(dy dp)E(3y, 82)

d181<X,d58,<y

= > dmm) D HGy8y).

M <X,Ny<y glgi’gzgi
M Nz

From Lemma 2 we see that this equals

L ol 2) o2}

Mm<X,nNy <y

Applying Lemma 3 to the function a(ny, ny) = g(ny, ny)/nny, we see
that the above equals

xylogx Ay < 9(ng, np)
22 Z_ T +o(xylog x A y),
nl,nz_l

which implies (2.2). Thus, the proof of Theorem 1 is now complete. O

Next we prove several lemmas needed later.
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Lemma4. > logm An, = xylogx A y+o(xylogx A y).
M<X, Ny <y
Proof. Without loss of generality, we may assume that y < x. Let [X]
denote the greatest integer that is less than or equal to x. Using the well
known formula ZlSnSX logn = xlog x — x + O(log x), we have

[x]
Z Iognlx\nzzz nZzlogn1+ i log ny

M<X, N, <y n,<y\n=1 m=n,+1

= > (nplogny -y +O(logny) + ([x] - ) log ny)
np<y

= > ([xlogn, n + O(log ny))
n,<y

= [x](ylog y - y + O(log y)) + O(y*)

= xylog x A y + o(xy log x A y).

logm A Ny

Lemma5. > o
2

Ny, Ny <X

= %(Iog x)3 + 0o((log x)s).

Proof. Using Lemma 1 we have

I I I
I DI

nl,n2SX n2SX n1Sn2 n2<n1SX

(Iogn)2 O(1) logny(logx —logn, +0(1))
- 3 (oot fanean o 00

Ny <X
= %(Iog x)3 + %(Iog x)3 - %(Iog x)3 + 0((log x)3)

_ %(Iog x)3 + o(log X)°). 0
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Lemma 6. For fixed a, p > 0 and all x, we have

o BlogX A X
(lOg nl) (lOg n2) |Og N N Ny (lOg X)OH—B+3

N, " @+)B+D(a+p+3)

Ny, n2SX
+0((log x)*P*3), (3.4)

Proof. Using Lemma 1 we see that the left side of (3.4) equals

(log ry)*(log np)P |Og% (logny)*(log np )’ |09n—xl

AP 3
MmNy mny

n2SX n1Sn2 n2<n1£)(

_ (log ry)*(log )P (log x — log ny )
- Z i)

Ny <X\ Ny <ny

+ Z (log m ) (log nri):z(log x —log ”1)}

n2<n1SX

-y [((Iog np)**! + 0(2)) (log n)P(log x — log ny)
(OL + 1)n2

n, <X

((log x)*** = (log ny)**™ + O(1)) (log n,)° log x
+
(OL + 1) n2

((log x)* "% — (log n,)* "2 + O(1)) (log nz)BJ
B (OL + 2)n2

_ 1 1 \(logx)**?(logn,)P — (log ny)**P+2
a Z (Ot j ny

+ o((log x)**P*3)
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_ 1 (log x)**P*3  (log x)**P*3 at Bt
- (oc+1)(oc+2)[ B+l o+pr3 | toWlogx) Pr3)

o+B+3

(log x)
(a+1)(B+1)((x+B+3)

+ o((log x)*+B+3),

This proves Lemma 6. O

The next lemma gives a partial summation formula in the case of a
function of two variables.

Lemma 7. Let a(ny, ny) be an arithmetic function of two variables and

let M(x, y) = Zn . <ya(n1, n,). Then we have

a(ny, np) _ M (ny, np) M(ny, y)
2 oo nlzgxnlml +Ony(np +1) nlzgxnl(nl ~)([O]+D

M<X, Ny <y

np<y

M (x, np) M(x, y)
+ 35
2 e+ D00 WO 9
where [x] is the greatest integer that is less than or equal to x.

Proof. We put M(x, y)=0 if x <1 or y <1 for convenience. Then
we see that the left side of (3.5) equals

Z M(n, np) =M(ny =1, np) = M(ny, np —1)+ M(y =1, np - 1)
MmNy

<X, Ny <y

1 1
B Z M, nZ){nlnz_(thrl)nz

m<X,Ny <y

1 1 }
m(np +1)  (m +1)(ny +1)

M) | M y) 5 M, )
RPN G A o 1 e P e iy
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B Z M(x, np) M(x, y)
I+ Dy + D~ (x+d+ ) ({[y]+1)
1
- Z M(ny, n2) n(ng + 1)ny(n, +1)

N <X,Np<y
Z M(x n2) 1
(x]+1) Ty +1

M(nl, y) 1 M(x, y)
Z y]+1) ( n1+1) (x]+D([y]+1)’

which equals the right side of (3.5). O

The next lemma is an extension of Proposition 5 in van der Corput [12]
to the case of arithmetical functions of two variables.

Lemma 8. Let a, b be arithmetical functions of two variables and let
c=a=*b. For a, p >0, we assume that

lim L Z a(n, ny)=A

x, y— xy(log x)*(log y)? <X Ny <y

where A is a constant.

@ If lim xi > b(ny, ny) = B, where B is a constant, then

X, y—©

N <X,N,<y
. 1 AB
lim e, Ny)=+—+—-—. (3.6)
x—» xy(log x)***(log y)P* nlsx,Zn:ZSy (a+D(B+1)
@ii) If  lim ___t > b(ny, np) =B, where B is a constant,
x, y—o Xylogx Ay <X, Ny <y

then

AB
xlinooxz(logx)o‘*‘3+3 Z . np) = (a+1)(B+1) (o +B+3)

Ny, Ny <X

(3.7)
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Proof. We first prove (i). We have

Do)=Y (axb)(ng, np)

M<X, Ny <y <X, Ny <y

— Z a(él, €2)b(m1, m2)

LM <X, £,o,my <y

= D ally, £p)(b(my, my) - B)

LMy <X, £omy <y

163

+ D (alfy, £3)— Allog £1)*(log 7))

(M <X, Lomy <y

+AB Z (log?y)*(log£,)P = 11+ 15 + 13,

LM <X, 0,my <y

where, by Lemma 7 and Lemma 1,

b= > alfy, fp) Y. (b(my, my)—B)

01X, 05<Yy my <x/¢4
mp<y/t2
=Yy o B
(1l
01X, 0y <y

_ Al105(log £1)*(log £,
= O[Xy 2 1+ D) loly +1)
U1<X, 0,y

= o(xy(log x)***(log y)**1),

=B D (a(ly, £2) - Alog 11)*(log 5 ) >

01X, L9<y M <X/, mo<y/lo

- B Z %(a(fl’ ¢5) ~ A(log ¢1)*(log £, )P)

L1SX, 05y
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o(¢4¢5(log £1)*(log 75 %)
=B > v

01X, 0, <y

= o(xy(log x)**1(log y)**1),

and

I3 = AB Z (log £1)*(log £, )P Z 1

01X, lo<y m]_SX/fl,mzéy/fz

_ Xy o B

01X,y <y
— AB o+l B+1 o+1 B+1
@ DG xy(log x)*"*(log y)™" + o(xy(log x)”"*(log y)***).

Therefore, (3.6) holds. This proves (i).

Next we prove (ii). Similarly we have

Zc(nl, ny)

N, Np <X

= Z a(fl, fz)b(mla m2)

LMy <X, £oMo <X

= D> alfy, £5)(b(my, my) — Blogmy A my)

LMy <X, £omy <X

+B D (@l £2)~ Alog (1) (log £))log my A m

LMy <X, £ oMy <X

+ AB z (log £1)*(log £5)P logmy A my =: Iy + J5 + Ja.

LMy <X, £ oMy <X

First, we have
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W=D, ally, ) > (b(my, my) — Blogmy A my)

01, 05<X my<X/fy,My<x/l,

= Z a(lq1, £2)0 Iog X
’ f f 0 fz

lq,09<X

Since log % AZ < log X, we have by Lemma 7 and Lemma 1
1

ko

J; < o(x? log x) Z M = o(x%(log x)**B+3),

0y, 05 <X

Second, we have by Lemma 5

J=B Y logmam, > (a(fy, )~ Allog/y)*(log/, )

my, My <X £1<x/my, £, <x/my
X x \* x )P
=B Z (logmy A mz)o{ (Iog—j (Iog—j J
my T <X my my ma

= o[xz(log Y log 211mA2 mz}

My, My <X

= o(x2(log x)*+P -%(Iog x)3j

= o(x%(log x)**B+3),

Third, we have by Lemma 4 and Lemma 6

J; = AB Z (log £4)*(log £, )P Z logm A my
fl,KZSX mlSX/fl,m2§X/[2
= AB > (log 1)*(log £, )’
fl,fzﬁx

x| 2 Xjog 2 a X o X X g X
00, 9 N AT, gfl 7,

2(|Og X)OH—B+3

B(oc+1)([3+1)(oc+[3+3)

+0(x?(log x)**P+3),
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From these estimates we have

2 o+B+3
Z c(ry, ny) = AB @ +)£) ((éo?_ Z)L())(a 59 n 0(X2(|Og X)O‘+B+3).

Ny, n2§X
Thus, the proof of Lemma 8 is now complete. O
Now we can prove Theorem 2.

Proof of Theorem 2. We first prove (i). We proceed by induction on k.
If k=1, then (2.4) holds by Theorem 1 in Ushiroya [10]. Let k > 2 and
suppose that (2.4) holds for k —1 instead of k. We put g = f *p, and

h =g *1_q. Since

i [9(n, )| _ i [h* e, o) | _

nl, n2 =1 nln2 nl, n2 =1 nln2
holds by the induction hypothesis, we obtain
1 = g, N
lim Z h(ng, ny) = Cy_4 Z g(l—nZ)
xy— xy(log xlog y)? | &= nmel 2

Since f =h =1, wehavebytakinga=hb=1and a=pf=k—-2in
Lemma 8(i)

lim L — Z f(ny, ny)

k-1
x, y— xy(log x log y) M <X, Ny <y

Z g(nl, nz) Z g(:ihznZ)

2
(k 1) nl n,= nl n,=1
This proves (i).

Next we prove (ii). Similarly we proceed by induction on k. If k =1,
then (2.6) holds by Theorem 1. Let k > 2 and suppose that (2.6) holds for
k —1 instead of k. We put g = f * p and h = g * t_4. Since
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i [9(w, np) | _ i [ e (m, o) | _

mn n
N, Ny =1 172 Ny, Ny =1 nl 2
we have by Theorem 2(i)
1 = g, N
lim Z h(n, ny) = Cy_4 Z g(l—nZ)
xy— xy(log xlog y) % | &= nmel 2

Since f =h=7, wehave by takinga=h,b=7 and a =B=k -2
in Lemma 8(ii)

lim ——* Z f(ng, ny)

2 2k—1
x—o x“(log x) . My <X

_ 1 Ck-1 9(”1, nz) 9(ny, np)
 (k —1)%(2k —1) ¢(2) Z = Z MmN,

N, Np= Ny, nz—l

Thus, the proof of Theorem 2 is now complete. O
4. Multiplicative Case

We say that f is a multiplicative function of two variables if f satisfies

f(myny, mon) = f(my, my) f(ny, ny)
for any my, m,, iy, n, e N satisfying gcd(mym,, mn,) = 1. It is well known
that if f and g are multiplicative functions of two variables, then f * g also

becomes a multiplicative function of two variables. The next theorem is an
extension of van der Corput’s theorem (1.2) to the case in which f is a
multiplicative function of two variables.

Theorem 3. Let f be a multiplicative function of two variables and let
k e N.

(i) Suppose
Z Z |(f *Hk)(p\/l V2)| < o0, (41)

Vl+V2
pEP Vi1,V2 >0
vi+vo>1
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Then we have

||m f(nl n2)
x, y—> xy(log x |Og y)k . nz<x
n2<y

2k v v
(e [ 5 w_m] 42)
peP v,V 20 P
1
where C, = ————.
C (k-1
(ii) Suppose
f o Vi pV2
> 5 ( “k)vffvz P _ 43)
pEPVl V2>O
v1+vo=l

Then we have

lim z f(n, ny)

X500 X2(|Og X)Zk -1 =

- 2k+1 Vi AV2
=C|’<H(1—%) { 3 %J (4.4)

pEP Vl,V220 p

1

where Cy = ((2)Cy = (D=1

Remark. In part (ii), we do not deal with:

limy, y_ye0(xy(log x log y)* Flog x A y) ™" f(ng, np)

Mm<X,Np<y
since it is too complicated and we cannot obtain a simple formula.

Before we prove Theorem 3, we give lemmas needed later.
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Lemma 9 (Sandor and Crstici [5], p. 107). For k e N and p € P, we

have
k\( k
Hk(pvlv p¥2) = (_1)Vl+vz(‘/1j(\’z) if vy, vp <Kk,
0, otherwise,
kY . . . .
where [ j is a binomial coefficient.
A%

Lemma 10. For p € P we have

-1, if V1 + Vo =1
2—p, if V1=V2=1,
n(p't, p¥2)=4p-1 if [vy—vy|=1and vq, vp 21,

2—2p, if V1=V222,

0, otherwise.

Proof. Let f be the multiplicative function defined by the same formulas
as the above. Then, by an elementary calculation, it is easy to see that
(f #gcd)(p?, p°) = 8(p?, p°) holds for every a, b > 0. By the uniqueness

of the Dirichlet inverse of the gcd function, we have f = p. O

Now we can prove Theorem 3.

Proof of Theorem 3. We first prove (i). Since the function: (ng, n,)

(f *m)(n, ny)
NNy

=

is multiplicative, we have

Z | (f =) (g, np)|
M<X,Np<y M2

1
<11l 2 pV1+V2|<f*uk)(pV1. pY2)|

peP\ v1,vo20
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-H[“ > e, pV2>|}

peP vi+vo2l

<exp{2{ Z pV1+V2|( * ) (p'L, sz)|D

p \vi+vy2l

where we have used the well known inequality 1+ x < exp(x) for x > 0.

Therefore, (2.4) holds by Theorem 2(i). On the other hand, using Lemma 9
we have

Z (f *m)(p", p"?)

V1+V2
v1,v220
_ i f(p*, p*2)u(p™, p™2)
- a1+b_|_+8.2+b2
ag, ap, by, by=0 P

i f(p%, p*2) Zk: (_1)bl+b2(:>3(tl>(zj

aj+a b
a0 P 1+ap by, b0 pbl+ 2
_ i f(p, |of"2)(1 1)”
- T oytay (0 p)
a]_,a2:O p ! 2 p

Hence, the right side of (2.4) is equal to
1 2k f(le, pV2)
Ckn(l‘_j [ 2 |
V]_,szo p
This proves (i).

Next we prove (ii). Similarly we have

D | (f * ) (my, mp) |
m, My <X m1m2
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21> pvmu “fi) (P, pV2>|}

peP\ vy, vo20

peP V]_+V2>l

< 1+ Z V1+V2|( * ) (p™L, pV2)|]

Sexp[Z[ Z V1+V2|( * ) (p', sz)|B

peP\vi+vo21

Therefore, (2.6) holds by Theorem 2(ii). On the other hand, we have

3 (f *f)(p', p*2) _ Z“’ f(p%, p%2) Z fi(p™, p™2)
V1+V2 a+an
V1, V2>0 ap,ay= =0 p

If k > 2, then noting that i = p,_1 * 1 we have

Z fi(p™, p%2) _ i ug_1(p%, p%2) i(p™, p%2)
bl+b2 C]_+Cz d1+d2
b,bp=0 P 0, Cp.dp,dy=0 P P

§ap ey S 0t

€1,C2=0 p dq,do=0

2k-1) 2 ~(.dp dp
(1_6) u(pdlyﬂ?z )'
dy,dy=0 P

Using the relation p * gcd = & we have
[ Z A(p™, pd?)][ Z ged(p®, de)J
d1+d2 d1+d2 '
dq,dy=0 dq,dy=0

where, by an elementary calculation, we can easily derive
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-1
ng( © pdl/\dZ ~ p2
Z d1+d2 Z d1+d2 - 1 3
dl d2 0 dl d2 0 p (_’]___)
p

Therefore, we have obtained the following two formulas:

1 3

1- =

Z u(pz,f ( p)
+ 1

by, by =0 pL 1——2

(4.5)

1 3 1 2k +1
ll-= 1-—
Z Hk(p ,pZ) (1_£j2(k 1)( p) ( pj if k> 2
by +b 1 -
p p 1— 1- =
by, by =0 2 2

Hence, we see that, for every k e N, the right side of (2.6) equals

£ o Vi pV2
G[] 3 e

peP\ vy, vo20

12k+1

1 e ()
-Gl 2 — o i
peP\ag,a,=0 p 1——2

p
~, 1 2k +1 ® f(pvl, pVZ)
=CKH(1‘5) { 2 |
peP v1,vp=0 p
where 6,'( = Q(Z)C~k. Thus, the proof of Theorem 3 is now complete. O

It is well known (Schwarz and Spilker [6]) that if f :N— C is a
multiplicative function satisfying

Zpep(l f(p)-1l/p+ szz f(p")/p"j < o
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then the mean value M(f)=lim,_,, x_lzn<x f(n) exists and equals

Hpe'P (l—l/p)(zVZZ f(p")/p"j. The following theorem is a
generalization of this result.

Theorem 4. Let f be a multiplicative function of two variables and let
k e N.

(i) Suppose

Z:[|f(p,1)—k|w|;|f(1, P -k, Z M}«n (4.6)

vi+vo
peP Vi+vo 22 P

Then we have

] 1
||m — f(nlr n2)
x, y— xy(log x log y)k . n%x
np<y
1 2k f(pV1+V2 )
-a (1) { 2, g | -
peP v1,v220
1
where Cy = ————.
((k — 1))
(if) Suppose

Z(l f(p.)-k|+[f@ p)-k| | f(p.P)-p|

2
peP P P

oy MJ@O. (4.8)

V1tV
vi+vo 22 p
(v1,v2)=(L1)

Then we have
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lim — Z f(ng, ny)

x— x2(log x)2¢ 1

n ,n2§X
2k+1 v v
_ G 1 f(p™, p*?)
_CKH(l—B) [ > — | (4.9)
peP V1,V 22 p
1

where 5{( =

(k —D)2(2k 1)

Proof. We first prove (i). We would like to show that f satisfies (4.1). We
have

>y |(f*uk)v(lﬁ:12 ") | _. Iy + 1y,

pePvi+vo2l
where
| (F* ) (P, p"2) |
Iy = Z Z v1+v2
pEPV1+V2 =1
_ Zl (f * ) (D [+ (f * )@ p)|
peP P
_ ZI fp ) —k[+[f@ P —k|
peP P
and

B> |(f*Hk)(pvl p’2)|

pEPVl‘f‘VZ >2

b b
-y 3 | f(p™, p?)u (p™, p™) |
aj+ap+by+b
pePag+ap +by +by 22 prLTTTAT
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Y Y Y . Z:|fm%p®muﬂ»ﬁn

aj+a+bp+by
peP| ag+ar=0 a+ap=1 a+ar=2 P
by +bp>2 bi+bp>1  bp+bp>0

f(p,1 f(1,
<<Z{ > pb1+b2+ > Al: )1|+;1le( Pl

peP \op+by>2 by +bp>1 P

Lf(p™, p*)])
+ Z a1+a2+bl+b2
 +ay >2 p
b1 +bp>0

Therefore, f satisfies (4.1), and hence (4.7) (which is equal to (4.2)) holds by
Theorem 3(i). This proves (i).

Next we prove (ii). If k =1, then it is easy to see that (4.8) implies (4.3)
since (f +p)(p, 1) = f(p,1)-1 (f*p)(@ p)=f(1 p)-1 and (f *p)
(p, p)=f(p, p)— f(p,)—-f(L, p)+2—p hold by Lemma 10. Let

k > 2. We put f=fx n. We show that f satisfies (4.6) for k —1 instead
of k. We first see that

| f(p)-(k-1)|+| f@ p)-(k-1)]
2 0

peP

_ ZI fp ) -Kk[+[f@ P K| _

peP P
We also have
| f(p", p2)| _ | f(p"t, p*2)]
Z Z V1+V2 - Z Z Z V1+V2
pePvi+vo>2 peP\vi+vo=2 vi+vo23

‘]l + \]2,



176 Noboru Ushiroya
where

f Vl’ V2
-¥ ¥

pePvi+vy= 2

f(p2, 1)|+]| f(p, f(1, p?
:ZI (p% D +| (Ezp)|+| @ p9)|

peP

Noting that f(p®,1) = f(p®, 1)~ f(p, 1), f(p, p)= f(p, p)- f(p,1)
—f(L, p)+2-p and f(L p?)= f(, p?)— f(L p) hold by Lemma 10, we
have

| T2 D[+ f(p. D)=k |+] f(p, p)-p]|
+]f@ p)—k|+]| F@ p?)|+1

Ji < Z ’ 0

peP

which implies that J; < .

As for J,, since | p(p*, p¥2)| < 1+ p holds for every vy, vo >0

by Lemma 10, we have

[ F(p", p*2)|
J2 - Z Z V1+V2

peP vi+vo=3

-y ¥ | f(p, p®)i(p™, p2)]
b
peP a1+a2+bl+b223 pal+a2+bl+ 2

1+] f(p™ p*2)]
< Z Z V1+Vvo

peP\vi+vo>2 P

Therefore, f satisfies (4.6) for k —1 instead of k. Hence, by Theorem

4(i), we have
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1

lim = 2. f(m. )
x, y—=> xy(log x log y)k ? n%x
np<y

2(k-1) TVl nV2
~ 1 f(p*, p*2)
-l | XA

peP v120

v220
Since f = f*%l, we have by taking a = f~,b=%1 and a=p=k-2

in Lemma 8(ii)
1

lim ————— Z f(ng, ny)
2 2k-1 :
x— x“(log x) fy, My <X

B 1 1 1 2(k-1) f(pvl’ pV2)
(k- 172(2k - 1) €2) Ck_lgj(l B E) [ Z vi+vo

V1,V2 >0 p

1 = 12D f(p®, p®)fi(p™, p™)
=@CKH(]‘_6) [ Z aj+ay : pb1+b2 '

ag,an, by, by 20 p

By (4.5) we see that the above equals

1 = 12k (1_%)3 f(p™, p*2)
@S II(-5) i [ > J

peP 1——2 a,ay20 P
p

=, 1 2k+1 f(pvl, pvz)
_CkH(l—E) [ > T]

v1,v220 P

Thus, the proof of Theorem 4 is now complete. O

5. Examples

Let w(n) = me 1 be the counting function of the total number of prime
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factors of n taken without multiplicity. It is known that for a fixed positive
integer k,

limy ., X *(log x)l_kz ke

= (=0 ], @-p) T+ k-1)/p)

(cf. Tenenbaum and Wu [7] p. 25). The following example is an extension of
this result to the case of a function of two variables.

Example 1. Let k € N and let f(ng, ny) = k®M"2). Then we have

lim f(ng, ny)
X, y—> xy(log x Iog y) nZ:X b
np<y
2“1) L2A-1) 1-k
peP P
1
Whel‘e Ck = m

Proof. Since f(p"%, p¥2) =k if vy + vy > 1, it is easy to see that f
satisfies (4.6). Therefore, we can apply Theorem 4(i) to obtain

lim L = Z f(m, np)

X, y—>o© xy(|Og X |Og y n1SX, nZSy

1)\ k
- CkH(l_E) 1+ Z v1+vo
peP

V]_+V221p
:CkH(l_ifk( L k@p- 1)]
P (p -1y
1N2KD k-1 1-k
:CkII(l—B) [1+ (p ). pZJ' O
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Example 2. Let f(q, n) =|cq(n)|, where cq(n) = u(a/(q, n)e(q)/

¢(q/(q, n)) is the Ramanujan sum. Then we have

Z f(nl, nz)ZH(l—%-l-%j.

ng, Ny <X peP P p

lim 5
x— X log x
Proof. It is easy to see that f(p,1)=f(1, p)=1 f(p,p)=p-1
f(p¥,1) =0, f(1, p¥)=1if v>2, and
(g, gy < [EPTIR IS v <
le(l_]/p), if 1< Vi < Vo.

From these relations, we see that f satisfies (4.8) for k = 1. After an
elementary calculation we obtain

3 f(p*t, p*2) _p+2
pV1+V2 p—l

vq1,V220

Therefore, we have by (4.9)

lim

Z f(ng, ny)

x>0 x2 log x N, Ny <X
3
= 1V p+2 3 2
e N (= | (= B
peP peP P P

Next we obtain the leading coefficients in (1.3) and (1.4) using
Theorem 4.

Example 3. Let f(ny, ny) = o(ged(ng, ny)), where o(n) = Zd‘nd.

Then we have

. 1
lim — Z f(n, ny)=1.

x— X“ log X . Mg <X



180 Noboru Ushiroya

Proof. Since f(p“L, p¥2) = (p"1"V2*1 _1)/(p = 1) if vy, v, > 0, itis
easy to see that f satisfies (4.8) for k = 1. Therefore, we can apply Theorem
4(ii) for k = 1. After an elementary calculation we obtain

V{+V 3
v1,v22>0 p 1 (1_1)
p

Therefore, we have by (4.9)

<, 1¥° 1
Z f(nl, nz):C]_H(l—Bj —1:1 O

3
Ny, Np <X peP (1__)
P

> f(p", p¥?) 1

lim 5
Xx— X log x

Example 4. Let f(ng, ny) = o(gcd(ng, ny)). Then we have

1
Z f(nl’ nZ) = CZ(Z)

Ny, Ny <X

lim 3
X—>o X< log X
Proof. Since f(p*l, p'2) = p"1"V2(1-1/p) if vi, vo > 1, it is easy
to see that f satisfies (4.8) for k = 1. Therefore, we can apply Theorem 4(ii)
for k = 1. After an elementary calculation we obtain

pv1+v2 - 1_1
p

3 f(p™, p*?) (“%)2.

v1,v220

Therefore, we have by (4.9)

Y. flmng)= H(l—%f@

lim —
X0 X |09Xn1,n2§x peP 1—6
1 ? 1
M%) -2

The proof of the following example is similar. O
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Example 5. Let
fy(m, np) = ged(ng, np)p®(ged(ng, ny)),

fo(ny, ) = ged(ny, np)u?(lem(ng, ny)).

Then we have

. 1 1
lim — Z fi(ng, ny) = ,

Xx—e x“logx , =, c%(2)
lim L Z fo(ng, ny) = H(l 1)3(1+ 3)
5 2, Np) = Y o)
X—® X |0g X ng, No <X peP P P
Example 6. Let f(n, ny) = % Then we have

lim 21 Z f(nl,nz):H(l—%)3(1+%+i2j.

X2oX IOanl,nzgx peP P
Proof. Since f(p¥,1)= f(4, p¥)=1-1/p if v>1and

f(p*1, p¥2) = (1-1/p)’ p*1""2

if vi, vo 21, itis easy to see that f satisfies (4.8) for k = 1. Therefore, we
can apply Theorem 4(ii) for k = 1. After an elementary calculation we obtain

Vi V2
2
V]_,VzZO p p
Therefore, using (4.9) for k = 1, we have the desired result. O

Next we obtain the leading coefficients in (1.5) and (1.6).

Example 7. Let s(ny, ny) = Zd1|n1|d2 Iy ged(dy, do). Then we have
. 1 2
lim ——— s(i, ny) = —-.
X500 X2(|Og X)3 Z 7t2

Ny, Ny <X
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Proof. Since s =gcd*1=71,, we have s#*p, = 3. Therefore, (2.5)
trivially holds for k = 2 and (2.6) gives
. 1 =, (N, n 2
lim ———— > s(n,mp)=C; Y WHLY) 2)=—2. O

2 3 mn
X—0 X (log X) N, Ny <X Ny, Np <X 172 T

Example 8. Let c(ng, ny) = Zdlml ¢(gcd(dq, dy)). Then we have

da[ny

. 1 12
lim ———— Z c(ng, np) = =7
x—o x“(log X) g My <X T

Proof. We note that ¢ = @(gcd) * 1. Since ¢(gcd) satisfies (4.8) for
k =1 from the proof of Example 4, we see that ¢(gcd) also satisfies (2.1)

from the proofs of Theorem 4, Theorem 3 and Theorem 2. Therefore, we
have by Theorem 1 and Example 4

lim 1 Z o(ged(ny, n2))zg+'

X,y Xy l0g X Ay h <X <y (2)
Taking a =1, b = ¢(gcd) and o = B = 0 in Lemma 8(ii), we have

lim —— Z c(m, nﬁ:%L:E. O

2 3
x— x“(log x) g M <X

Remark. According to Nowak and Téth [4], it holds that c(p, 1) =
c® p)=2c¢c(p,p)=p+2c(p?, D=c@ p?)=a+1 if a>1 and,

moreover, ¢(p?, p®)=2(1+ p+pd +--+p> )+ (b-a+1)p? if 1<a
< b. Using this explicit formulas we can directly show that c satisfies (4.8)
for k = 2 and also can directly calculate (4.9). However, we did not prove in
that way for simplicity.

Example 9. Let A(ny, ny) = Zd1|n1|d2|n2 d(d1)d(dy)/lem(dy, dy). Then

we have



x—o x?(log x>
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. 3 3
lim —— > > A, n2)=%g)(l—%j (1+E+§J. (5.1)

Ny, Np <X

Proof. Let g(ng, ny) = ¢(ny)d(ny)/lcm(ng, ny). Since A=g =1, by a

similar argument as in Example 8, we see that the left side of (5.1) equals

(1]

(2]

(3]

[4]

(5]

(6]
[7]

(8]

(9]
[10]

1. 1
lim 2 3" gy, )
X—0 X Iogxnl’nZSX

By Example 6, it is easy to see that the above equals the right side of
(5.2).

O
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