B W International Journal of Numerical Methods and Applications
© 2016 Pushpa Publishing House, Allahabad, India
q-p \ Published Online: February 2016

I  http://dx.doi.org/10.17654/NM 015010079
Volume 15, Number 1, 2016, Pages 79-91 | SSN: 0975-0452

ITERATION METHODSTO COMPUTE THE
SEPARABLE CONVEX MINIMIZATION PROBLEMS

Zhen-Yun Peng*, Cheng-Zhi Zhou, Dan-Dan Du and Xian-Wei Xiao

School of Mathematics and Computing Science
Guangxi Colleges and Universities,
Key Laboratory of Data Analysis and Computation
Guilin University of Electronic Technology
Guilin, Guangxi, 541004, P. R. China
e-mail: yunzhenp@2163.com

244719151@qq.com

369705722@c|0.com

504682903@qc.com

Abstract
In this paper, the iteration method to compute the multi-block
separable convex minimization problem with linear constraints. The

condition of the problem is derived, and global convergences of the
algorithm are proved.

1. Introduction

In this paper, we consider the following problems.
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Problem 1. Give matrices A e RP*" B e R™P C ¢ RP*" D € R™P

and E € RP*P, find X e R™", Y ¢ R™" and Z € RP*P such that

min|| Z | st. AXB +CYD + Z = E. (1.1)

The iteration method to compute the matrix equation has become
popular, and a series of good results have been obtained [1-4]. For example,
Peng et al. [5] proposed iteration method to solve the solution of matrix
equation AX = B with constraint CXD > E. Peng et al. [6] used the
Conjugate Gradient (CG) method to solve the symmetric solutions and
optimal approximation solution of the system of matrix equations
A XB; =Cq, A)XBy =C,. Peng [7, 8] and Huang et al. [9] used iteration
algorithm to compute the least squares symmetric solution, skew-symmetric
solution and constraint solution of matrix equation AXB = C. Sheng and
Chen [10] proposed iteration method to solve the symmetric and skew-
symmetric solutions of linear matrix equation AXB + CYD = E. Moreover,
Han et al. [11, 12] used Douglas-Rachford splitting method (DRSM) to solve
convex optimization problems with linear constraints. Luis [13] proposed a
splitting method of DRSM for solving equilibrium problems involving the
sum of two bifunctions satisfying standard conditions.

In this paper, we consider the convex minimization problem with linear
constrains where the objective function is separable 3 individual convex
functions. First, we give some basic notations and properties which are useful
for further discussion. Then we derive the iterative algorithms for (1.1). And
we study the global convergence of the algorithms. We will give an example
for illustrating the effectiveness of the algorithms proposed.

Throughout this paper, the following notations are used. The symbol
R™" denotes the set of m x n real matrices. R" denotes the set of real

n-vectors. A" and | A| denote the transpose, the Frobenius norm of the

matrix A or 2-norm of the matrix A. Define the inner product in space R™*"

by (A, B) = trace(A” B) for all A, B e R™". For the matrices A = (aj) €
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R™M, B = (bj) e RP*9, A® B represents the Kronecker production of the

matrices A and B, defined as A® B = (a;;B) e R™*". Obviously, R™" is
a Hilbert inner product space, then the associated norm is the Frobenius norm
denote by || A|.

2. Preliminaries

In this section, we first give some basic concepts and well known results
that will useful for further discussion.

Lemma 2.1 [14]. Let Q be a nonempty closed convex subset of R" and
P, be the projection operator onto a convex set €, i.e.,

Po[X]:=argmin{| X =Y |||Y € Q}.
Then we have the following inequality:

(u=Polu])T (v-Polu]) <0, vu e R", wv e Q. (2.1)
Lemma 2.2 [15]. A set-valued map T from R" to 2Rn is said to be
(1) Monotone if

u-v)T(U*=v*) 20 vu, veR" u* eT() v eTV).
(2) Strongly monotone if there exists a constant > 0 such that
-V (U =V =nlu-v|? vu,veR" u* eT(u),v: eT(v).
To simplify the coming discussion, we denote the following notations:

Q= Qp x QY xQy x Q3 = RPN 5 RMP x RPXP 5 RN

H* = (2%, X*, "), HK = (zK, x¥, vk,

U* = (2% M, ), V= (xK, MK, By),
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N o= (v MK By, W= (2%, x5, YK MK By,
f(w) = AXB + CYD + Z — E,
L(o, M) = L(Z, X, Y, M) =%||z 7 = (M, fy(w)),
Ex(Z*, M¥, Be) = E1(T), Ep(X*, M, By) = E1(V5),
Eg(Y*, M, By) = E2(N).
3. Iteration Method to Solve Problem 1

In this section, we first give the DRSM Algorithm of Problem 1. We
present the global convergence result of Algorithm 1.

Algorithm 1. A distributed Douglas-Rachford splitting method
(DDRSM)

1. Given matrices A,C e RP*" B, D e R™P and E € RP*P, Set
ye(0,2) and Be (0, %j with ¢ = max{l, | BT @ A, | DT ®C |,}.
Choose initial points (z%, X°, Y%, M%) e R™".

2.Fork=1 2, ..do

3. Find WK*1 € R™M sych that:

MK = MX —(AX*B + cY*D + K - E); (3.1a)
. 1 _
z5*1 = arg min|| Z |2 +2—B” Z —[Z2% + BZX — you ELT)] % (3.1b)
ZeRP*P
XKL = XK oy By (VF); (3.10)
YR oy K ey Eg(N):; (3.1d)

K+l _ ypk k ik Tk
M = ME —yoy (M* — M =By [Ey(UT)

+ AE,(V¥)B + CE5(N¥)DJ}, (3.1¢)



Iteration Methods to Compute the Separable Convex Minimization ... 83

where

o = 9.
w(W)

OWH) = | ExT@*) |7 + || E2(VX) |2 + || Eg(N¥) | + | M¥ - M¥ |12

(3.1)

—B(MK = MK E{(U%) + AE,(V¥)B + CE5(N¥)D);  (3.19)
YW ) = | Ey ) P+ EoV) P + | Es(N) |

+|M* = M* By [E1(T¥) + AE,(V¥) B + CE5(N*) D] | (3.1h)
4. End for.

Lemma 3.1. For the step size o given by (3.1f), there exists a constant

Omin > 0 such that

Ok > Opmin, forall k > 0. (3.2)

Proof. For any two matrices A’, A” € R™" we have the inequality
P P - R

Hence, for any ¢ > 0 we have

BIMK — M* Ey(U*)+ AE,(V¥)B + CE5(N¥)D)
= BM* - M, E(T%)) + MK = M¥, AE,(V*)B)

+B(MK — M¥, CE5(N*¥)D)
< E kTR B O P BT @ AP ET) P

+| DT ®C [P E3(N*) )

3 — 22 — - -
s SIME - P B B P £ P+ BN ), (33
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where ¢ := max{l, | BT ® A I | DT ®C l,}. Consequently, let ¢ := fc,
inserting (3.3) into (3.1g), we obtain

_ 3 _
o) = (15| ¥ - w*

2.2
; [1‘ Bz—ZJ (| Ex@*) P+ E27) |2 +] E3(N*) )
> (1- g M- P B0 P

+ 27 ) P+ Es(N) ), (3.4)
where B e (0, %) it is clear that (p(VVk) > 0.

On the other hand, use the Cauchy-Schwarz inequality on equation
(3.1h), we obtain

W) = | Ef) P +] Eo(7%) 2 + | Es(N9) |2 + 2 M¥ — M* |2
+ 4] BEL(U™) | + 4] BAEL(V¥)B |2 + 4] BCE3(N¥)D |2
<c/(| ME MK [2 4] By T P +] Ex(VF) P +] Es(N*) ), (3.5)

where ¢’ = max{2, 1+ 4B, 1+ 48| A[|?| B|?, 1+ 48| C |?| D|*}.

Combining (3.4) and (3.5), we can obtain the opinion (3.2), where

Omin = (1 - B—Ec)/c'.

Lemma 3.2. Suppose that Q* = (Z*, X*,Y*, M¥) is an arbitrary

solution of (1.1), the sequence {Qk = (Zk, xk vk, Mk)} generated by

Algorithm 1 satisfies
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) . El(qk)
Hg, —Hpx , Ez(\ik)
MK_M* E3(N¥)

MK - MK —B,[EL(U*)+ AE,(V¥)B + CE5(N*) D]
> (p(VVk ), Vk > 0.
Proof. Since Q" =(Z", X*,Y*, M*) e R*, J{ € a(Z"), 35 € a(X™)
and J3 € (Y™), it follows from (1.1) that
(Z2-2%VzL(e",M") >0, vZ'eR™",
(X = X*, VyL(e", M*)) >0, ¥X'eR™", (3.6)
and
Y -Y*, VyL(e", M*)) >0, VY eR™"
: o k k irky1_ 7k kY
Then, setting Z = P, [2" - Bk VzL(0", M™)]=Z" —E;(U") in (3.6), we
have
(Z¥ —E,(U") - 2%, vz (0", M¥)) > 0. (3.7)
On the other hand, setting Q = Q3, U = zX -BkVz L(oak, I\Tk), and
V = Z" in(2.1), we obtain
(E10%) - Bz L(o*, M), Z* - B (U*) - Z") > 0. (3.8)
By summing (3.7) and (3.8), we obtain
(Z* - B(0*) - 2%, BT%) + B (VZL(0", M™) = VzL(o, M¥))) > 0.
By collating, we arrive at
(2" + BVzL(e, M¥) - Z* - BV L(", M¥), E(0%))

> | Ey(T) |2 - B(M* - M*, ZK — B (U*) - 7). (3.9)
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In a similar, we can prove that
(XK 4 BeVx L@, M¥) = X" —BVx L(o", M"), Eo(V¥))
> | Ep(V¥) [? - B (AT (M¥ — M™)BT, XX - E,(V¥) - X7)
= Eo(V*) |~ Bi(M* —M*, AX* —E,(V") - X"]B), (3.10)
(YN +BiIS - Y™ =By I3, Es(NY)
> || Eg(N*) | = B(M* = M, C[Y ~ E3(N*) - Y"]D). (3.11)
Adding (3.9), (3.10) and (3.11) and finishing terms, we get
E (TF)
(Hy —Hp. | E2(V)
Eq(N¥)
> EyU) |2 + [ E2V) |2 + [ Es(N*) |
~Btr(M - M)XK - £, 0%) - 2"]
+ AXK —E,(VK) = X*1B + C[YK - E5(N¥) - Y*]D})
= Ex @) [P +] B2 ) P +] Es(N*) P
— (MK = M*, MK = M¥ = By [E;(T)
+ AE,(V¥)B + CE5(N¥)DJ)
= L@ ) [P+ E27*) [P + [ Es(N*) P + | M¥ = M* |
— B (MK = M*, E;(U%)+ AE,(V¥)B + CE5(N*)D)
— (MK = M* MK = MK =B, [E,(T5)

+ AE,(V¥)B + CE5(N¥)D]).
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Recall the definition (p(VVk) in (3.1g), the iterative scheme (3.1a) and

the fact AX™B + CY*D + Z* = E, the assertion of this lemma then follows
immediately.

Theorem 3.1. Suppose that the parameter e (0, %j and Q" is an

arbitrary solution of (2.1), the sequence {Qk} generated by Algorithm 1
satisfies

k+1 * k *
Hps ™ Hbia Hp, — My
MK _Mm* MK —M*

Proof. It follows from (3.1c)-(3.2e) and Lemma 3.2 that

k+1 *
HBkJrl B HBk+1
M k+1 _ M *

2 2

< — (2~ 7)omineW*). (3.12)

2

+72af (| EL @) [P + ] E2(V %) P +] E(N*) |?)

k * 2
_ H[Sk B HBk
MK —Mm*

+ 7202 MK - M¥ — By (E1(U*) + AE,(V¥)B + CE5(N¥)D) |2

E(T%)
E, (V¥
Hy ~ Hgk 2(—k)
— Zyak Bkk b ES(N )
M*-M k _ jrk gk 7k
MX - M* =B [E1(TU%) + AE,(V¥)B
+ CE4(N*¥)D]

+y2afy(WH) - 2you (W)

HE e )P
< Bk Pk
MK —Mm*
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HE R
Bk Bk

The proof is completed.

— (2 - Y) oy oW *).

Theorem 3.2. Suppose that the parameter B e (0, %j The sequence

{Qk} generated by Algorithm 1 converges to a solution of (1.1).

Proof. Suppose that U™ is a solution of (1.1). From Theorem 3.1 that

k+1 * k * 0 *
HBk+1 ~Hpe HBk — Hp, HBo ~ Hp,
MK —Mm* MO —M*

which means that the sequence {Q*} is bounded. Thus, {U "} is also bounded,

k *
g, — M
MK —Mm*

Rearranging terms of (3.12) we obtain

k *
HBk — Hp,
MK —Mm*

Summing both sides of the above inequality for all k yields
D 12 =) amingW ) < D
k=0

k * k+1 *
HBk B HBk _ HBk+1 - HBk+1
S ME—m*

Mk+1_M*
0 * 2
HBO _HBO
MO —Mm*

2 2 2

<o < , (3.13)

and

2

lim exists. (3.14)
kK—o0

2 2

_ HOL —HE
Y2 = V) etmin@W *) < - [B“l MHJ

Mk+1_M*

2 2

0
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which, together with the assumption that y € (0, 2) and the fact that

Omin > 0, implies that kIim (p(VVk) = 0. Hence, it follows from (3.4) that
—>®0
lim | M = M¥ 2 = lim | Ey@) [? = lim | E;(V) [?
k— o k—o k—o0
= lim | E3(N*)|? =0
k—o0
and furthermore, we have
. k 2 _
lim| EQQ*,B)|° =0. (3.15)
k—o0

Since the sequence {Q*} is bounded, it has at least one cluster point. Let

Q® = (2, X*,Y®, M®) be a cluster point with Q"I = (z*I, x"i,

ij, M i )} being the corresponding subsequence converging to it. Thus,

taking limit along this subsequence in (3.15), we have
© . ki . ki
| Q™. B)I? = EC(lim Q1. B)|? = lim | EQT, B) |*
joe joo

Recall lemma, the above fact means that Q™ is a solution of (1.1).

Since Q" = (Z*, X", Y™, M¥) is an arbitrary solution of (1.1), we can

set (Z%, X*,Y*, M%) := (2%, X*, Y, M®) in the above analysis. Then,
(3.13) and (3.14) implies that

B Pk
MK - M@

This proves that the full sequence {Q*} converges to (Z*, X®, Y%, M®),

k .
ki _pye
~ dim||| B P

joo ki

M —M”

lim
k — o0

=0.

a solution point of (1.1). This proof is completed.
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