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Abstract 

In this paper, the iteration method to compute the multi-block 
separable convex minimization problem with linear constraints. The 
condition of the problem is derived, and global convergences of the 
algorithm are proved. 

1. Introduction 

In this paper, we consider the following problems. 
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Problem 1. Give matrices ,npRA ×∈ ,pnRB ×∈ ,npRC ×∈ pnRD ×∈  

and ,ppRE ×∈  find nnnn RYRX ×× ∈∈ ,  and ppRZ ×∈  such that 

2min Z  s.t. .EZCYDAXB =++  (1.1) 

The iteration method to compute the matrix equation has become 
popular, and a series of good results have been obtained [1-4]. For example, 
Peng et al. [5] proposed iteration method to solve the solution of matrix 
equation BAX =  with constraint .ECXD ≥  Peng et al. [6] used the 
Conjugate Gradient (CG) method to solve the symmetric solutions and 
optimal approximation solution of the system of matrix equations 

,111 CXBA =  .222 CXBA =  Peng [7, 8] and Huang et al. [9] used iteration 

algorithm to compute the least squares symmetric solution, skew-symmetric 
solution and constraint solution of matrix equation .CAXB =  Sheng and 
Chen [10] proposed iteration method to solve the symmetric and skew-
symmetric solutions of linear matrix equation .ECYDAXB =+  Moreover, 
Han et al. [11, 12] used Douglas-Rachford splitting method (DRSM) to solve 
convex optimization problems with linear constraints. Luis [13] proposed a 
splitting method of DRSM for solving equilibrium problems involving the 
sum of two bifunctions satisfying standard conditions. 

In this paper, we consider the convex minimization problem with linear 
constrains where the objective function is separable 3 individual convex 
functions. First, we give some basic notations and properties which are useful 
for further discussion. Then we derive the iterative algorithms for (1.1). And 
we study the global convergence of the algorithms. We will give an example 
for illustrating the effectiveness of the algorithms proposed. 

Throughout this paper, the following notations are used. The symbol 
nmR ×  denotes the set of nm ×  real matrices. nR  denotes the set of real 

n-vectors. TA  and A  denote the transpose, the Frobenius norm of the 

matrix A or 2-norm of the matrix A. Define the inner product in space nmR ×  

by ( )BAtraceBA T=,  for all ., nmRBA ×∈  For the matrices ( ) ∈= ijaA  
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( ) BARbBR qp
ij

nm ⊗∈= ×× ,,  represents the Kronecker production of the 

matrices A and B, defined as ( ) .nqmp
ij RBaBA ×∈=⊗  Obviously, nmR ×  is 

a Hilbert inner product space, then the associated norm is the Frobenius norm 
denote by .A  

2. Preliminaries 

In this section, we first give some basic concepts and well known results 
that will useful for further discussion. 

Lemma 2.1 [14]. Let Ω be a nonempty closed convex subset of nR  and 

ΩP  be the projection operator onto a convex set Ω, i.e., 

[ ] { }.argmin: Ω∈|−=Ω YYXXP  

Then we have the following inequality: 

[ ]( ) [ ]( ) .,,0 Ω∈∀∈∀≤−− ΩΩ vRuuPvuPu nT  (2.1) 

Lemma 2.2 [15]. A set-valued map T from nR  to 
nR2  is said to be 

(1) Monotone if 

( ) ( ) ( ) ( ).,,,,0 vTvuTuRvuvuvu nT ∈∈∈∀≥−− ∗∗∗∗  

(2) Strongly monotone if there exists a constant 0>η  such that 

( ) ( ) ( ) ( ).,,,,2 vTvuTuRvuvuvuvu nT ∈∈∈∀−η≥−− ∗∗∗∗  

To simplify the coming discussion, we denote the following notations: 

,: 3210
nnpppnnp RRRR ×××× ×××=Ω×Ω×Ω×Ω=Ω  

( ) ( ),,,:,,,: kkkk YXZHYXZH == ∗∗∗∗  

( ) ( ),,,:,,,: k
kkk

k
kkk MXVMZU β=β=  
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( ) ( ),,,,,:,,,: k
kkkkk

k
kkk MYXZWMYN β=β=  

( ) ,EZCYDAXBf −++=ω  

( ) ( ) ( ) ,,2
1,,,:, 1

2 ω−==ω fMZMYXZLML  

( ) ( ) ( ) ( ),,,,,, 1211
k

k
kkk

k
kk VEMXEUEMZE =β=β  

( ) ( ).,, 13
k

k
kk NEMYE =β  

3. Iteration Method to Solve Problem 1 

In this section, we first give the DRSM Algorithm of Problem 1. We 
present the global convergence result of Algorithm 1. 

Algorithm 1. A distributed Douglas-Rachford splitting method 
(DDRSM) 

1. Given matrices ,, npRCA ×∈  pnRDB ×∈,  and .ppRE ×∈  Set 

( )2,0∈γ  and ⎟
⎠
⎞⎜

⎝
⎛∈β c

1,0  with { }.,,1max: 22 CDABc TT ⊗⊗=  

Choose initial points ( ) .,,, 0000 nnRMYXZ ×∈  

2. For ...,2,1=k  do 

3. Find nnk RW ×+ ∈1  such that: 

( );EZDCYBAXMM kkkkk −++β−=  (3.1a) 

[ ( )] ;2
1minarg 2

1
21 k

k
kk

RZ

k UEZZZZZ
pp

γα−β+−
β

+=
×∈

+  (3.1b) 

( );2
1 k

k
kk VEXX γα−=+  (3.1c) 

( );3
1 k

k
kk NEYY γα−=+  (3.1d) 

{ [ ( )k
k

kk
k

kk UEMMMM 1
1 β−−γα−=+  

( ) ( ) ]},32 DNCEBVAE kk ++  (3.1e) 
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where 

( )
( )

;: k

k
k

W
W

ψ

ϕ=α  (3.1f) 

( ) ( ) ( ) ( ) 22
3

2
2

2
1: kkkkkk MMNEVEUEW −+++=ϕ  

 ( ) ( ) ( ) ;, 321 DNCEBVAEUEMM kkkkk ++−β−  (3.1g) 

( ) ( ) ( ) ( ) 2
3

2
2

2
1: kkkk NEVEUEW ++=ψ  

 [ ( ) ( ) ( ) ] ;2
321 DNCEBVAEUEMM kkk

k
kk ++β−−+ (3.1h) 

4. End for. 

Lemma 3.1. For the step size kα  given by (3.1f), there exists a constant 

0min >α  such that 

,minα>αk  for all .0>k  (3.2) 

Proof. For any two matrices ,, nnRAA ×∈′′′  we have the inequality 

.0,12 222 >ς∀′′
ς

+′ς≤′′′ AAAA T  

Hence, for any 0>ς  we have 

( ) ( ) ( )DNCEBVAEUEMM kkkkk
321, ++−β  

( ) ( )BVAEMMUEMM kkkkkk
21 ,, −β+−β=  

( )DNCEMM kkk
3,−β+  

( ( ) ( ) 2
2

22
1

2
2

22
3 kTkkk VEABUEMM ⊗+

ς
β+−ς≤  

( ) )2
3

2 kT NECD ⊗+  

( ( ) ( ) ( ) ),22
3 2

3
2

2
2

1
22

2 kkkkk NEVEUEcMM ++
ς

β+−ς≤  (3.3) 
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where { }.,,1max: 22 CDABc TT ⊗⊗=  Consequently, let ,: cβ=ς  

inserting (3.3) into (3.1g), we obtain 

( ) 2
2
31 kkk MMW −⎟
⎠
⎞⎜

⎝
⎛ ς−≥ϕ  

( ( ) ( ) ( ) )2
3

2
2

2
1

22

21 kkk NEVEUEc ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ς

β−+  

( ( ) 2
1

2
21 kkk UEMMc +−⎟
⎠
⎞⎜

⎝
⎛ β−≥  

( ) ( ) ),2
3

2
2

kk NEVE ++  (3.4) 

where ,1,0 ⎟
⎠
⎞⎜

⎝
⎛∈β c  it is clear that ( ) .0≥ϕ kW  

On the other hand, use the Cauchy-Schwarz inequality on equation 
(3.1h), we obtain 

( ) ( ) ( ) ( ) 22
3

2
2

2
1 2: kkkkkk MMNEVEUEW −+++=ψ  

 ( ) ( ) ( ) 2
3

2
2

2
1 444 DNCEBVAEUE kkk β+β+β+  

( ( ) ( ) ( ) ),2
3

2
2

2
1

2 kkkkk NEVEUEMMc +++−′≤  (3.5) 

where { }.41,41,41,2max: 2222 DCBAc β+β+β+=′  

Combining (3.4) and (3.5), we can obtain the opinion (3.2), where 

.21:min cck ′⎟
⎠
⎞⎜

⎝
⎛ β

−=α  

Lemma 3.2. Suppose that ( )∗∗∗∗∗ = MYXZQ ,,,  is an arbitrary 

solution of (1.1), the sequence { ( )}kkkkk MYXZQ ,,,=  generated by 

Algorithm 1 satisfies 
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( )
( )
( )

[ ( ) ( ) ( ) ]⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++β−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
∗

∗
ββ

DNCEBVAEUEMM
NE
VE
UE

MM

HH

kkk
k

kk

k

k

k

k

k
kk

321

3

2

1

,  

( ) .0, >∀ϕ≥ kW k  

Proof. Since ( ) ( ) ( )∗∗∗∗∗∗∗∗∗∗ ∂∈∂∈∈= XJZJRMYXZQ 21 ,,,,,  

and ( ),3
∗∗ ∂∈ YJ  it follows from (1.1) that 

( ) ,,0,, nn
Z RZMLZZ ×∗∗∗ ∈′∀≥ω∇−  

( ) ,,0,, nn
X RXMLXX ×∗∗∗ ∈′∀≥ω∇−  (3.6) 

and 

( ) .,0,, nn
Y RYMLYY ×∗∗∗ ∈′∀≥ω∇−  

Then, setting [ ( )] ( )kkkk
Zk

k UEZMLZPZ 1,: 3 −=ω∇β−= Ω  in (3.6), we 

have 

( ) ( ) .0,,1 ≥ω∇−− ∗∗∗ MZUEZ Z
kk  (3.7) 

On the other hand, setting ( ),,:,: 3
kk

Zk
k MLZU ω∇β−=Ω=Ω  and 

∗= ZV :  in (2.1), we obtain 

( ) ( ) ( ) .0,, 11 ≥−−ω∇β− ∗ZUEZMLUE kkkk
Zk

k  (3.8) 

By summing (3.7) and (3.8), we obtain 

( ) ( ) ( ( ) ( )) .0,,, 11 ≥ω∇−ω∇β+−− ∗∗∗ kk
ZZk

kkk MLMLUEZUEZ  

By collating, we arrive at 

 ( ) ( ) ( )k
Zk

kk
Zk

k UEMLZMLZ 1,,, ∗∗∗ ω∇β−−ω∇β+  

( ) ( ) ., 1
2

1
∗∗ −−−β−≥ ZUEZMMUE kkk

k
k  (3.9) 
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In a similar, we can prove that 

( ) ( ) ( )k
Xk

kk
Xk

k VEMLXMLX 2,,, ∗∗∗ ω∇β−−ω∇β+  

( ) ( ) ( ) ∗∗ −−−β−≥ XVEXBMMAVE kkTkT
k

k
2

2
2 ,  

( ) [ ( ) ] ,, 2
2

2 BXVEXAMMVE kkk
k

k ∗∗ −−−β−=  (3.10) 

( )k
k

k
k

k NEJYJY 333 ,∗∗ β−−β+  

( ) [ ( ) ] ., 3
2

3 DYNEYCMMNE kkk
k

k ∗∗ −−−β−≥  (3.11) 

Adding (3.9), (3.10) and (3.11) and finishing terms, we get 

( )
( )
( )
( )⎟⎟

⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

− ∗
ββ

k

k

k

k

NE
VE
UE

HH kk
3

2

1
,  

( ) ( ) ( ) 2
3

2
2

2
1

kkk NEVEUE ++≥  

(( ) {[ ( ) ]∗∗ −−−β− ZUEXMMtr kkTk
k 1  

[ ( ) ] [ ( ) ] })DYNEYCBXVEXA kkkk ∗∗ −−+−−+ 32  

( ) ( ) ( ) 2
3

2
2

2
1

kkk NEVEUE ++=  

[ ( )k
k

kkk UEMMMM 1, β−−−− ∗  

( ) ( ) ]DNCEBVAE kk
32 ++  

( ) ( ) ( ) 22
3

2
2

2
1

kkkkk MMNEVEUE −+++=  

( ) ( ) ( )DNCEBVAEUEMM kkkkk
k 321, ++−β−  

[ ( )k
k

kkk UEMMMM 1, β−−−− ∗  

( ) ( ) ] .32 DNCEBVAE kk ++  
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Recall the definition ( )kWϕ  in (3.1g), the iterative scheme (3.1a) and 

the fact ,EZDCYBAX =++ ∗∗∗  the assertion of this lemma then follows 

immediately. 

Theorem 3.1. Suppose that the parameter ⎟
⎠
⎞⎜

⎝
⎛∈β c

1,0  and ∗Q  is an 

arbitrary solution of (2.1), the sequence { }kQ  generated by Algorithm 1 

satisfies 

 ( ) ( ).2 min

22

1

1
11 k

k

k

k

k
W

MM

HH

MM

HH kkkk ϕαγ−γ−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
∗

∗
ββ

∗+

∗
β

+
β ++  (3.12) 

Proof. It follows from (3.1c)-(3.2e) and Lemma 3.2 that 

2

1

1
11
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
∗+

∗
β

+
β ++

MM

HH
k

k
kk  

( ( ) ( ) ( ) )2
3

2
2

2
1

22
2

kkk
kk

k
NEVEUE

MM

HH kk ++αγ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
=

∗

∗
ββ  

( ( ) ( ) ( ) ) 2
321

22 DNCEBVAEUEMM kkk
k

kk
k ++β−−αγ+  

( )

( )

( )

[ ( ) ( )

( ) ] ⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+β−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
γα−

∗

∗
ββ

DNCE

BVAEUEMM

NE

VE

UE

MM

HH

k

kk
k

kk

k

k

k

k

k

k
kk

3

21

3

2

1

,2  

( ) ( )k
k

k
kk

k
WW

MM

HH kk ϕγα−ψαγ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
≤

∗

∗
ββ 222

2
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( ) ( ).2
2

k
kk

k
W

MM

HH kk ϕαγ−γ−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

∗

∗
ββ  

The proof is completed. 

Theorem 3.2. Suppose that the parameter .1,0 ⎟
⎠
⎞⎜

⎝
⎛∈β c  The sequence 

{ }kQ  generated by Algorithm 1 converges to a solution of (1.1). 

Proof. Suppose that ∗U  is a solution of (1.1). From Theorem 3.1 that 

,
2

0

022

1

1
0011
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≤≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
∗

∗
ββ

∗

∗
ββ

∗+

∗
β

+
β ++

MM

HH

MM

HH

MM

HH
k

k

k

k
kkkk L  (3.13) 

which means that the sequence { }∗Q  is bounded. Thus, { }∗U  is also bounded, 

and 

2

lim ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
∗

∗
ββ

∞→ MM

HH
k

k

k
kk  exists. (3.14) 

Rearranging terms of (3.12) we obtain 

( ) ( ) .2
2

1

12

min
11
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≤ϕαγ−γ

∗+

∗
β

+
β

∗

∗
ββ ++

MM

HH

MM

HH
W

k

k

k

k
k kkkk  

Summing both sides of the above inequality for all k yields 

( ) ( )∑ ∑
∞

=

∞

=
∗+

∗
β

+
β

∗

∗
ββ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≤ϕαγ−γ ++

0 0

2

1

12

min
112

k k
k

k

k

k
k

MM

HH

MM

HH
W kkkk  

2

0

0
00
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
≤

∗

∗
ββ

MM

HH
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which, together with the assumption that ( )2,0∈γ  and the fact that 

,0min >α  implies that ( ) .0lim =ϕ
∞→

k
k

W  Hence, it follows from (3.4) that 

( ) ( ) 2
2

2
1

2 limlimlim k
k

k
k

kk
k

VEUEMM
∞→∞→∞→

==−  

( ) 0lim 2
3 ==

∞→

k
k

NE  

and furthermore, we have 

( ) .0,lim 2 =β
∞→

k
k

QE  (3.15) 

Since the sequence { }∗Q  is bounded, it has at least one cluster point. Let 

( )∞∞∞∞∞ = MYXZQ ,,,  be a cluster point with { ( ,, jjj kkk XZQ =  

)}jj kk MY ,  being the corresponding subsequence converging to it. Thus, 

taking limit along this subsequence in (3.15), we have 

( ) ( ) ( ) .,lim,lim, 222 β=β=β
∞→∞→

∞ jj k

j

k

j
QEQEQE  

Recall lemma, the above fact means that ∞Q  is a solution of (1.1). 

Since ( )∗∗∗∗∗ = MYXZQ ,,,  is an arbitrary solution of (1.1), we can 

set ( ) ( )∞∞∞∞∗∗∗∗ = MYXZMYXZ ,,,:,,,  in the above analysis. Then, 

(3.13) and (3.14) implies that 

.0limlim
2

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

∞

∞
ββ

∞→∞

∞
ββ

∞→ MM

HH

MM

HH

j

jk
j

jkkk
k

k

jk

k

k
 

This proves that the full sequence { }∗Q  converges to ( ),,,, ∞∞∞∞ MYXZ  

a solution point of (1.1). This proof is completed. 
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