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Abstract 

In this paper, collocation algorithms using cubic B-splines for solving 
the generalized regularized long wave (GRLW) equation are 
presented. The proposed algorithms are based on Crank-Nicolson 
formulation and central-finite difference approximation. The nonlinear 
term in each case is computed during executing the algorithm without 
linearization. The stability analysis using Von-Neumann technique 
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shows the schemes are unconditionally stable. To test accuracy the 

error norms ∞LL ,2  are computed. Also, conservation quantities are 

evaluated which are found to be small. These results show that the 
technique introduced here is accurate and easy to apply. 

1. Introduction 

In general, the finite element methods provide more accurate and 
efficient numerical solutions than the finite difference methods; one of the 
popular finite element methods is called the collocation method which has 
two great advantages, since this procedure does not involve integrations and 
the resulting matrix equation is banded with a small band width. In our study, 
we choose the cubic B-splines or (bell-shaped splines) as the basis for the 
space of the solution, because the cubic splines have an additional advantage 
in which the resulting matrix system is always tridiagonal so we can be 
solved easily by using any algorithm, which is easy to program and also 
economical. The requirements of the continuity up to the second degree of 
the derivatives are evaluated directly. Also the formula for cubic B-splines is 
given in [1] which is 
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Indeed the RLW and MRLW equations are special cases of the 
generalized long wave (GRLW) equation. This equation is very important in 
physics media since it describes phenomena with weak nonlinearity and 
dispersion waves, including nonlinear transverse waves in shallow water, 
ion-acoustic and magneto hydrodynamic waves in plasma and phonon 
packets in nonlinear crystals. The solutions of this equation are kinds of 
solitary waves named solitons whose shape are not affected by a collision. 
Historically, we find that the RLW equation is solved numerically by various 
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form of finite element methods as Dag et al. applied cubic B-splines for 
numerical solution of the RLW equation [1]. The MRLW equation is solved 
numerically by various form of finite element methods as Khalifa et al. used 
collocation methods with quadratic B-splines and cubic B-splines [2]. The 
GRLW equation is studied by few authors, Mokhtari and Mohammadi used 
Sinc-collocation [3], Kaya used a numerical simulation of solitary wave 
solutions [4], El-Danaf et al. used Adomian decomposition method (ADM) 
[5], Roshan used a Petrov-Galerkin method [6], Mohammadi and Mokhtari 
used the basis of a reproducing kernel space [7], EL-Danaf et al. used finite 
difference methods [8], Roshan studied the GRLW equation by A Petrov-
Galerkin method [9] and Zhang used finite difference method for a Cauchy 
problem [10]. In this paper, we design a new technique for solving the 
GRLW equation, a collocation method with cubic B-spline. The nonlinear 
term in each case is computed during executing the algorithm without 
linearization. And we show the numerical results for GRLW equation. The 
interaction of solitary waves and other properties of the GRLW equation are 
also studied in the three methods. The development of the Maxwellian initial 
condition into solitary waves is also shown and we show that the number of 
solitons which are generated from the Maxwellian initial condition can be 
determined. 

2. Collocation Method using Cubic B-spline for 
 Solving the GRLW Equation 

2.1. Governing equation and analysis of the method 

Consider the GRLW equation 

,0=μ−ε++ xxtx
p

xt uuuuu  (2) 

where ( )1+=ε pp  and subscripts x and t denote differentiation, is 

considered with the boundary and initial conditions 0→u  as .±∞→x  In 
this work, periodic boundary conditions on the region bxa ≤≤  are 
assumed in the form: 
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( ) ( ) ,0,, == tbutau  

( ) ( ) ,0,0,, ≥== ttbutau xx  (3) 

( ) ( ),0, xfxu =  (4) 

and then the analytical solution of equation (2) takes the form [9] 

( ) ( )
( ) ( )( ) ,112sech2

2, 0
2p xtcxc

cp
p

cptxu ⎟
⎠
⎞

⎜
⎝
⎛ −+−

+μ
+=  (5) 

where 0x  is an arbitrary constant. Actually it is not always available to get 

an analytic solution for nonlinear partial differential equations, so we try to 
provide numerical methods to solve such problems. 

Now, partition the interval [ ]ba,  as 

....,,1,0,, 110 NjN
abxxhbxxxa jj =−=−==<<<= +L  

Let { } 1
1

+
−=

N
jjB  be the cubic B-splines at the knot points ;ix  the set of 

splines form a basis of functions defined over [ ]., ba  A global approximate 

solution ( )txUN ,  is expressed in terms of the cubic B-splines and unknown 

time dependent parameters as 

( ) ( ) ( )∑
+

−=

=
1

1
,,

N

j
jjN xBtctxU  (6) 

where ( )tc j  is the parameter in terms of the time t for ,1...,,0,1 +−= Nj  

to be determined by the collocation boundary and initial conditions, and 
( )xB j  cubic B-splines function. 

The values of ( ),xB j  first and second derivatives at the knots points are 

given in Table 1 as below: 
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Table 1. The values of Cubic B-spline and its first and second derivatives at 
the knots points 

x 2−jx  1−jx  jx  1+jx  2+jx  

jB  0 1 4 1 0 

jB′  0 h
3  0 h

3−  0 

jB ′′  0 2
6

h
 2

12
h
−  2

6
h

 0 

Considering the equation (6) and the cubic B-splines ( )xB j  defined in 

Table 1, the required values of jU  and its first and the second derivatives, 

jU ′  and ,jU ′′  at nodal points jx  are identified in terms of jc  as 

( ) ,4 11 +− ++== jjjjj cccxUU  

( ) ( ),3
11 −+ −=′=′ jjjj cchxUU  

( ) ( ),26
112 +− +−=′′=′′ jjjjj ccc

h
xUU  (7) 

now, let us rewrite the equation (2) in the form 

( ) ,0=ε++
∂
μ−∂

x
p

x
xx uuut

uu  (8) 

if the time derivative is discretized using central-finite differences, we have 

,2

11

k
uuut

nn −+ −=
∂
∂  where .1 nn tttk −=Δ= +  Also if we consider, then 

equation (8) becomes as 

( ) ( ) (( ) ( ) ) .021111 =ε++μ+−μ− −−++ n
x

pn
x

n
xx

nn
xx

n uuukuuuu  (9) 

Introducing equation (7) into equation (9) yields 
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where, we have 
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j
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Also we can set 

,124,61 22 ⎟
⎠
⎞

⎜
⎝
⎛ μ+=⎟

⎠
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h
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j

n
j

n
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So, the system (10) can be rewritten in the simple form as 

....,,1,0,1
1

11
1 NjFacbcac n

j
n
j

n
j

n
j ==++ +

+
++

−  (11) 

It is clear that the system (11) consists of ( )1+N  equations in the 

( )3+N  unknowns ( ) .,...,,, 101
T

NN cccc +−  Appling boundary conditions 

(3) and use the values in Table 1 we eliminate the unknowns 11, +− Ncc  from 

the system (12). The system (12) is reduced to ( ) ( )11 +×+ NN  tridiagonal 

matrix system as fallows: 
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2.2. Initial state 

The above system requires two initial time levels at ,0=t  and 

,ktt =Δ=  so we use the exact solution (5) to determine these initial 

conditions as follows: 

Firstly, from equation (5), we can evaluate the initial conditions at 0=t  
and kt =  as follows: 

( ) ( ) ( )
( ) ( ) ,12sech2

20, 0
2p xxc

cp
p

cpxuxf ⎟
⎠
⎞

⎜
⎝
⎛ −

+μ
+==  

( ) ( ) ( )
( ) ( )( ) .112sech2

2, 0
2p xkcxc

cp
p

cpkxuxg ⎟
⎠

⎞
⎜
⎝

⎛ −+−
+μ

+==  (12) 

At level time ( )00 == tn  

( ) ( ) ( )∑
+

−=
+− ==++==

1

1

0
1

00
1

0 ....,,1,0,40,
N

j
jjjjjjjjN NjxfcccxBcxU  

 (13) 

At level time ( )ktn == 1  

( ) ( ) ( )∑
+

−=
+− ==++==

1

1

1
1

11
1

1 ....,,1,0,4,
N

j
jjjjjijjN NjxgcccxBckxU  

 (14) 

And from boundary condition (3), we have 

( ) ( ) ,00,0, == jjN xuxU  

( ) ( ) ,00,0,0 =′=′ NNN xUxU  

( ) ( ) ,0,,0 =′=′ kxUkxU NNN  (15) 
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then, from equations (15), we get 

,033 0
1

0
1 =+− − chch  

,033 0
1

0
1 =+− +− NN chch  

,033 1
1

1
1 =+− − chch  

.033 1
1

1
1 =+− +− NN chch  (16) 

So, the equations (12) and (16) lead to a system ( ) ( )33 +×+ NN  of the 
form 
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Also, we can convert the above systems to tridiagonal system ( )1+N  

( )1+× N  at level time 0=n  and at level time ,1=n  by using equations 
(13) and (14) at ,,0 Njj ==  and equation (16) as in the form 
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in which 0
1

0
1 cc =−  and .0

1
0

1 +− = NN cc  
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in which 1
1

1
1 cc =−  and .1

1
1

1 +− = NN cc  

Hence, we can easily determine the initial time parameters ( ...,,, 0
1

0
0 cc  

)00
1, NN cc −  and ( )11

1
1
1

1
0 ,...,,, NN cccc −  by using the above tridiagonal 

systems. 

2.3. Stability analysis 

The Fourier method has been applying to investigate the stability of the 
cubic scheme, assuming U in the nonlinear term as a constant. Firstly, rewrite 
the equation (9) in linearized form as 

1
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1
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1
12

6112461 +
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⎝
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j
n
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n
j c

h
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h
c

h
 

1
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−+− ⎟
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⎝
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⎠
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⎝

⎛ ε++⎟⎟
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⎞
⎜⎜
⎝

⎛ ε+− n
j

n
j

p
n
j

p
c

h
ch

kU
h
kch

ku
h
k  

....,,1,0,061124 1
12

1
2 Njc

h
c

h
n
j

n
j ==⎟

⎠
⎞

⎜
⎝
⎛ μ−−⎟

⎠
⎞

⎜
⎝
⎛ μ+− −

+
−  (17) 

Now using the Fourier method, we have 

,1, −=ξ= iec ikjhnn
j  (18) 

where k is mode number. 
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Substituting equation (18) into equation (17) yields 

( ) ( )hjiknikjhnhjikn eee 11111 +++−+ αξ+βξ+αξ  

( ) ( ) ( )hjiknhjiknhjikn eee 1111 −−+− αξ−γξ+γξ−  

( ) ,...,,1,0,0111 Niee hjiknikjhn ==αξ−βξ− +−−  (19) 

where .6,124,61 22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε+=γ⎟
⎠
⎞

⎜
⎝
⎛ μ+=β⎟

⎠
⎞

⎜
⎝
⎛ μ−=α h

kU
h
k

hh

p
 

In case of applying the Von-Neumann stability theory, the growth of 
Fourier mode is given by 

,, 1

1
21

−

+
+

ζ
ζ=ξ=ξ n

n
nn gg  (20) 

where g is the growth factor. 

Now using equation (20) into (19) yields 

( ) ( ) ( ) ,0cos2sin2cos2 2 =β+ϕα−ϕγ+β+ϕα gig  (21) 

where ,kh+ϕ  

or 

.01cos2
sin22 =−⎟

⎠
⎞⎜

⎝
⎛

β+ϕα
ϕγ+ gig  (22) 

Lemma. For ϕΔ ,, th  and U are defined as above [11] 

,,1cos2
sin ϕ∀≤

β+ϕα
ϕγ  (23) 

where .6,124,61 22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δε+Δ=γ⎟
⎠
⎞

⎜
⎝
⎛ μ+=β⎟

⎠
⎞

⎜
⎝
⎛ μ−=α h

tU
h
t

hh

p
 

Proof. To prove this lemma you can see [10]. 
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Next, from the above lemma, we can put 

.sincos2
sin θ=

β+ϕα
ϕγ  (24) 

For any angle θ. 

So, equation (22) becomes 

,01sin22 =−θ+ igg  (25) 

Thus, θ+θ== θ sincos1 ieg i  and θ+θ−=−= θ− sincos2 ieg i  because 

121 −=−= θ−θ ii eegg  and .sin221 θ=+ igg  

Therefore, we have 

,1sincossincos 22
1 =θ+θ=θ+θ= ig  

.1sincossincos 22
2 =θ+θ=θ+θ−= ig  (26) 

Showing that our scheme is unconditionally stable. 

2.4. Numerical tests and results of GRLW equation 

In this section, we present some numerical examples to test validity of 
our scheme for solving GRLW equation (2). For this purpose, we aim to 
simulate motion of single solitary wave, interaction of two and three solitary 
waves, wave undulation and propagation of wave with the Maxwellian initial 
condition. Accuracy of the scheme is measured by using the following error 
norms: 

( )∑
=

−=−=
N

i

N
j

E
j

NE uuhuuL
0

2
2 ,  

,...,,1,0,max NjuuL N
j

E
j

j
=−=∞  (27) 

where Eu  is the exact solution u and Nu  is the approximation solution .NU  
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2.4.1. The motion of single solitary waves 

In previous section, we have provided the cubic B-spline scheme for the 
GRLW equation, and we can take the following as an initial condition: 

( ) ( )
( ) ( ) .12sech2

20, 0
2p xxc

cp
p

cpxu ⎟
⎠

⎞
⎜
⎝

⎛ −
+μ

+=  (28) 

The norms 2L  and ∞L  are used to compare the numerical solution with 

the analytical solution and the quantities 21, II  and 3I  are shown to measure 

conservation for the schemes. 

Now, we consider two test problems. 

First test problem 

Now, we consider a test problem where ,1.0,1,1.0,3 ==μ== hcp  

1.0,400 ==Δ= ktx  with range [ ].80,0  The simulations are done up to 

.5=t  The invariants 21, II  and 3I  are approach to zero in the computer 

program for the scheme. Errors, also, at time 5 are satisfactorily small 

,1029594.5error- 4
2

−×=L  and ,1089598.2error- 4−
∞ ×=L  for the scheme. 

Our results are recorded in Table 2 and the motion of solitary wave is plotted 
at different time levels in Figure 1. 

Table 2. Invariants and errors for single solitary wave ,1.0,3 == cp  

1.0,1.0 == kh  and 800,400 ≤≤= xx  

t 1I  2I  3I  norm-2L  norm-∞L  

0 4.06257 1.09135 0.13542 0.0 0.0 

1 4.06257 1.09135 0.13523 1.08411E-5 6.21631E-5 

2 4.06256 1.09135 0.13524 2.15815E-4 9.96642E-5 

3 4.06255 1.09135 0.13517 3.27326E-4 1.44133E-4 

4 4.06254 1.09134 0.13533 4.32599E-4 2.44683E-4 

5 4.06252 1.09134 0.13534 5.29594E-4 2.89598E-4 
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(a)          (b) 

Figure 1. Single solitary wave with 1.0,1.0,1.0 === khc  and ,400 =x  
.5,0,800 =≤≤ tx  

Second test problem 

Now, we consider a test problem where ,1.0,1,2.1,3 ==μ== hcp  

025.0,400 ==Δ= ktx  with range [ ].100,0  The simulations are done up 

to .5.2=t  The invariants 1I  approach to zero, 2I  and 3I  are changed by 

less than 4102 −×  and ,104 5−×  respectively in the computer program for 
the scheme. Errors, also, at time 2.5 are satisfactorily small =error-2L  

41072171.3 −×  and 41047808.2error- −
∞ ×=L  for the scheme. Our results 

are recorded in Table 3 and the motion of solitary wave is plotted at different 
time levels in Figure 2. 

Table 3. Invariants and errors for single solitary wave ,2.1,3 == cp  

025.0,1.0 == kh  and 1000,400 ≤≤= xx  

t 1I  2I  3I  norm-2L  norm-∞L  

0 3.79713 2.33531 1.51885 0.0 0.0 

0.5 3.79713 2.33583 1.51888 2.33182E-4 2.15669E-4 

1.0 3.79713 2.33546 1.51884 3.52069E-4 2.15952E-4 

1.5 3.79713 2.33551 1.51883 3.76971E-4 2.41288E-4 

2 3.79713 2.33551 1.51881 3.76226E-4 2.41641E-4 

2.5 3.79713 2.33551 1.51881 3.72171E-4 2.47808E-4 



Talaat S. EL-Danaf, K. R. Raslan and Khalid K. Ali 52 

    
(a)          (b) 

Figure 2. Single solitary wave with ,2.1=c  ,1.0=h  025.0=k  and 

.2,0,1000,400 =≤≤= txx  

2.4.2. Interaction of two solitary waves 

The interaction of two GRLW solitary waves having different amplitudes 
and traveling in the same direction is illustrated. We consider GRLW 
equation with initial conditions given by the linear sum of two well separated 
solitary waves of various amplitudes 
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where jxj ,2,1=  and jc  are arbitrary constants. In our computational work, 

now, we discuss the Interaction of two solitary waves for GRLW equation. 

Now, we choose 1.0,1.0,1,35,15,5.0,1 2121 ===μ==== khxxcc  

with interval [ ].80,0  In Figure 3, the interactions of these solitary waves are 

plotted at different time levels. We also, observe an appearance of a tail of 
small amplitude after interaction and the three invariants for this case are 
shown in Table 4. The invariants 21, II  and 3I  are changed by less than 

34 1005.1,108.2 −− ××  and ,1027.5 3−×  respectively for the scheme. 
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Table 4. Invariants of interaction two solitary waves of GRLW equation 
800,35,15,5.0,1 2121 ≤≤==== xxxcc  

t 1I  2I  3I  

0 7.35999 3.82676 1.84872 

2 7.35999 3.82348 1.89851 

4 7.35977 3.82348 1.85161 

6 7.35958 3.81707 1.84374 

8 7.35933 3.81606 1.84451 

10 7.35893 3.81781 1.84351 

   
(a)          (b) 

Figure 3. Interaction two solitary waves with ,21 =c  ,5.02 =c  ,151 =x  

,352 =x  800 ≤≤ x  at times .20,0=t  

2.4.3. Interaction of three solitary waves 

The interaction of three GRLW solitary waves having different 
amplitudes and traveling in the same direction is illustrated. We consider the 
GRLW equation with initial conditions given by the linear sum of three well 
separated solitary waves of various amplitudes: 
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where ,3,2,1=j  jx  and jc  are arbitrary constants. In our computational 
work. 

Now we discuss the interaction of three solitary waves for GRLW 
equation. 

    
(a)          (b) 

Figure 4. Interaction three solitary waves with ,5.0,75.0,1 321 === ccc  
800,45,35,15 321 ≤≤=== xxxx  at time .15,0=t  

Now, we choose 45,35,15,5.0,75.0,1 321321 ====== xxxccc  

with interval [ ].80,0  In Figure 4, the interactions of these solitary waves are 

plotted at different time levels. We also, observe an appearance of a tail of 
small amplitude after interaction and the three invariants for this case are 
shown in Table 5. The invariants 21, II  and 3I  are changed by less than 

24 10604.1,103 −− ××  and ,109.7 3−×  respectively for the scheme. 

Table 5. Invariants of interaction three solitary waves of GRLW equation. 
800,45,35,15,5.0,75.0,1 321321 ≤≤====== xxxxccc  

t 1I  2I  3I  

0 11.0225 5.82819 2.79641 

2 11.0226 5.83156 2.79428 

4 11.0227 5.83475 2.79081 

6 11.0227 5.84826 2.78668 

8 11.0228 5.85315 2.78531 

10 11.0228 5.85423 2.78551 
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2.4.4. The Maxwellian initial condition 

In final series of numerical experiments, the development of the 
Maxwellian initial condition 

( ) ( ( ) ).40exp0, 2−−= xxu  (31) 

Into a train of solitary waves is examined. We apply it to the problem for 
different cases: (I) ,1.0=μ  (II) ,05.0=μ  (III) ,04.0=μ  (IV) 015.0=μ  

and (V) .01.0=μ  Now we discusses it for GRLW equation. 

When μ is large such as Case (I), only single soliton is generated as 

shown in Figure 5(a). However, when μ reduced, more and more solitary 

waves is are formed, since for Case (II), two solitary waves are generated as 
shown in Figure 5(b), and for Case (III) the Maxwellian pulse breaks up into 
a train of at least two solitary waves as shown in Figure 6(a). Finally, for (IV) 
and (V) cases, the Maxwellian initial condition has decayed into three stable 
solitary waves as shown in Figure 6(b) and Figure 7. The peaks of the well-
developed wave lie on a straight line so that their velocities are linearly 
dependent on their amplitudes and we observe a small oscillating tail 
appearing behind the last wave as shown in Figures 5, 6 and 7, and all states 
at .5=t  Moreover, the total number of solitary waves which are generated 

from the Maxwellian initial condition according to the results obtained from 
the numerical scheme in test problem as shown in Table 7, can be shown to 
follow approximately the relation: 

[ ].1~ 4 μ=N  (32) 

The values of the quantities 21, II  and 3I  for the cases: ,1.0=μ  

015.0,04.0,05.0 =μ=μ=μ  and 01.0=μ  are given in Table 6. 
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Table 6 

μ t 1I  2I  3I  

3 1.77245 1.25331 0.886227 

4 1.77232 1.22331 0.886244 0.1 

5 1.77211 1.24331 0.886267 

3 1.67245 1.25356 0.886227 

4 1.67211 1.25324 0.866629 0.05 

5 1.66233 1.25367 0.856824 

3 1.77245 1.15491 0.786234 

4 1.77342 1.15345 0.766298 0.04 

5 1.77123 1.14324 0.756278 

3 1.87245 1.15333 0.776227 

4 1.87233 1.15356 0.766277 0.015 

5 1.87212 1.15567 0.756267 

3 1.57245 1.05323 0.784527 

4 1.57124 1.05334 0.782326 0.01 

5 1.57298 1.05334 0.783226 

Table 7. Solitary waves generated from a Maxwellian initial condition 

μ Number of solitary waves 

0.1 1 

0.05 2 

0.04 2 

0.015 3 

0.01 4 
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         (a)         (b) 

Figure 5. The Maxwellian initial condition at (a) ,1.0=μ  (b) 05.0=μ  and 

.5=t  

    
         (a)         (b) 

Figure 6. The Maxwellian initial condition at (a) ,04.0=μ  (b) 015.0=μ  

and .5=t  

 

Figure 7. The Maxwellian initial condition at 01.0=μ  and .5=t  
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3. Conclusion 

In this paper, we applied a collocation method using cubic B-splines to 
study solitary waves of GRLW equation, and shown that our scheme are 
unconditionally stable. We tested our scheme through single solitary wave in 
which the analytic solution is known, and then extend them to study the 
interaction of solitons where no analytic solution is known during the 
interaction. The Maxwellian initial condition for GRLW equation is used. 
The obtained approximate numerical solutions maintain good accuracy 
compared with the exact solutions. 
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