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Abstract

We derive a class of two-level high-order compact (HOC) finite difference
schemes for solving three-dimensional unsteady convection-diffusion
problems. The schemes are fourth-order accurate in space and second- or
lower-order accurate in time depending on the choice of a weighted

average parameter µ. It is shown through a discrete Fourier analysis

that the schemes are unconditionally stable for .15.0 ≤µ≤  Numerical

experiments are conducted for the case 5.0=µ  and the corresponding

( )19,19  scheme is compared to the standard Crank-Nicolson ( )7,7

scheme.

1. Introduction

Partial differential equations are the basis of many models of
physical, chemical and biological phenomena, and their use has also
spread into economics, financial forecasting and many other fields. It is
essential to approximate the solutions of these partial differential
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equations numerically in order to investigate the predictions of the
mathematical models, as the exact solutions are usually unavailable.

In this paper, we shall consider the three-dimensional unsteady

convection-diffusion problem for a transport variable u,

,f
z
uc

y
uc

x
ucu

t
u

zyx =
∂
∂+

∂
∂+

∂
∂+∆−

∂
∂α   in  ( ],,0 T×Ω (1a)

( ) ( ) ( ) ( ],,0,,,,,,,,,, Ttzyxtzyxgtzyxu ∈Ω∂∈= (1b)

( ) ( ) ( ) ,,,,,,0,,, 0 Ω∈= zyxzyxuzyxu (1c)

where 3R⊂Ω  is a rectangular domain, ( ]T,0  is the time interval, and f,

g and 0u  are given functions of sufficient smoothness. In (1a), α is a

constant and ,xc  yc  and zc  are speeds of convection in the x-, y- and

z-directions, respectively.

Equation (1a) may be seen in many applications to model convection-

diffusion of quantities such as mass, heat, energy, vorticity etc. [21]. For

example, it has been used to describe heat transfer in a draining film [10],

water transfer in soils and groundwater [9, 18], flow in porous media

[5, 14], the intrusion of salt water into fresh water aquifers, the spread of

pollutants in rivers and streams [2, 3], and transport of pollutants in the

atmosphere [29].

Various numerical finite difference schemes have been proposed to

solve convection-diffusion problems approximately. Most of these

schemes are either first-order or second-order accurate in space, and have

poor quality for convection dominated flows if the mesh is not sufficiently

refined. Higher order discretizations are generally associated with large

(non-compact) stencils which increase the bandwidth of the resulting

matrix and lead to a large number of arithmetic operations, especially for

higher dimensional problems.

To obtain satisfactory higher order numerical results with reasonable

computational cost, there have been attempts to develop high-order

compact (HOC) schemes, which utilize only the grid nodes directly
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adjacent to the central node. After deriving several higher order implicit

schemes for unsteady one-dimensional convection-diffusion equations

[16], Noye and Tan [17] proposed a compact nine-point HOC implicit

scheme for unsteady 2-D convection-diffusion equations with constant

coefficients. The scheme is third-order accurate in space and second-order

accurate in time, and has a large zone of stability. Two other classes of

compact difference schemes of order 2 in time and order 4 in space have

been derived in [19, 20], with different choices of weighting parameters.

The 2-D HOC scheme proposed in [8] for solving steady-state

equations was extended by Spotz and Carey to solve unsteady 1-D

convection-diffusion equations with variable coefficients and 2-D diffusion

equations [27]. Based on [27], classes of HOC schemes with weighted

time discretization have been derived in [13] and [12] for solving

unsteady 2-D convection-diffusion problems and 2-D parabolic problems

with mixed derivatives, respectively. Recently, Karaa and Zhang [13]

proposed a high-order ADI method for solving 2-D convection-diffusion

problems. The proposed ADI method is fourth-order in space and second-

order in time, and numerical experiments have been presented to test its

high accuracy and to show its superiority over the standard second-order

Peaceman-Rachford ADI method and the spatial third-order scheme by

Noye and Tan [16].

In this paper, we propose a class of implicit high-order compact

schemes for solving 3-D convection-diffusion problems. The schemes are

fourth-order accurate in space and second- or lower-order accurate in

time depending on the choice of a weighted average parameter µ. The

case with 5.0=µ  is given special attention and numerical experiments

are presented to test the high accuracy of the resulting scheme and to

compare it with the standard Crank-Nicolson ( )7,7  scheme. We mention

that some numerical schemes with at most a second-order accuracy in

time and in space have been examined in [4].
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Figure 1. The 19-point stencil of the 3-D grid points in a reference cube.

2. High-order Implicit Discretization

We start by briefly discussing the derivation of HOC formulation for

the steady-state form of equation (1a), which is obtained when u, the

convection terms and f are independent of t. Under these conditions, (1a)

becomes

.f
z
uc

y
uc

x
ucu zyx =

∂
∂+

∂
∂+

∂
∂+∆− (2)

Assuming that the discretization is carried out on a uniform three-

dimensional grid with a uniform mesh size h, the standard central

difference approximation to equation (2) at the grid point ( )kji ,,  is

given by

,,,,,
2

,,
2

,,
2

kjixxkjizkjiykjix ucuuu δ+δ−δ−δ−

,,,,,,,,, kjikjikjizzkjiyy fucuc =τ−δ+δ+ (3)

where 22 ,,, yyxx δδδδ  and 2, zz δδ  are the first- and second-order central

difference operators in the x-, y- and z-directions, respectively. The

truncation error kji ,,τ  is given by
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One way to derive high-order compact schemes is to operate on the
partial differential equation (2) as an auxiliary relation to obtain second-
order finite difference approximations for higher order derivatives in the
truncation error. Inclusion of these expressions in the central difference

approximation (3) increases the order of accuracy, typically to ( )4hO

while retaining a compact stencil defined by nodes surrounding the

reference grid point ( ).,, kji  This approach was advocated by Spotz and

Carey and has been used (without any symbolic computation procedure)
to derive fourth-order compact approximations for 2-D convection-
diffusion and 3-D Poisson equations [25, 26].

Another popular approach advocated by Gupta et al. [8], consists of

expanding ( )zyxu ,,  in Taylor series at the grid point 0 as

( ) ∑=
kji

kji
kji zyxazyxu

,,
,, .,, (5)

Here, we use a local truncation coordinate system where the unit grids

are labeled in Fig. 1. The approximate value of a function ( )zyxu ,,  at an

internal grid point ( )kji ,,  is denoted by .0u  The approximate values of its

immediate 18 neighboring mesh points are denoted by ,lu  ,18...,,2,1=l

as in Fig. 1. The convection coefficients ,xc  ,yc  zc  and the forcing

function f are expanded in Taylor series analogously. The expansions are
substituted into equation (2) to obtain a finite difference approximation
of order 4. This is achieved by truncating the Taylor series to power 4 (by
setting all the Taylor series coefficients kjia ,,  to zero for ).4>++ kji

The procedure is straightforward but extremely tedious and requires
substantial symbolic manipulations for three-dimensional problems.
Some fourth-order compact finite difference schemes for the 3-D elliptic
differential equations were obtained by Anantha-Krishnaiah et al. [1]
using a lot of pencil and paper analysis. Several implementations with



w
w

w
.p

ph
m

j.c
om

SAMIR KARAA146

the symbolic computation packages, Mathematica and Maple, have been
reported in [6, 7, 28]. The fourth-order 19-point approximation for
equation (2) obtained in [28] is given by

∑
=

=
18

0
0,

l
ll Fuw (6)

where the coefficients ,18...,,0, =lwl  are given by

[ ( ) ( )],24
654231000

2222
0 zzyyxxzyx cccccchccchw +−+−−+++=

( )
6543210

32
4

21 xxxxxxx ccccccchw −−−+−−−−=

[ ( ) ( ) ( )],4
8 6504203100

2
2

xxzxxyxxxx cccccccccch −+−+−+−

( )
6543210

32
4

22 yyyyyyy ccccccchw −−+−−−−−=

[ ( ) ( ) ( )],4
8 6504203100

2
2

yyzyyyyyxy cccccccccch −+−+−+−

( )
6543210

32
4

23 xxxxxxx ccccccchw −−−−−++−=

[ ( ) ( ) ( )],4
8 6504203100

2
2

xxzxxyxxxx cccccccccch −−−−−−−

( )
6543210

32
4

24 yyyyyyy ccccccchw −−−−+−+−=

[ ( ) ( ) ( )],4
8 6504203100

2
2

yyzyyyyyxy cccccccccch −−−−−−−

( )
6543210

32
4

25 zzzzzzz ccccccchw +−−−−−−−=

[ ( ) ( ) ( )],4
8 6504203100

2
2

zzzzzyzzxz cccccccccch −+−+−+−

( )
6543210

32
4

26 zzzzzzz ccccccchw −+−−−−+−=

[ ( ) ( ) ( )],4
8 6504203100

2
2

zzzzzyzzxz cccccccccch −−−−−−−
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( ) ( ) ,
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2

7 yxyyxxyx cchcccchcchw −−+−+++−=
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( ) ( ) ,
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1
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( )6543210

2

0 6
2

fffffffhF ++++++=

[ ( ) ( ) ( )].
4 654231

3

000
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Writing (6) in the operator form

,,,,, kjikji LfAu = (7)
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where A and L are, respectively, 19-point and 7-point finite difference

operators, the HOC approach can be extended directly to the 3-D

unsteady equation by simply replacing f by ( )tuf ∂∂α−  to yield

.
,,

,,
kji

kji t
ufLAu 






∂
∂α−=

This generates the semi-discrete problem

.,,,,
,,

kjikji
kji

LfAu
t
uL +−=
∂
∂α (8)

Clearly any time integrator can be implemented to solve (8). Since
the discretization in space is high-order, one can elect to implement high-
order time integrators like the fourth-order Runge-Kutta family. But
since our focus is to extend the HOC formulation to 3-D time-depending
problems, a simpler time-stepping scheme would be instructive.

Following [27], and differentiating at ( ) ,1 1+
µ µ+µ−= nn ttt  where ≤0

1≤µ  and the superscript n denotes the time level, yields a class of

integrators that includes the forward Euler ( ),0=µ  the Crank-Nicolson

( ),21=µ  and the backward Euler ( )1=µ  schemes. The resulting fully

discrete difference scheme for grid point ( )kji ,,  at time level n then

becomes

( ) n
kji

n
kji uAtLuAtL ,,

1
,, 1 







α
∆µ−−=







α
∆µ+ +

 (( ) ).1 1
,,,,
+µ+µ−

α
∆+ n

kji
n

kji LfLft (9)

The accuracy of the scheme is (( ) ),, 4htO s∆  with ,2≤s  and it should

be noted that for ,5.0=µ  the difference stencil requires 19 points in both

the nth and ( )1+n th time levels resulting in what may be called a

( )19,19  scheme. Similarly, a ( )7,19  and a ( )19,7  schemes are obtained

for 0=µ  and ,1=µ  respectively.

The high-order implicit discretization (9) results in a system of linear
equations of the form
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,bBU = (10)

where B is the coefficient matrix, U is the solution vector at time level

( ),1+n  and b is the right hand side including boundary condition

information. The implementation of Dirichlet boundary conditions is

straightforward due to the compactness of the schemes. Each row of B

corresponding to an interior node away from the boundary contains at

most 19 nonzero elements. Those rows corresponding to the nodes next to

the boundary contain fewer than 19 nonzero elements. Neumann

boundary conditions can also be implemented as is done in [27] and [11]

for the 1-D and 2-D cases, respectively. In general, the matrix B is of

large size and has at most 19 nonzero diagonals, so it is very sparse.

In order to compute a numerical solution for the three-dimensional

convection-diffusion problem, the sparse linear system (10) is solved at

each time step with the same coefficient matrix and a different right

hand side. Thus, the total computational cost is dominated by the way

this linear system is solved. Direct solution methods based on Gaussian

elimination are usually not practical for large size problems due to the

excessive requirements on computer memory and CPU time. We propose

then to use a Krylov subspace method coupled with a robust

preconditioner so that (10) can be solved in a few iterations at each time.

We mainly focus on GMRES, a minimal residual algorithm based on the

use of the Arnoldi process [22, 23], coupled with an incomplete LU

factorization based preconditioner. Incomplete LU factorization has been

one of the best known preconditioning techniques used to improve the

convergence of GMRES [15, 22].

To study the stability of the two-level difference scheme (9), we use

the von Neumann linear stability analysis assuming that the convection

terms to be constants and the forcing function f to be zero in (1a). If we

let kIjIiInn
kji

zyx eeebu θθθ=,,  to be the value of nu  at node ( ),,, kji  where

,1−=I  nb  is the amplitude at time level n, and ( ),2 1Λ∆π=θ xx

( )22 Λ∆π=θ yy  and ( )32 Λ∆π=θ zz  are phase angles with wavelengths

,1Λ  2Λ  and ,3Λ  respectively, the amplification factor ( ) =θθθξ zyx ,,



w
w

w
.p

ph
m

j.c
om

SAMIR KARAA150

,1 nn bb +  for stability, has to satisfy the relation

( ) ,1,, ≤θθθξ zyx

for all ,xθ  yθ  and zθ  in [ ]., ππ−  The amplification factor ξ can then be

found by substituting the expressions for n
iju  and 1+n

iju  in (9), and

following the approach used in [27] and [11], the stability criterion of the
scheme becomes

( )
[( ) ( ) ( )]

.
444

221
222222

2

zyx chchcht

h

+++++∆

α≤µ− (11)

This shows that the scheme is unconditionally stable for ,15.0 ≤µ≤

since the left-hand side in (11) becomes negative, but conditionally stable
for .5.00 <µ≤

3. Numerical Experiments

In this section, two numerical examples are carried out. We fix our

attention on the case where 5.0=µ  and compare the resulting ( )19,19

scheme with the classical second-order ( )7,7  difference scheme, which

uses central difference in space and Crank-Nicolson type integration in
time.

We first consider a three-dimensional diffusion problem in the cubic

region [ ] [ ] [ ].1,01,01,0 ××  We set 0=== zyx ccc  and properly select

the forcing function f so that the exact solution for this test problem is

( ) ( ) ( ) ( ).sinsinsin,,,
2

zyxetzyxu t πππ= π−

The initial and Dirichlet boundary conditions are set to satisfy this
solution. We consider uniform grids with different mesh sizes and

compare the accuracy of the computed solutions from the present ( )19,19

scheme and the classical ( )7,7  difference scheme. The quantity that we

compare is the 2L -norm error of the computed solution with respect to

the exact solution. We choose a time step 001.0=∆t  and 1=T  for the

entire simulation process.
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In Fig. 2, we plot the 2L -norm errors at each time step in each case.

The figure shows the superiority of the present scheme over the ( )7,7

scheme. The error obtained on an 1111 ×  grid is much smaller than the

one obtained using ( )7,7  scheme on a 4141 ×  grid.

Figure 2. Comparison of the 2L -norm errors produced by the present

( )19,19  scheme and the ( )7,7  scheme at each time step.

To further study the validity and effectiveness of the new high-order

scheme, we solve a convection-diffusion problem defined in the cubic

region [ ] [ ] [ ],2,02,02,0 ××  with an analytical solution given, as in [4], by

( )tzyxu ,,,

( )
( )

( )
( )

( )
( )

( )
,

14

5.0~

14

5.0~

14

5.0~
exp

14

1
1

2

1

2

1

2

23 











+α

−−
−

+α

−−
−

+α

−−
−

+
=

−−− t

tcz

t

tcy

t

tcx

t
zzyx

where ,~ α= xx cc  α= ycc~  and .~ α= zz cc  The Dirichlet boundary and

the initial conditions are directly taken from this exact solution. We

choose ,100=α  80=== zyx ccc  as in [16] and [4], and we let

25.1=T  for the entire simulation process.
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Table 1. Errors at st 25.1=  and CPU times delivered by the difference

schemes, with 001.0=∆t  and 05.0=∆=∆=∆ zyx

Scheme 2L -norm error Maximum|error| CPU time (s)

( )7,7  scheme 31017.2 −× 21041.1 −× 1708

( )9,9  scheme 41019.3 −× 31029.2 −× 4293

Table 1 presents the 2L -norm errors and the maximum absolute

errors evaluated at 25.1=t  for the present scheme and the ( )7,7  scheme,

with the total elapsed time (CPU) in seconds delivered in each case. The
results show that the present scheme provides high accuracy solution.
The detail of the convergence history of each scheme is shown in Fig. 3,

where we plot the 2L -norm errors at each time step for the entire
simulation process. It is seen that the two errors show similar behaviors
with the error of the present scheme remaining smaller than the other
error at every time step.

Figure 3. Comparison of the 2L -norm errors produced by the difference
schemes at each time step.

We also remark that the improvement in accuracy comes at a higher

cost of computations and storage. This is due in part to the fact that,
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since the sparse matrix arising from the ( )7,7  scheme has only 7 nonzero

diagonals, performing a matrix-vector product using the present ( )19,19

scheme is almost three times expensive as using the ( )7,7  scheme. We

have also observed that, at each time level, the iterative solver took six

iterations to converge in the case of present ( )19,19  scheme compared to

three iterations in the other case. We believe that developing an ADI

solution method in the case of the ( )9,9  scheme would significantly

decrease the overall execution time and produce a very efficient solver.

We finally notice that the sparse linear systems arising from both

discretization schemes are solved using GMRES coupled with the ILU(1)

preconditioner. At each time level, the iterations are terminated when

the 2-norm of the relative residual is reduced by a factor of ,107  and we

did not take the advantage of using the current solution on each time

level as an initial guess for the next time level.

4. Concluding Remarks

In this paper, we present a class of implicit high-order compact

schemes for solving 3-D convection-diffusion problems. The schemes are

fourth-order accurate in space and second- or lower-order accurate in

time depending on the choice of a weighted average parameter µ. It is

shown through a discrete Fourier analysis that the schemes are

unconditionally stable for .15.0 ≤µ≤  Numerical examples supporting

our theoretical analysis are provided. The improvement in accuracy

comes at a higher cost of computations and storage. Developing an ADI

solution method would significantly decrease the overall execution time

and produce a very efficient solver.
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