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Abstract 

In this paper, we introduce the use of fuzzy linear regression in 
prediction and forecasting for a dataset. Using the basic idea 
underlying fuzzy regression gives computational efficiency of 
forecasting solutions. 

1. Introduction 

Predicting the future value is the primary issue when dealing with 
statistics and time series dataset. Classical statistical theory contains two 
types of uncertainty. These are uncertainty due to randomness and 
uncertainty due to fuzziness. Uncertainty due to fuzziness results from lack 
of relative distinction due to cognitive source, such as human estimation 
errors, abstract representation of a system and not enough data due to cost 
and other restrictions [8, 13]. 

A fuzzy type of conventional regression analysis has been proposed to 
evaluate the functional relationship between input and output variables in a 



B. Onoghojobi and N. P. Olewuezi 8 

fuzzy environment. Indeed, unlike statistical regression modeling based on 
probability theory, fuzzy regression is based on possibility theory and fuzzy 
set theory [1]. 

A fuzzy linear regression takes the general form [4]: 

 ,~~~
110 nnxAxAAY +++= L  (1) 

where Y is the fuzzy output, ,...,,2,1,0,~ niAi =  is a fuzzy coefficient, and 
( )nxxx ...,,1=  is an n-dimensional non-fuzzy input vector [4, 14]. 

If equation (1) is indexed with time it becomes a fuzzy time series model. 
The concept of ‘fuzzy’ variable was first proposed by Zadeh [12]. He 
proposed that fuzzy set can be applied to represent data which has the 
characteristic of vagueness. A fuzzy linear regression model was first 
introduced by Tanaka et al. [11]. They formulated a linear regression model 
with fuzzy response data, crisp predictor data and fuzzy parameters as a 
mathematical programming problem. Subsequently Dongale et al. [4] studied 
fuzzy linear regression (FLR) problem with crisp explanatory variables and 
fuzzy response variables. They formulated FLR problem as linear 
programming model to determine regression coefficients as fuzzy numbers, 
where objective function minimizes total spread of fuzzy regression 
coefficients subject to constraint, that the support of estimated values is 
needed to cover support of their associated observed values for certain pre-
specified level [2, 7]. 

Recent works on fuzzy such as application philosophy of fuzzy 
regression by Campobasso et al. [3] stated that the uncertainties and its 
prediction normally tend to be complex phenomena. Application of fuzzy 
using Monte Carlo has been established [6]. The regression algorithm based 
on fuzzy rough set, consisting of fuzzy partition, fuzzy approximation and 
estimation of regression value had been established [10]. In order to analyze 
the freight volume prediction problem of city under the influence of various 
factors, triangular fuzzy linear model and trapezoidal fuzzy linear regression 
model were, respectively, set up [9]. ST-decomposition method was 
developed to compute the parameters of fuzzy linear regression based on the 
least square approach [15]. 
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Also, intriguingly, Berry-Stoyzle et al. [2] presented a test procedure to 
explicitly examine whether an independent variable has a clear functional 
relationship with the dependent variable in a specific regression model, or 
whether their relationship is fuzzy. Fuzzy logic have been applied to ARIMA 
model because of using finite number of data and calculating upper and 
lower limits to indicate best and worst status of investigating variables of 
interest in policy making for stock index [5]. 

The main contribution of this paper is the reformation of classical linear 
regression model as a fuzzy regression model for prediction and forecasting 
by using the mode for a symmetric triangular fuzzy number. 

In Section 2, we provided a background on classical statistical 
regression. In Section 3, we explained how to forecast using fuzzy linear 
regression model. Section 4 offers some practical considerations of 
forecasting using fuzzy linear regression models and provides a numerical 
example of the application. 

2. Preliminary Definition of Terms 

Crisp data/value: Crisp data is also called precise data. A crisp value is 
a single value without any ambiguity. 

Symmetric triangular fuzzy number (STFN): As indicated, the salient 
features of the TFN are its mode, its left and right spreads, and its support. 
When the two spreads are equal, the TFN is known as a symmetrical TFN 
(STFN). 

Membership function (MF): A membership function is a curve that 
defines how each point in the input space is mapped to a membership value 
(or degree of membership) between 0 and 1. The input space is sometimes 
referred to as universe of discourse - a fancy name for a simple concept. For 
example, a set of tall people, in this case, the universe of discourse is all 
potential heights; say from 3 feet to 9 feet and the word tall will correspond 
to a curve that defines the degree to which any person is tall. 

Regression analysis: In statistics, regression is an approach for 
modeling the relationship between a scalar dependent variable Y and one or 
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more explanatory variables denoted X. In regression, data are modeled using 
predictor functions and unknown model parameters are estimated from the 
data. If we use Y to represent the dependent variable X and the independent 
variable, this relationship could be described as the regression of Y on X, and 
in the simplest case, this is assumed to be a straight line. The slope of the line 
depends on whether the correlation is positive or negative. 

Ordinary least square: In statistics, least squares are a method for 
estimating the unknown parameters in a regression model. This method 
minimizes the sum of squared vertical distances between the observed 
response in the data set and the responses predicted by the linear 
approximation. 

Forecasting: This is the process of making statements about events 
whose actual outcome (typically) have not yet been observed. A common 
example might be estimation of some variables of interest at some specified 
future date. 

Classical statistical regression 

Classical statistical regression takes the form 

 ,...,,2,1,110 miexxY iikkii =+β++β+β= L  (2) 

where the dependent (response) variable, ,iY  the independent (explanatory) 

variables, ,ijX  and the coefficients (parameters), ,jβ  are crisp values, and iε  

is a crisp random error term with ( ) ,0=εiE  ( ) ,Var 2σ=εi  and ( )ji εε ,Cov  

.,,,0 jiji ≠∀=  

Fuzzy linear regression 

The regression analysis dealing with fuzzy data is usually called fuzzy 
regression analysis. There are two motivations for developing fuzzy 
regression analysis. The first motivation results from the realization that it is 
not often realistic to assume that a crisp function of a given form can be used 
to represent the relationship between the given variables. Fuzzy relationship 
which is even though less precise seems intuitively more realistic. The 
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second motivation results from the fact that the nature of the data in many 
cases has inherent characteristics of uncertainty. 

Although statistical regression has many applications, it is problematic if: 

1. The data set is too small. 

2. There is difficulty verifying that the error is normally distributed. 

3. If there is vagueness in the relationship between the independent and 
dependent variables. 

4. If there is ambiguity associated with the event. 

5. If the linearity assumption is inappropriate. 

These are the situations fuzzy regression was meant to address. 

In contrast to the classical statistical linear regression, fuzzy regression 
takes the general form in equation (1). 

The major contrast here is in dealing with errors as fuzzy variables in 
fuzzy regression modeling, and in dealing with errors as random residuals in 
classical statistical linear regression models. 

3. Forecasting Using Fuzzy Linear Regression Models 

One of the objectives of model building is to provide forecast of the 
future values. After research and conceptualization of fuzzy regression 
models, we verify the assumptions of the model and we apply the model 
using a data set and use it in predicting future possible values. 

This was done using the Tanaka’s approach of the possibilistic regression 
model. Here we calculate the regression equation for the upper and lower 

bounds denoted UY  and ,LY  respectively. The method assumes that the 

fuzzy numbers must be symmetric triangular fuzzy numbers, whereby the 
support of the membership function has equal spreads. After verifying            
that this assumption holds, it implies that the modes of the membership 

function fall midway between the boundary lines. 1=h
iY  is the mode of the 
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MF and if a SFTN is assumed, ( ) .21 L
i

U
i

h
i YYY +==  Given the parameters, 

( )1,, =hLU YYY  which characterize the fuzzy regression model, the ith data 

pair ( ),, ii yx  is associated with the model parameters ( ).,, 1=h
i

L
i

U
i YYY  

Given two triangular fuzzy X~  and Y~  their sum is closed under addition 

( )RRnnLL yxyxyxYXZ ++++=+= ,~~~  

which represents a triangular fuzzy number. 

The average of X~  and the square distance between X  and Y  can also 
be computed as 
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( ) {( ) ( )}hLUhLR yyyxxxdYXd ,,,,,~,~ 2 =  

( ) ( ) ( ) ,222 RRLLhh yxyxyx −+−+−=  respectively. 

We can define the total sum of squares as 

Total sum of square ( )∑= 2~,~ YYd h  

( ) ,SSResSSReg 2 η+∗++= YYnd  

where 

 [ ( ) ( ) ( )]∑ ∗∗∗ −+−+−⋅−=η .2 RiRhRLhLhn
h yyyyyyyyy  (3) 

We use this model to predict the financial leverage of the company in some 
subsequent years. 

4. Numerical Computation 

This section focuses on the preliminary analysis of data on the financial 
leverage and returns on equity of an investment company, using the fuzzy 
regression model which takes the general form as in (1). 
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The fuzzy regression model was applied using a data set and was used to 
forecast. The model equation was used to forecast for four years. This was 
done using the possibilistic model of fitting fuzzy linear regression models. 

Construction of the upper and lower bounds 

Using the time series data set from 2003 to 2010 we filled a straight line 
through two or more data points in such a way that it bounds the data points 
from above. Here, these points are determined heuristically and ordinary 

least square is used to compute the parameters of the line labeled ,hy  which 

takes the values ,75.039 xy +=  as shown in Figure 4.1 below: 

 
Figure 4.1. Construction of the upper bound. 

 
Figure 4.2. Construction of the lower bound. 
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Figure 4.3. Construction of the upper and lower bounds. 

Similarly, we fit a second straight line through two or more data points in 
such a way that it bounds the data points from below. As shown in Figure 

4.2, the fitted line in this case is labeled LY  and takes the values += 33Y  
.5.0 x  

Estimating the model 

Assuming, for the purpose of this example, that STFN are used for the 
MFs, the modes of the MFs fall midway between the boundary lines as 
indicated in Figure 4.4. 

 
Figure 4.4. Construction of fuzzy regression mode. 
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The fuzzy regression intervals 

For any given data pair, ( ),, ii YX  the foregoing conceptualizations can 

be evaluated and checked by the fuzzy regression interval ( )U
i

L
i YY ,  shown 

in Figure 4.5. 

 

Figure 4.5. Fuzzy regression interval. 

1=h
iY  is the mode of the MF and if a SFTN is assumed, ==1h

iY  

( ) .2L
i

U
i YY +  Given the parameters, ( )1,, =hLU YYY  which characterize 

the fuzzy regression model, the ith data pair ( ),, ii yx  is associated with the 

model parameters ( ).,, 1=h
i

L
i

U
i YYY  

In possibilistic regression based on STFN, the data points involved in 
determining the upper and lower bounds determine the structure of the 
model, as depicted in Figure 4.3. 

Verification if the assumption of STFN’s holds 

It can be shown that the fuzzy coefficients are triangular fuzzy numbers 
(TFNs), since the left spread here is equal to the right spread. Their 
membership functions (MFs), ( ),aAμ  can be represented as shown in Figure 

4.6 below. 
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Figure 4.6. Fuzzy coefficient. 

( )
⎭
⎬
⎫

⎩
⎨
⎧ −
−=μ 0,5.6

5.5475.571maxaAj  

{ },0,5.0max=  

where 54.5 is the mode and 6.5 is the spread, and represented as shown in 
Figure 4.7 and Figure 4.8. 

Membership function for triangular fuzzy number 

As indicated, the salient features of the TFN are its mode, its left and 
right spreads, and its support. Since the two spreads are equal, the TFN is 
known as a symmetrical TFN (STFN). 
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Figure 4.7. Symmetrical fuzzy parameters. 

Defining the bounded intervals 

{ } { } ,5.65.54~5.65.54:~5.6,5.54~
LjjLj AAA +≤≤−==  

.8...,2,1,0=j  

The “h-certain” factor 

If, as in Figure 4.5, the supports are just sufficient to include all the data 
points of the sample, there would be only limited confidence in out-of-
sample projection using the estimated fuzzy regression model. This is 
resolved for fuzzy regression model, just as it is with statistical regression, by 
extending the supports. Consider the membership function associated with 
the jth fuzzy coefficient, the presentation of which is shown in Figure 4.7. 
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Figure 4.8. Estimating jA  using the “h-certain” factor. 

For illustrative purposes, a non-symmetric TFN is shown where L
jc  and 

R
jc  represent the left and right spread, respectively. Beyond that, what makes 

this MF materially different from the one shown in Figure 4.6, is that it 
contains a point “h” on the y-axis, called an “h-certain factor,” which, by 
controlling the size of the feasible data interval (the base of the shaded area), 
extends the support of the MF. In particular, as the h-factor increases for a 

given dataset, so increases the spreads, L
jc  and .R

jc  

Forecasting using the fuzzy regression model 

Having verified the assumptions of the model as seen above, we can 
proceed to predict future financial leverage values for Stratus Nig. Ltd. 

Using the fuzzy regression model xYm 625.036 +=  to predict financial 

leverage values, assuming we have return in equity as 52, 58, 64, 70, 76, 82, 
88 and 94 in the next eight years as seen below. 
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Predicted leverage values from 2011 to 2018 using fuzzy linear 
regression model 

Year Predicted Leverage Return in Equity 
2011 68.5 52 
2012 72.3 58 
2013 76.0 64 
2014 79.8 70 
2015 83.5 76 
2016 87.3 82 
2017 91.0 88 
2018 94.8 94 

The fuzzy regression model obtained able to predict the values of the 
leverage, given values of return in equity. These predicted values were very 
close to the original values given. This is because the data satisfies most the 
assumptions of the fuzzy linear regression model since the data set is too 
small, and the fuzzy numbers have been shown to be triangular fuzzy 
numbers. 

5. Conclusion 

This work has shown beyond reasonable doubt that forecasting using the 
fuzzy linear regression model gives reasonably accurate results when 
compared with the existing classical regression model which is problematic 
due to the condition stated above. However, one of the greatest problems as 
seen from this work is the inability to know the precise equation to use when 
working under classical linear regression. 
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