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Abstract 

In this paper, we analyze the local dynamics of delayed SIRS epidemic 
model with modified saturated incidence rate. We take into account 
the incubation time length as time delay into the saturated force of 
incidence with two saturation factors. Local stability and Hopf 
bifurcation of disease free and disease equilibrium due to delay time 
effect have been analyzed. 

1. Introduction 

In this research, we use SIRS model as basic model. There are three 
different compartments of this model: susceptible individuals (S), infectious 
(infective) individuals (I), recovered individuals (R). We assume that a 
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recovered individual only has temporary immunity. In 1978, Anderson and 

May [4] proposed the saturated incidence rate in the form S
SI
α+

β
1  and then 

used by some authors (Gao et al. [5], Zhang and Teng [6], Meng et al. [8] and 
Wei and Chen [1]). The effect of saturated incidence, which is referred to α, 
stems from epidemical control. In some conditions, the inhibitory effect also 
comes from infected individuals like self protection by infected individuals 
or psychological behaviour of infected individuals to stay away from healthy 
people, so it can be associated with the other saturation factor, which is 
related to infected individuals. In order to accommodate the natural 
bahaviour of susceptible and infected individuals and to support the 
effectivity of disease controlling strategies, we use saturated incidence with 
two saturation factors 1α  and ,2α  which measure the inhibitory effect from 

susceptible and infected individuals, respectively. 

One of representations of time delay is incubation time period of disease 
and it usually includes in the force of infection as bifurcation parameter. For 
example, in Zhang et al. [2], Gao et al. [5], Zhang and Teng [6], Jiang and 
Wei [7] and Meng et al. [8]. Cooke [3] proposed the incubation time period τ 
in the force of infection ( ) ( ).τ−β tItS  Zhang et al. [2] used the incubation 

time period as time delay and took it into saturated force of infection         

with single saturated factor ( ) ( )
( ) .1 tS

tItS
α+

τ−β  In this paper, we use saturated 

incidence with two saturation factors and also take time delay into those 
saturation factors. 

2. Mathematical Model Formulation 

We assume that population is not constant and the susceptible host 
population is given by logistic growth with carrying capacity K and a specific 
growth rate constant r. In order to have more realistic model, we use 

saturated incidence rate with two saturation factors ( ) ( )
( ) ( ) ,1 21 tItS

tItS
α+α+

β  
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which measure the inhibitory effect from susceptible and infected 
individuals, respectively. In this paper, we assume that it may be due to the 
self protection by infected individuals or psychological behaviour of infected 
individuals to stay away from healthy people. Finally, we added the constant 
time delay 0>τ  as representing incubation time length into saturated 
incidence form as bifurcation parameter. So, we get generalized SIRS model 
with time delay as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ),11

21
tRtItS

tItStSK
tSrdt

tdS δ+
τ−α+α+

τ−β−




 −=  

( ) ( ) ( )
( ) ( ) ( ) ( ),1 21

tItItItS
tItS

dt
tdI γ−µ−

τ−α+α+
τ−β=  

( ) ( ) ( ) ( ),tRtRtIdt
tdR δ−µ−γ=  

( ) ( ) ( ) ( ),tRtItStN ++=  (2.1) 

where µ is per capita natural death rate, γ is per capita recovery rate of the 
infected individuals and δ is per capita loss of immunity rate of recovered 
individuals. 

3. Stability and Bifurcation Occurrence Analysis 

Theorem 3.1. (i) If 10 =N  and ,1=Φ  then there exist two disease free 

equilibriums, that is, ( )0,0,KEK =  and ( ).0,0,00 =E  

(ii) If 10 >N  and ,1>Φ  then there exists a disease equilibrium 

( ),,,1
∗∗∗= RISE  where 

( )
( ) ,1

21
22

P
PIS

α−β
α+=

∗
∗  

,
112

1
2
112

1
2
1

2

0
2

00

2

00

α

−+




 −Φ+

+
α






 −Φ+

=∗
NNNNN

I  
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,1 ∗∗
γ

= IPR  

where ( )
2

21
0 P

PK α−β
=N  and 

( )
,

22

212
2

rP

PP

α

α−β




 −

γ
δη

=Φ  where =2P  

( )µ+γ  and ( ).1 µ+δ=P  

By linearized process at any equilibrium ( )RIESE ˆ,ˆ,ˆ,ˆˆ =  of system 

(2.1), then kE  becomes locally asymptotically stable if and only if 10 >N  

and .0=τ  Otherwise, kE  is not stable. 

If we take 0>τ  into linearized equation and evaluate at =kE  

( ),0,0,K  then we get two equilibriums with negative real part, r−=λ1  

and ( ).3 µ+δ−=λ  The other roots satisfy the following equation: 

( ) ( ) ( ) .01 1
=

α+
β−µ+γ−λ=λ

λτ−

K
KeF  (3.1) 

Let ,ω+=λ ia  where R∈ω,a  is the root of equation (3.1). By separating 

the real and imaginary parts, and then squaring and adding those both 
equations, we get 

( ) ( ) ( ) .12 2
2

1
222 τ−







α+
β+−µ+γ+µ+γ−=ω aeK

Kaa  (3.2) 

When 10 >ℜ  and ( ) ,1
2

2

1
2
0 µ+γ−







α+
β=ω K

K  then .0=a  That is, (3.2) 

has a unique pair of purely imaginary roots .0ω±=λ i  From (3.2), we get 

nτ  corresponding to 0ω  

( ) ...,2,1,0,2
arctan

00

0

0 =
ω
π+

ω









µ+γ
ω

−
=τ nn  (3.3) 
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with .2
32

0
0

0 ω
π<τ<

ω
π  For ,0=n  we get a critical value of delay 

( ) .
arctan

0

0

0 ω









µ+γ
ω

−
=τ  (3.4) 

Theorem 3.2. For system (2.1), if 10 >ℜ  and 
2

1
2

1 






α+
β=ω K

K  

( ) ,2µ+γ−  then there is also a critical value of delay time 0τ  such          

that ( )0,0,KEk =  is still asymptotically stable when ( )00 ,0 τ∈τ  and          

becomes unstable. Furthermore, system (2.1) undergoes Hopf bifurcation at 
( ),0,0,KEk =  when ....,3,2,1,0, =τ=τ nn  

Then it is easy to prove that 0E  is always an unstable saddle point. 

Finally, we will study the stability of ( )∗∗∗= RISE ,,1  by two possible 

cases of time delay τ, that is, when 0=τ  and .0>τ  If ,0=τ  then we have 

the following characteristic equation at :1E  

( ) 2
21

3 λ−++++λ QPMPP  

( ) ( ) ( )[ ]λ+−++++−+ PQQPPMPMQPP 221  

( ) ( ) ,0121 =δγ−+−++ PPQPQPPMP  (3.5) 

where 

( )
( )

( )
( )

,
1

1,
1

1
2

21

1
2

21

2
∗∗

∗∗

∗∗

∗∗

α+α+

α+β=
α+α+

α+β=
IS

SIQ
IS

IIP  

( ) ( ).,2
21 µ+γ=µ+δ=+−= ∗ PPSK

rrM  

Using Routh-Hurwitz criterion, we get the following conditions: 

  (i) ,
2
1

α
α>∗

∗

S
I  
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 (ii) ,5.0>
∗

K
S  

(iii) .2
1

PQP <<δγ  (3.6) 

If all the conditions (3.6) hold, then all of the eigenvalues of (3.5) lie in 
the left half plane. Therefore, 1E  is locally asymptotically stable equilibrium 

when ,0=τ  otherwise, if one of the conditions (3.6) is not satisfied, then 1E  

is not stable equilibrium for .0=τ  When ,0>τ  we consider the following 

characteristic equation (3.5) at :1E  

( ) 2
21

3 λ−++++λ λτ−QePMPP  

[ ( ) ( ) ( ) ]λ+−++++−+ λτ−λτ−λτ− PQeQePPMPMQePP 221  

( ) ( ) .0121 =δγ−+−++ λτ−λτ− PPPQeQePPMP  (3.7) 

If ( )0>ωω=λ i  is the root of (3.7), then by separating the real and 

imaginary parts, squaring and adding both equations, then we get 

[( ) ]22
2

2
1

26 QPPPM −+++ω+ω 4  

[ ( ) ( )2
2

2
1

22
2

2
1

2 PPPMPP +++ω+  

( ) ( )]2
1

22
212 PMQPMPPP +−+++δγ+  

[ ( )( ) ( ) ] .02
1

2
21 =−δγ−++ QMPPPMPP  (3.8) 

If there exists a positive value of 0ω  that satisfies (3.8), then nτ  

corresponding to 0ω  can be obtained as follows: 

[
( )]
[ ]

,arcos1
2
3

2
1

2
0

42123

22141
2
0

4
01

0
0





















−ω

δγ−+++
+ω+ω−

ω
=τ

QMM
PMPMPM

PMMMMM

 (3.9) 
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where 

( ).,,, 14
2
0131211 PMPMMPMPPMMPMM +=ω−=++=+=  

Then it is easy to prove that 0
0

1
>
















τ
λ

ω=λ

−

i
d
dResign  if and only if the 

following conditions hold: 

  (i) ,1>M  

 (ii) ,10 << Q  

(iii) ,3 2
0ω>V  

(iv) ( ) .11
2
0 <+ωτ MPQ  (3.10) 

Hence, if there exists critical time delay 0τ  in the form (3.9) with certain 

specific conditions and also satisfies transversality condition in the form 
(3.10), then system (2.1) undergoes locally Hopf bifurcation at endemic 
equilibrium .1E  

4. Conclusion 

In this paper, the local stability and bifurcation analysis of disease and 
disease free equilibriums have been analyzed. We have proved that the 
stability of disease and disease free equilibriums and existence of a critical 
value of time delay. When the time delay passes a critical value, then a stable 
equilibrium point will turn into an unstable equilibrium and we say that        
the equilibrium point is experiencing locally Hopf bifurcation. For further 
research, there are several possible extensions of this work, like global 
stability and bifurcation analysis. 
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