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Abstract 

The objective of this article is the mathematical modeling and 
numerical simulation in transitory mode of the groundwater level of 
plain of Sourou (Burkina Faso). The modeled domain is fractured. We 
supposed the fractures as porous media and the groundwater flow 
equation was resolved using the finite element method in FreeFem ++. 

The evolution of the piezometric head was simulated between 1960 
and 2030. The results obtained in the simulations helped to understand 
the variation of the groundwater level and to highlight the role of 
fractures in the piezometric depression. 
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1. Introduction 

The water table of the plain of Sourou has already been the subject of 
several studies [1, 3]. The farming in this plain is becoming more intensive. 
But there is no even a model to monitor the evolution of the level of the 
water table. The objective of this work is the mathematical modeling and 
numerical simulation in transitory mode of groundwater level. The 
mathematical model was resolved by the finite element method of Galerkin. 
Programming was done under FreeFem ++. The geological section of the 
plain shows a fractured porous media [3]. The usual models programmed in 
software cannot simulate everything. Indeed the area must be uniform and 
continuous. Fractured aquifers therefore can not be modeled simply. The 
flow in the fractures does not meet the laws governing conventional models. 
Fractures influence hydraulic conductivity. In most cases, the fractures have 
a hydraulic conductivity greater than that of the rock. In this case, they are 
privileged traffic gutters. In our case, fractures have hydraulic conductivities 
below that of the rock. There are many methods and models to treat fractures 
[7, 8]. To handle the presence of fractures, we assume that the fractures are 
sub-domains of the overall area as in [9]. We therefore assimilate them to 
porous media. We used a local mesh refinement in the fractures. Each 
domain has been meshed separately and we imposed common nodes on the 
border of two neighboring sub-domain. 

Our report is structured as follows: in the first part, we will present the 
problem to be solved. The second part is devoted to modeling and 
mathematical analysis of the problem. A third part is devoted to the 
presentation of the results of the numerical simulation. 

2. Description of the Study Site and Problem to Solve 

2.1. Description of the study site 

Because of the limitations of data on the plain, the modeling domain is a 
geological section located on the eastern margin of the basin of Gondo 
(Figure 1). In this area many investigations were carried out [3]. This vertical 
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reference section selected stretches from the village of Nomou located in the 
east in the crystalline basement to the village of Yensé located in the western 
sedimentary basin, it is about 25 km long. It has a height of 300 meters. In the 
reference section, five subvertical fractures of 500 meters thick affect both 
the base and the sedimentary formations. 

2.2. Modeling objectives 

Modeling objectives are to provide answers to the following questions: 

• What has been the evolution of the groundwater level since 1960? 

• What is the influence of fractures in the piezometric depression of the 
water table? 

 

Figure 1. Domain of modeling [3]. 

 

Figure 2. Simplified interpretative geological section [3]. 
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3. Mathematical Modeling of Flow 

3.1. Flow conditions 

The piezometry observed upstream (upstream base region) and 
downstream (downstream the sedimentary area of Doubaré) the flow is 
prescribed as imposed potential limits (Dirichlet condition). The lower limit 
of the domain is a zero flux limit (homogeneous Neumann condition). We 
must also take into account the induced recharge by rainfall on the upper 
part. 

The fluid is incompressible monophasic and the media is saturated 
porous. The piezometry initially chosen was that of 1960 which corresponds 
to the piezometry obtained by steady calibration. 

3.2. Mathematical model 

Let us subdivide the domain into several sub-domains: iΩ  ( ,2,1=i  

)13...,  with ∅=ΩΩ ji I  if ,ji ≠  and ii Ω=Ω =
13

1U  (Figure 3). The 

fractures being considered as porous media. 

 

Figure 3. Subdivided domain. 

Under the above mentioned flow conditions and applying the mass 
conservation law and the Darcy’s law [11, 12], the flow in transitory mode in 
the domain is governed by the following system of equations: 



Mathematical Modeling and Numerical Simulation … 21 

 

( ) ] [

( ) ] [

] [

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Ω=

Γ×=
∂
∂

Γ×=

Ω×=∇−
∂
∂

,in,,0

,,0on0

,,0on

,,0in

0 xhxh

Tn
h

Tthh

TfhKdivt
hS

N

D
d  (1) 

where 

• Ω is a bounded open set in ,2R  representing the domain. 

• ∅=ΓΓ ND I  and .Ω∂=ΓΓ ND U  

• h is the hydraulic potential. 

• (] [ ( )),;,0 22 Ω∈ LTLf  is the source term and takes into account the 

recharge induced by the rainfall. 

• ( ),2
0 Ω∈ Lh  initial condition. 

• (] [ )D
d TLh Γ∈ ;,02  is the Dirichlet boundary condition, representing 

the imposed potential. 

• ( )xK  and ( )xS  represent, respectively, the hydraulic coefficient and 

the coefficient of storage. They are piecewise constant functions. 

• ] [( ),;,02 XTL  space of the functions with values in X and whose 

norm in X is in ] [( ).,02 TL  We have 

] [( ) ( ) .
21
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Provided with this norm, ] [( )XTL ;,02  is a Banach’s space [5]. 

3.3. Mathematical analysis of the model 

Let us suppose: 
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• 

{ ( ) },on0,: 1 DvHvV Γ=Ω∈=  

V is a closed subspace of ( ),1 ΩH  it is therefore a Hilbert space for the 

standard norm of ( )Ω1H  [4]. 
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is a norm on V, which is equivalent to the standard norm of ( )Ω1H  [4]. 

• ] [( ),;,0 VTjC  space of the functions of class jC  in t with value in V. 

It is a Banach’s space for the norm 
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with ud l
t  the derivative of order l respect to t [5]. 

We consider h defined by 

] [ ( ),,0: 1 Ω→ HTh  

( ) ( )., ⋅= ththt a  

Let us 

( ) ( ) ( )DD
d LHH Γ⊂Γ→Ωγ 2211:  

the trace application on .DΓ  

Let (] [ ( ))Ω∈ 22 ;,0 HTLrd  with (] [ ( ))Ω∈ 22 ;,0 LTLdt
drd  and such 

that 

( )( ) ( ),thtr ddd =γ  almost everywhere t in ] [.,0 T  
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Let us pose ( ) ( ) ( ).~ trthth d−=  

The problem (1) is equivalent to 
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3.3.1. Existence and unicity of a solution of the problem (2) 

Let Vv ∈  be a test function. The variational formulation associated to 
the problem (2) is: 
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It could be re-written 
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with: 

• ( )⋅⋅,a  is the bilinear form defined on V by 

( ) ,:, ∫Ω ∇⋅∇= vdxuS
Kvua  

• ( ),0~
00 drhh −=  
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• F is defined by 

( ) ( ) ( )( )( ) ( ) .1
t
trtrKdivtfStF d

d ∂
∂

+∇−=  

Theorem 3.1. The problem (4) admits a unique solution 
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Proof. For the proof, it is enough to apply the following theorem: 

Theorem 3.2. Let ( ( ) )WW ⋅⋅,,  and ( ( ) )HH ⋅⋅,,  be two real Hilbert 

spaces such that 

• HW ⊂  with canonical injection. 

• W is dense in H. 
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where ( )⋅⋅,a  is a continuous, coercive and symmetric bilinear form on W. 0u  

H∈  and ] [( ),;,02 HTLf ∈  admits a unique solution ] [( )WTLu ;,02∈  

] [( ).;,0 HTCI  In addition, there exists a constant 0>c  such that 

] [( ) ] [( ) ( ] [( ) ).;,00;,0;,0 22 HTLHHTWTL fucuu +≤+ C  

The proof of this theorem is provided in [6]. 
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Let us apply this theorem to the problem (4) with VW =  and ( ).2 Ω= LH  

• Ω being a bounded open and ( ),1 Ω⊂ HV  the theorem of Rellich [6] 

allows to conclude that the injection of ( )Ω2L  in V is compact. 

• The bilinear form a defined by 

( ) ∫Ω ∇⋅∇= vdxuS
Kvua :,  

is continuous, coercive and symmetric on V. In fact, K and S are piecewise 
constant functions, there are constants minmaxmin , SKK  and maxS  strictly 

positives such that ( ) maxmin KxKK ≤≤  and ( ) Ω∈∀≤≤ xSxSS ,maxmin  

and thus ( ) .
min
max

max
min β=≤≤=α S

K
S

xK
S
K

x
 

According to the inequality of Cauchy-Schwartz 

( ) ∫Ω β≤∇⋅∇≤ ., VV vuvdxuS
Kvua  

From which the continuity of a on V. 

Moreover for all Vu ∈  and according to the inequality of Poincaré, there 
is a constant strictly positive C such that 

( ) ∫Ω α≥∇α≥ ., 22
VuCdxuuua  

The bilinear form a is then coercive. And it is evident that it is 
symmetric. 

• The function F is in (] [ ( ))Ω22 ;,0 LTL  because it is the sum of 

functions belonging to (] [ ( )).;,0 22 ΩLTL  

This is a proof of the existence and the unicity of the solution of (4) 
according to the Theorem 3.2. 
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Let us show now that the unique solution of the problem (4) is solution 
of the problem (2). 

We have ( ) 0~
=th  on DΓ  because ( ) .~ Vth ∈  

Moreover as ( )th~  is continuous, we have ( ) .~0~
0hth ==  

If the solution h~  is regular enough, by integrating by part the variational 
formulation (3), we have 
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n
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Thus the solution of the problem (4) is solution of the problem (2). This is a 
proof the existence and the unicity of the solution of (1). ~ 

3.3.2. Equivalence with a transmission problem 

Proposition 3.3. If we note ii fh ,  respective restrictions of h and of f to 

] [ ,,0 iT Ω×  then the problem (1) is equivalent to the following transmission 

problem: 
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Let us show that (6) ⇒ (1). 

Let us Vv ∈  a test function and ( ) ( )ii Hth Ω∈ 1  almost everywhere ∈t  

] [.,0 T  

By multiplying each equation of (6) in iΩ  by the same test function v and 

by making the sum, we have 

( ) ( )∑ ∫ ∑ ∫= Ω = Ω
∇∇+

13
1

13
1i i iiii

i i
vdxthKvdxthSdt

d  

( ) ( )
∑ ∑ ∫= ∈ Γ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
13

1 ,i Jj j

j
j

i
i

ij
ji

vdsn
th

Kn
thK  

( ) ,
13

1∑ ∫= Ω
=

i i
i

vdstf  (7) 



Wenddabo Olivier Sawadogo and Blaise Somé 28 

{ { } }∅≠Ω∂Ω∂∈= ji
i jJ Ithatsuch13...,,1  for { }.13...,,1∈i  

The integrals on D
iΓ  and on N

iΓ  nullify since 0=v  on D
iΓ  and ( )

i
i
n

th
∂
∂  

0=  on .N
iΓ  

Moreover as on ,, jiΓ  we have ,ji nn −=  then 

( ) ( )
∫Γ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

ji j

j
j

i
i

i n
th

Kn
thK

,
0  

because of the transmission boundary conditions. 

The formulation (7) is then equivalent to 

 ( ) ( ) ( )∫ ∫ ∫Ω Ω Ω
∈∀=∇∇+ VvvdxtfvdxthKvdxtShdt

d ,  (8) 

which is nothing other than the variational formulation of the problem (1). 

What is left is to demonstrate that ( ) ( ).1 Ω∈ Hth  It is enough to apply 

the lemma below [6]. 

Lemma 3.4. Let Ω be a regular open bounded of class .1C  Let us 
suppose ( ) Iii ≤≤Ω 1  be a regular partition of Ω, i.e., that each iΩ  is regular 

open of class ∅=ΩΩ ji I,1C  if ,ji ≠  and .1 i
I
i Ω=Ω =U  Let us v be a 

function whose the restriction iv  at every iΩ  belongs to ( ).1
iH Ω  If v is 

continuous on ,Ω  then v belongs to ( ).1 ΩH  

In our case the iΩ  are the regular polygons, they represent a regular 

partition of Ω. On the other part ( )th  being defined as ( )thi  on ,iΩ  it is 

continuous on Ω because the conditions of transmission ( ) ( ).thth ji =  

According to the Lemma 3.4 ( ) ( ).1 Ω∈ Hth  And thus (6) ⇒ (1). 
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Let us show now that (1) ⇒ (6). 

Let us suppose 
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which is the variational formulation of (6). 

Therefore (1) ⇒ (6). ~ 

This is the model (6) which we programmed by using the finite element 
method. 

4. Numerical Simulation 

4.1. Parameters of simulation 

For the simulations, we used explicit finite difference method for the 
discretization of the time variable and a discretization in finite element 1P  for 
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the space variable. The spatial mesh is triangular. We conducted a refinement 
of mesh at the fractures (Figure 4). 

 
Figure 4. Domain meshing. 

The source term comes from the recharge induced by precipitations, we 
took the average of 1960 to 2000 which is 100 mm per year. 

The hydraulic coefficients are taken in [3]: 

s,m10s,m10s,m10.55s,m10 8
4

6
3

4
2

6
1

−−−− ==== KKKK  

s.m10.2s,m10.5s,m10s,m10 6
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8
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8
6

8
5

−−−− ==== KKKK  

The storage coefficients are calculated using the following formula [12]: 

,⎟
⎠
⎞⎜

⎝
⎛ α+β−β×ρ××= ngenS sl  

where: 

• n total porosity; 

• e thickness; 

• ρ density of water; 

• α coefficient of compressibility of the porous media; 

• lβ  compressibility of water; 

• sβ  compressibility of the solid rock. 
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To have the initial condition we initially solved the problem in permanent 
mode to have the head of the piezometric of 1960, i.e., the problem 
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4.2. Results and discussions 

The evolution of the piezometric levels was simulated between 1960 and 
2030. The Figures 5 to 7 show a comparison between the level simulated and 
observed in 1960, 2000 and 2005. In analyzing these figures, we see that the 
simulated and observed levels very close. The Figures 8 to 10 are the 
representations in three dimensions of the level of 1960, 2000 and 2005. 

The Figure 11 is a representation of the water table level in various dates 
in 1960, 1970, 1980, 1990, 2000, 2005, 2020 and 2030. 

Between 1960 and 1970 the level of the water table rose nearly by 8 m. 
From 1970 to 1980, a slight increase of Doubaré to Sanga was noticed. But 
from Sanga the level greatly increased compared to that of 1970. We noted 
that this considerable jump of the level occurred at the fracture. This 
confirms the results of sensitivity analysis carried out in [1] which showed 
that depression was partially caused by fractures. 

But from 1980-2030, the level increased on average by 6m every 10 
years. Under the same charging conditions, predictions in 2020 and 
confirmed in 2030 this tendency. 
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Figure 5. Comparison: level of 1960. 

 

 

 

Figure 6. Comparison: level of 2000. 
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Figure 7. Comparison: level of 2005. 

 

 

 

 

 

Figure 8. Representation in 3D of level of 1960. 
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Figure 9. Representation in 3D of level of 2000. 

 

 

 

 

 

 

Figure 10. Representation in 3D of level of 2005. 
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Figure 11. Level evolution from 1960 to 2030. 

5. Conclusion 

In this work, we proposed a mathematical modeling and numerical 
simulation in the transitory mode of the groundwater level in the valley of 
Sourou (Burkina Faso). The studied domain is fractured. After analyzing the 
mathematical model, a simulation of the groundwater level was conducted 
between 1960 and 2030. The results of this simulation show that between 
1960 and 2000, the water table has risen by almost 40 m. In some places this 
increase exceeds 40 m. The fractures seem to be the cause of this sudden 
increase in the groundwater level. Further field investigations and a three-
dimensional modeling will help confirm or deny this trend. 
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