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Abstract

The objective of this article is the mathematical modeling and
numerical simulation in transitory mode of the groundwater level of
plain of Sourou (Burkina Faso). The modeled domain is fractured. We
supposed the fractures as porous media and the groundwater flow
equation was resolved using the finite element method in FreeFem ++.

The evolution of the piezometric head was simulated between 1960
and 2030. The results obtained in the simulations helped to understand
the variation of the groundwater level and to highlight the role of
fractures in the piezometric depression.
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1. Introduction

The water table of the plain of Sourou has already been the subject of
several studies [1, 3]. The farming in this plain is becoming more intensive.
But there is no even a model to monitor the evolution of the level of the
water table. The objective of this work is the mathematical modeling and
numerical simulation in transitory mode of groundwater level. The
mathematical model was resolved by the finite element method of Galerkin.
Programming was done under FreeFem ++. The geological section of the
plain shows a fractured porous media [3]. The usual models programmed in
software cannot simulate everything. Indeed the area must be uniform and
continuous. Fractured aquifers therefore can not be modeled simply. The
flow in the fractures does not meet the laws governing conventional models.
Fractures influence hydraulic conductivity. In most cases, the fractures have
a hydraulic conductivity greater than that of the rock. In this case, they are
privileged traffic gutters. In our case, fractures have hydraulic conductivities
below that of the rock. There are many methods and models to treat fractures
[7, 8]. To handle the presence of fractures, we assume that the fractures are
sub-domains of the overall area as in [9]. We therefore assimilate them to
porous media. We used a local mesh refinement in the fractures. Each
domain has been meshed separately and we imposed common nodes on the
border of two neighboring sub-domain.

Our report is structured as follows: in the first part, we will present the
problem to be solved. The second part is devoted to modeling and
mathematical analysis of the problem. A third part is devoted to the
presentation of the results of the numerical simulation.

2. Description of the Study Site and Problem to Solve

2.1. Description of the study site

Because of the limitations of data on the plain, the modeling domain is a
geological section located on the eastern margin of the basin of Gondo
(Figure 1). In this area many investigations were carried out [3]. This vertical
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reference section selected stretches from the village of Nomou located in the
east in the crystalline basement to the village of Yensé located in the western
sedimentary basin, it is about 25 km long. It has a height of 300 meters. In the
reference section, five subvertical fractures of 500 meters thick affect both
the base and the sedimentary formations.

2.2. Modeling objectives
Modeling objectives are to provide answers to the following questions:
¢ What has been the evolution of the groundwater level since 1960?

o What is the influence of fractures in the piezometric depression of the
water table?
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Figure 1. Domain of modeling [3].
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Figure 2. Simplified interpretative geological section [3].
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3. Mathematical Modeling of Flow

3.1. Flow conditions

The piezometry observed upstream (upstream base region) and
downstream (downstream the sedimentary area of Doubaré) the flow is
prescribed as imposed potential limits (Dirichlet condition). The lower limit
of the domain is a zero flux limit (homogeneous Neumann condition). We
must also take into account the induced recharge by rainfall on the upper
part.

The fluid is incompressible monophasic and the media is saturated
porous. The piezometry initially chosen was that of 1960 which corresponds
to the piezometry obtained by steady calibration.

3.2. Mathematical model
Let us subdivide the domain into several sub-domains: Q; (i =1, 2,
- 13) with ;NQ; =@ if i=j, and Q=U30; (Figure 3). The

fractures being considered as porous media.
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Figure 3. Subdivided domain.

Under the above mentioned flow conditions and applying the mass
conservation law and the Darcy’s law [11, 12], the flow in transitory mode in
the domain is governed by the following system of equations:
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S%—dmeM=f in 10, T [x O,

h=h ,T[xrP,

" q (1) on]0, T FN )
%zo on |0, T[xT",

h(0, x) = hy(x), in Q,

where
¢ Q is a bounded open set in R?, representing the domain.
er°NrN =g and r°UrN = o0
o h is the hydraulic potential.

o f e L2(]0, T[; L2(Q)), is the source term and takes into account the

recharge induced by the rainfall.
e hy € L2(Q), initial condition.

o hy € LZ(] 0TI FD) is the Dirichlet boundary condition, representing
the imposed potential.

e K(x) and S(x) represent, respectively, the hydraulic coefficient and
the coefficient of storage. They are piecewise constant functions.

o L2(] 0, T[; X), space of the functions with values in X and whose

normin X isin L2(]0, T [). We have

T y2
lulizqgor g = ([, 14O )

Provided with this norm, L2(]0, T [; X) is a Banach’s space [5].

3.3. Mathematical analysis of the model

Let us suppose:
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V= {ve HYQ) v=0o0nTP}
V is a closed subspace of Hl(Q), it is therefore a Hilbert space for the
standard norm of H(Q) [4].

We recall that

ol = (] v

is a norm on V, which is equivalent to the standard norm of Hl(Q) [4].

. Cj(] 0, T [; V), space of the functions of class ¢l in twith value in V.
It is a Banach’s space for the norm

j
Iuleiqorvy = tes[gPT];;” diu(t) [y,

with dt'u the derivative of order | respect to t [5].
We consider h defined by
h:10,T [ - HYQ),
t > h(t) = h(t, -).
Let us
va s HY(Q) > HYA(rP) < L(rP)

the trace application on rP.

Let ry e L2(]O, T [; H2(Q)) with OLL? e L2(J0, T [; L%(Q)) and such

that

y4(rg(t)) = hq(t), almost everywhere tin ]0, T [.
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Let us pose ﬁ(t) = h(t) — rg(t).

The problem (1) is equivalent to

S%—div(Kvﬁ)zf+S%—div(KVrd), in]0, T [xQ,

h-o on]0, T[xTP, @)
oh N
Q_n_o' on ]O, T[xI",

h(0, x) = hy(x) = rg(0), in Q,

3.3.1. Existence and unicity of a solution of the problem (2)

Let v eV be a test function. The variational formulation associated to
the problem (2) is:

Find h :t e ]0, T [ — V such that
ij Sﬁ(t)vdx +I Kvﬁ(t) - Vvdx = I f (t)vdx
dtJo o) 0 3)
d .
4t o Srq (t)vdx — IQ div(KVry (t))vdx
vte]O, T[, Vv eV.
It could be re-written
Find h :t €]0, T[ > V such that
d ~ ~
E(h(t), v)Lz(Q) +a(h(t), v) @

= (F(1), V)LZ(Q)' vte]O, T[ VeV
h(t = 0) = hy

with:
e a(+, ) is the bilinear form defined on V by

a(u, v) = IQ§VU - Vvdy,

* hy = hp - 14(0),
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o F is defined by
F(B) = 5 (F() - div(KVrg (1)) + _ardat(t)'
Theorem 3.1. The problem (4) admits a unique solution

hel?(]0, T[V)NCO, T[ LA(Q)).

Moreover, there exists a constant ¢ > 0 such that
10 lzgo,r gy 10 legor 12y

<c(| ho ||L2(Q) +[ F |||_2(] 0T LZ(Q)))-
Proof. For the proof;, it is enough to apply the following theorem:

Theorem 3.2. Let (W, (-, -)y) and (H, (- -)y) be two real Hilbert
spaces such that

e W < H with canonical injection.
e Wis dense in H.
Then the problem
Findu:te]0, T[ - W such that,

%(u, V) +a(u(t) v) = (F, vy, Yt € 10, T W e W,
u(t = 0) = ug,

where a(-, -) is a continuous, coercive and symmetric bilinear form on W. ug

e H and f e L]0, T [; H), admits a unique solution u e L2(]0, T [; W)
N C(]0, T [; H). In addition, there exists a constant ¢ > 0 such that

lullzqorpwy +Iluleqormy < cUuo ly +1 flli2qorpry):

The proof of this theorem is provided in [6].
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Let us apply this theorem to the problem (4) withW =V and H = LZ(Q).

e Q being a bounded open and V < Hl(Q), the theorem of Rellich [6]

allows to conclude that the injection of L%(Q) in V is compact.

o The bilinear form a defined by

a(u, v) = J‘Q%Vu - Vvdx

is continuous, coercive and symmetric on V. In fact, K and S are piecewise
constant functions, there are constants Kin, KmaxSmin and Smax strictly

positives such that Kpin < K(X) £ Kmax @and Spin < S(X) < Spax, VX € Q

and thus a =

Kmin . K(x) < Kmax _ B.

Sma\x - Sx Smin

According to the inequality of Cauchy-Schwartz
a(u,v)< [ vu-vwax <pluf vl
1 — o) S —

From which the continuity of a on V.

Moreover for all u € V and according to the inequality of Poincaré, there
is a constant strictly positive C such that

a(u, u) > aIQ| vu|?dx > aC|u ||\2/
The bilinear form a is then coercive. And it is evident that it is

symmetric.

e The function F is in L%(]0, T [; L2(Q)) because it is the sum of

functions belonging to L2(]0, T [; L2(Q)).

This is a proof of the existence and the unicity of the solution of (4)
according to the Theorem 3.2.
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Let us show now that the unique solution of the problem (4) is solution
of the problem (2).

We have ﬁ(t) =0 on T'P because ﬁ(t) eV.
Moreover as ﬁ(t) is continuous, we have ﬁ(t =0)= ﬁo.

If the solution h is regular enough, by integrating by part the variational
formulation (3), we have

oh  ~ oh
IQ(E—Ah - Fjvdx - —er Sovds, weV,vte]o,T[ (5

If we take v e C¢ (Q) = V(C{ () being indefinitely derivable functions with

compact support in €, the integral on N is nullified and we will have

% —Ah —F =0 in £2(]0, T [ x Q). Therefore almost everywhere
in ]0, T [xQ.
Hence
I ivds =0, Vv eV and almost everywhere t € |0, T |[.
rN on - y L
This brings
aﬁ . N
Fr 0 almost everywhere in ]0, T [xT"".

Thus the solution of the problem (4) is solution of the problem (2). This is a
proof the existence and the unicity of the solution of (1). O

3.3.2. Equivalence with a transmission problem

Proposition 3.3. If we note h;, f; respective restrictions of h and of f to
10, T [ x Q;, then the problem (1) is equivalent to the following transmission
problem:
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Siaa—r;:i—KiAhiZfi, in]O,T[in,
hi =hd(t), On]O,T[XFiD,
kthi-nzijhj-n, On]O,T[XFi’j, (6)
hiZhj, on]O,T[xFi,j,
oh .
%=o, | |n]O,T[xFiN,
h(0, x) = hy(x), in Q;,
where
Fi,j = 8Qi ﬂaQJ, FiD = 6Qi ﬂal“D and FiN = aQi ﬂal“N.
Proof. By definition of the functions h;, we have
h = hy(t) on]0, T[xTP  [h =hy(t) on]0, T [xTP
oh . N ohy . N
%_0 in]0, T[xI'" < E_O | in]O, T[xT;
h(0, x) = hy(x) in Q; h(0, x) = hy(x) in Q.

Let us show that (6) = ().

Letus v eV atest function and h;(t) € H1(Qj) almost everywhere t e
10, T [.

By multiplying each equation of (6) in Q; by the same test function v and
by making the sum, we have

d 13 13

a i:1SiIQi hi (t)VdX + Zizl KiIQi Vhi (t)VVdX
13 o) . ohj()

+ ZHZJ—GJJ' '[Fi,j (K. on; + Kj n, vds

- lei_[g fi(t)vds, )
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3" ={j el .., 13} such that 8 N oQ; # &} for i e {, ..., 13},

it

The integrals on FiD and on FiN nullify since v = 0 on FiD and n
[

=0 on FiN.

Moreover as on I i

ahi(t) ohj(t))
J.Fiyj{Ki ani +Kj 8#]1 J_O

because of the transmission boundary conditions.

we have nj = -nj, then

The formulation (7) is then equivalent to

%IQ Sh(t)vdx + JQ KVh(t)Vvdx = IQ f(t)vdx, Vv eV (8)

which is nothing other than the variational formulation of the problem (1).

What is left is to demonstrate that h(t) € HY(Q). It is enough to apply
the lemma below [6].

Lemma 3.4. Let Q be a regular open bounded of class ¢l Let us
suppose (Qj);;<, be a regular partition of Q, i.e., that each Q; is regular

open of class ¢, Q; NQj=2 ifi=j and Q= U1Q. Letusvbea
function whose the restriction v; at every Q; belongs to Hl(Qi). If vis

continuous on Q, then v belongs to Hl(Q).

In our case the €); are the regular polygons, they represent a regular
partition of Q. On the other part h(t) being defined as h;j(t) on Q;, it is

continuous on Q because the conditions of transmission h;(t) = h;(t).

According to the Lemma 3.4 h(t) e Hl(Q). And thus (6) = (1).
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Let us show now that (1) = (6).

Let us suppose
W = {w(t) e HY(Q) such that w(t) = hy(t) on TP, vt € ]0O, T [\
Letus say h(t) e W be a solution of (1). Let us pose cj(t) = K;jVh;(t).
h; (t) being the restriction of h(t) on Q;, the theorem of trace [6] ensures
hi(t) =h;(t) on T ;
and the theorem of the divergence [6] applied to oj(t) involve
KiVhi(t) = K;Vhj(t)on T ;.

On the other part by multiplying the problem (1) by v e V a test function
and by integrating by part, we have

d
EJ.Q Sh(t)vdx + JQ KVh(t)Vvdx = IQ f(t)vdx, Vv eV

which is equivalent to

d 13 13 13
a;sijgi hi (t)vdx + IZ:;‘ Ki.[gi Vh;(t)Vvdx = ;Igi fitvdx  (9)

which is the variational formulation of (6).
Therefore (1) = (6). O

This is the model (6) which we programmed by using the finite element
method.

4. Numerical Simulation

4.1. Parameters of simulation

For the simulations, we used explicit finite difference method for the
discretization of the time variable and a discretization in finite element P, for
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the space variable. The spatial mesh is triangular. We conducted a refinement
of mesh at the fractures (Figure 4).
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Figure 4. Domain meshing.

The source term comes from the recharge induced by precipitations, we
took the average of 1960 to 2000 which is 100 mm per year.

The hydraulic coefficients are taken in [3]:
Ky =107%m/s, K, = 55.10%m/s, K3 =10°m/s, K, =108 m/s,
Ks =1078m/s, Kg =10 8m/s, K7 =5.108m/s, Kg = 2.10 % mys.

The storage coefficients are calculated using the following formula [12]:
o
S = nxexpxg([3| —BS+F),

where:
e n total porosity;
o e thickness;
e p density of water;
o a coefficient of compressibility of the porous media;
e 3 compressibility of water;

e 35 compressibility of the solid rock.
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To have the initial condition we initially solved the problem in permanent
mode to have the head of the piezometric of 1960, i.e., the problem

KiAhi = f, in Qi,

hi = hd (t), on FiD,

kthi N = kJVhJ -n, on Fi, i (]_0)
hi=hj, on l“i,j,

oh N

%_0, on I .

4.2. Results and discussions

The evolution of the piezometric levels was simulated between 1960 and
2030. The Figures 5 to 7 show a comparison between the level simulated and
observed in 1960, 2000 and 2005. In analyzing these figures, we see that the
simulated and observed levels very close. The Figures 8 to 10 are the
representations in three dimensions of the level of 1960, 2000 and 2005.

The Figure 11 is a representation of the water table level in various dates
in 1960, 1970, 1980, 1990, 2000, 2005, 2020 and 2030.

Between 1960 and 1970 the level of the water table rose nearly by 8m.
From 1970 to 1980, a slight increase of Doubaré to Sanga was noticed. But
from Sanga the level greatly increased compared to that of 1970. We noted
that this considerable jump of the level occurred at the fracture. This
confirms the results of sensitivity analysis carried out in [1] which showed
that depression was partially caused by fractures.

But from 1980-2030, the level increased on average by 6m every 10
years. Under the same charging conditions, predictions in 2020 and
confirmed in 2030 this tendency.
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Figure 9. Representation in 3D of level of 2000.

Figure 10. Representation in 3D of level of 2005.
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Figure 11. Level evolution from 1960 to 2030.
5. Conclusion

In this work, we proposed a mathematical modeling and numerical
simulation in the transitory mode of the groundwater level in the valley of
Sourou (Burkina Faso). The studied domain is fractured. After analyzing the
mathematical model, a simulation of the groundwater level was conducted
between 1960 and 2030. The results of this simulation show that between
1960 and 2000, the water table has risen by almost 40 m. In some places this
increase exceeds 40m. The fractures seem to be the cause of this sudden
increase in the groundwater level. Further field investigations and a three-
dimensional modeling will help confirm or deny this trend.
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