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Abstract 

A plane graph, called an M-graph, is attached to every melody. The 
main purpose of the paper is to obtain a complete classification of 
melodies of arbitrary length whose M-graphs have lines of symmetry. 
A crucial role is played by a matrix pencil, attached to the set of those 
melodies, whose fiber at a point is revealed to hide a twelve-tone row 
composed by Webern. 

0. Introduction 

In this paper, we investigate symmetry of melodies. More precisely, we 
attach a plane graph, called an “M-graph”, to each melody by the algorithm 
introduced in [1], and consider when the M-graph has a line of symmetry. 
For example, the M-graph of the twelve-tone row used in String Quartet op. 
28 by Webern has a marvelous symmetry as is observed in Figure 1 below. 
We will give a complete classification of melodies with symmetric M-graph. 
Some partial results in this direction are obtained in the previous paper by the 
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author [2] under the assumption that melodies consist of mutually distinct 
tones. In order to remove the assumption, we reformulate our problem so that 
we can study an arbitrary set of points in the plane, and establish a simple 
linear-algebraic criterion for the set to have symmetry. Thereafter, we apply 
the criterion to the M-graphs of melodies. As a result, we find that the 
problem is translated into the one about the distribution of the ranks of a 

certain matrix pencil parametrized by the projective line ,1P  and detect that 

Webern’s melody and the like are hidden in the fiber at ( ) .1,1 1P∈  

 
Figure 1. Webern: String Quartet op. 28. 

Our classification shows that one cannot surpass Webern in creating 
melodies with symmetric M-graph if we restrict our attention to those of 
length twelve. More precisely, we prove that if a melody ( )Naa ...,,1=a  of 

an arbitrary length N, which is expressed as a sequence of integers, has a line 
of symmetry, then it necessarily is (1) periodic with period four or (2) 
symmetric itself in the sense that iNi aa −+= 1  holds for any [ ]Ni ,1∈  or (3) 

antisymmetric in the sense that kaa iNi +−= −+1  holds for any [ ]Ni ,1∈  

with a fixed constant k. The melody by Webern falls into the category              
(3) with 12=N  and .11=k  However, our result might be somewhat 
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disappointing for anyone who tries to create a new symmetric melody of 
length twelve, it can create as many melodies of arbitrary length with 
symmetry as one hopes. In any case, our result certifies the ingenuity of 
Webern who could not have envisaged our classification. 

The plan of this paper is as follows: Section 1 deals with symmetry of 
general plane graphs. A simple criterion for a graph to have a line of 
symmetry is formulated in terms of a certain matrix composed of the 
coordinates of vertices of the graph. In Section 2, we recall the definition of 
the M-graph of a melody. Thereafter, we examine the cases of melodies of 
lengths 4, 5 and 12, applying the general criterion obtained in the previous 
section. Our analysis of the case of length 12 will enable one to understand 
the process employed in Section 3 where we deal with symmetries of 
melodies of arbitrary length. Here we need to divide our argument into two 
parts according to the parity of the length. In Section 4, we apply our results 
to obtain several good-looking symmetric melodies. The reader is invited to 
take a look at several M-graphs illustrated in the last pages, which have 
amusing symmetries. 

1. Symmetry of Points in the Plane 

Let 3≥N  be an integer and let ( ),, iii yxp =  ,1 Ni ≤≤  be N points in 

the real plane .2R  Let l  be a line and let 22: RR →lr  denote the reflection 

map with respect to .l  We call l  the line of symmetry of the ordered set =p  

( ),...,,1 Npp  if the condition 

 ( ) Nippr iNi ≤≤= −+ 1,1l  (1.1) 

holds. Note that the situation differs slightly according to the parity of N. 
When N is even, the condition (1.1) holds if and only if both of the following 
two conditions hold: 

(E1) The midpoint of the segment iNi pp −+1  lies on l  for any ∈i  

.2,1 ⎥⎦
⎤

⎢⎣
⎡ N  
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(E2) The segment iNi pp −+1  intersects transversally with l  for any ∈i  

.2,1 ⎥⎦
⎤

⎢⎣
⎡ N  

On the other hand, when N is odd, the condition (1.1) holds if and only if 
all of the following three conditions hold: 

(O1) The midpoint of the segment iNi pp −+1  lies on l  for any ∈i  

.2
1,1 ⎥⎦
⎤

⎢⎣
⎡ −N  

(O2) The point ( ) 21+Np  lies on .l  

(O3) The segment iNi pp −+1  intersects transversally with l  for any ∈i  

.2
1,1 ⎥⎦
⎤

⎢⎣
⎡ −N  

We can express these conditions simply in terms of a certain matrix. In 
order to simplify our description, we put 

,2,2
11 iNi

i
iNi

i
xxxxxx −+−−++ −

=
+

=  

2,2
11 iNi

i
iNi

i
yyyyyy −+−−++ −

=
+

=  

for any [ ].,1 Ni ∈  

When mN 2=  with ,2≥m  there exists a line l  such that the condition 
(E1) holds if and only if the inequality 

 2
111

21

21 ≤
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++

+++

m

m
yyy
xxxrank

L

L

L

 (1.2) 

holds, for (E1) is equivalent to the existence of a triple ( ) \,, 3R∈cba  

( ){ }0,0,0  such that 

022
1212 =

+
+

+
+ −+−+ imiimi yycxxba  
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holds for any [ ],,1 mi ∈  namely, all of the midpoints 

⎟
⎠
⎞

⎜
⎝
⎛ ++ −+−+

2,2
1212 imiimi yyxx  

of [ ]( )mipp imi ,112 ∈−+  lie on one and the same line ( ) cybxacba ++:,,l  

.0=  Moreover, if the condition (E2) is met for ( ),, cball =  then we must 

have 

022
1212 =

−
−

− −+−+ imiimi yybxxc  

for any [ ].,1 mi ∈  Therefore, both conditions (E1) and (E2) hold for some 

line if and only if the inequality 

 2
0011

11

11 ≤
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−
−−++

−−++

mm

mm
xxyy
yyxxrank

LL

LL

LL

 (1.3) 

holds. 

When ,12 += mN  both conditions (O1) and (O2) hold for some line if 
and only if 

.2

22

22

111

1
2121

1
2121 ≤

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

++

+
++

+
++

m
mmm

m
mmm

yyyyy

xxxxxrank

L

L

L

 

Accordingly, all of the three conditions (O1), (O2) and (O3) hold for 
some line if and only if the inequality 

 2
00111

1
111

111 ≤
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−
−

+
++

−−
+

++

mmm

mmm
xxyyy
yyxxxrank

LL

LL

LL

 (1.4) 

holds. Furthermore, in each case, the coefficient ( )cba ,,  of the line l  of 

symmetry is given by a basis of the kernel of the linear map ,3 nRR →  
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which is defined by the right multiplication of the matrix in (1.3) or (1.4). 

Note here that NR  is regarded as a vector space of row vectors of length N. 
We record these facts as a proposition for later use: 

Proposition 1.1. Let N be an integer .3≥  For a given ordered set =p  

( )Npp ...,,1  of N points in 2R  with ( ),, iii yxp =  ,1 Ni ≤≤  let 

,2,2
11 iNi

i
iNi

i
xxxxxx −+−−++ −

=
+

=  

,2,2
11 iNi

i
iNi

i
yyyyyy −+−−++ −

=
+

=  

for .2 ⎥⎦
⎥

⎢⎣
⎢≤ Ni  When N is even, we put mN 2=  and let 

 .
0011

11

11
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−=
−−++

−−++

mm

mmN
xxyy
yyxxM

LL

LL

LL

 (1.5) 

When N is odd, we put 12 += mN  and let 

 .
00111

1
111

111
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−=
−

+
++

−−
+

++

mmm

mmmN
xxyyy
yyxxxM

LL

LL

LL

 (1.6) 

Then p has a line of symmetry if and only if .2≤NMrank  Furthermore, the 

coefficient ( )cba ,,  of the line 0: =++ cybxal  of symmetry is given by a 

basis of the kernel of the linear map NRR →3  defined by the right 
multiplication of the matrix .NM  

We illustrate this by a few examples. 

Example 1.1. Let ( ),4,51 =p  ( ),5,22 =p  ( ),1,63 −=p  ( ).2,74 −−=p  

In this case, we have 

,6,1 11 =−= −+ xx  

,3,1 11 == −+ yy  
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,4,2 22 =−= −+ xx  

.2,3 22 == −+ yy  

Hence, the matrix 4M  in (1.4) becomes 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−−
4631
2321

0011
 

and it is of rank equal to 2. Furthermore, by means of elementary column 
transformations, it becomes 

,
0021
0010
0001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
 

hence the kernel of the associated linear map is spanned by ( ) =cba ,,  

( ).1,2,1  Therefore, the line of symmetry of ( )4321 ,,, pppp=p  is given 

by 021 =++ yx  or equivalently by .12 −−= xy  

 

Figure 2. Symmetric point set of length four. 

Example 1.2. Let ( ),0,31 −=p  ( ),2,22 −=p  ( ),3,13 =p  ( ),0,24 =p  

( ).2,15 −=p  In this case, we have 
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,2,1 11 −=−= −+ xx  

,1,1 11 =−= −+ yy  

2,0 22 −== −+ xx  

.1,1 22 == −+ yy  

Hence, the matrix 5M  in (1.5) becomes 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
−−−
22311
11101

00111
 

and it is of rank equal to 2. Furthermore, by means of elementary column 
transformations, it becomes 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

00021
00010
00001

 

and hence the kernel of the associated linear map is spanned by ( ) =cba ,,  

( ).1,2,1 −−  Therefore, the line of symmetry of ( )54321 ,,,, ppppp=p  is 

defined by 021 =+−− yx  or equivalently by .12 += xy  

 
Figure 3. Symmetric point set of length five. 
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2. Symmetry of M-graphs 

In [1], a method of visualization of a melody is introduced. It attaches a 
plane graph to a given melody and the authors employ the graph to 
investigate how the characteristic of a melody is reflected to its shape. In this 
section, we recall the definition and study when the graph has symmetry in 
the sense of the previous section for small N. 

In order to express a melody by a definite sequence of integers, we let C4 
(middle C) correspond to 0, 4#C  to 1, and so on. In this way, we can 
associate a sequence of integers with each melody. For example, the melody 
“C4, D4, F4, E4”, which is the main theme of the fourth movement of the 
Jupiter symphony by Mozart, corresponds to the sequence “0, 2, 5, 4”. From 
now on, we identify a melody of finite length with the sequence of integers 
of finite length, which is constructed by this rule. Furthermore, to any 
sequence ( )Naaa ...,,, 21=a  of integers, we attach a sequence of points 

( )121 ...,,, −= Npppp  with ( )112 −≤≤∈ Nipi R  by the following rule: 

( ) ( ) ( ).,...,,,,, 11322211 NNN aapaapaap −− ===  

Let ( ) ( ) ( )( )aaa EVG ,=  be the directed graph with the set of vertices 

( ) ( )121 ...,,, −= NpppV a  

and the set of edges 

( ) ( ) ( ) ( ){ }.,...,,,,, 123221 −−= NN ppppppE a  

We call ( )aG  the M-graph associated to the melody a (“M” stands for 

melody). However, since we focus only on the ordered set of its vertices in 
the present paper, we set 

( ) ( )121 ...,,, −= NpppM a  

and call it the M-graph of the melody a by abuse of language. 

We are interested in the problem to determine whether or not the                
M-graph of a melody has a line of symmetry. We examine a few cases with 
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small N. When ,3=N  however, the M-graph becomes a segment and has 
evidently a line of symmetry. For this reason, we begin with the simplest 
nontrivial case when .4=N  

2.1. The case when 4=N  

Let ( )4321 ,,, aaaa=a  be a melody of length four, and let =1p  

( ),, 21 aa  ( ),, 322 aap =  ( )433 , aap =  so that ( ) ( ).,, 321 pppM =a  In 

this case, the coordinates ,1
±x  ±

1y  are given by 

,2,2
31

1
31

1
aaxaax −

=
+

= −+  

2,2
42

1
42

1
aayaay −=+= −+  

and the matrix 3M  in (1.6) becomes 

 .

22

22

011011

31
3

42

42
2

31

121

1213

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

−
−

+
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−=
−+

−+

aaaaa

aaaaa

xyy

yxxM  (2.1) 

The last matrix can be reduced to a simpler form by a number of elementary 
transformations. Here and throughout the paper, we come to employ 
elementary row (resp. column) transformations many times, so it is worth to 
introduce the notation for them: 

Definition 2.1. For any ,R∈c  we denote the elementary transformation, 

which adds ×c (the ith row) to the jth row by ( )cjiErow ;,  and the 

transformation, which multiplies c to the ith row by ( ).; ciErow  The 

corresponding column transformations are denoted by ( )cjiEcolumn ;,  and 

( ),; ciEcolumn  respectively. 

Now applying ( )2;2rowE  and ( )2;3rowE  to the rightmost matrix in 

(2.1), we see that the matrix 3M  is similar to 
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.
2
2

011

31342

42231
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+
+−+

aaaaa
aaaaa  

Furthermore, applying ( )1;1,2 −columnE  and ( )1;1,3 −columnE  successively 

to this matrix, it becomes 

.
2
2

010

3134321

4224321
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+−+−
+−−+−

aaaaaaa
aaaaaaa  

Finally, by ( ),1;3,2rowE  this matrix is transformed to 

.
220

2
010

432132

4224321
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+
+−−+−

aaaaaa
aaaaaaa  

Therefore, we see that 23 ≤Mrank  if and only if 

( ) ( ) .043214321 =+−−−+− aaaaaaaa  

Hence, we obtain the following: 

Proposition 2.1. For a melody ( )41 ...,, aa=a  of length four, the         

M-graph ( )aM  has a line of symmetry if and only if one of the following 

conditions holds: 

(1) ,04321 =−+− aaaa  

(2) .04321 =+−− aaaa  

Furthermore, if the condition (1) is met, then the two segments 21pp  and 

32 pp  are transversal to each other and have the same length. 

Proof. Only the last assertion needs to be proved. It follows from (1) that 
( ).2143 aaaa −−=−  Hence, 
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( ) ( ) ( ) ( ) ( ) ( )433232213221 aaaaaaaapppp −−+−−=−⋅−  

( ) ( ) ( ) ( )21323221 aaaaaaaa −−−−−=  

.0=  

Furthermore, we have 

( ) ( ) ( ) ( )32322121 pppppppp −⋅−−−⋅−  

(( ) ( ) ) (( ) ( ) )2
43

2
32

2
32

2
21 aaaaaaaa −+−−−+−=  

(( ) ( ) ) (( ) ( ) )2
21

2
32

2
32

2
21 aaaaaaaa −+−−−+−=  

.0=  

This completes the proof. ~ 

Remark. The reason why we add the last statement to the proposition is 
that we will come across to the condition (1) several times when we deal with 
melodies of arbitrary length, and that we will need to know the shape of the 
first three points in their M-graph. 

2.2. The case when 5=N  

Now we examine the case when .5=N  Let ( )51 ...,, aa=a  be a melody 

of length five, and let ( ),, 1+= iii aap  41 ≤≤ i  so that ( ) ( )....,, 41 ppM =a  

In this case, the coordinates ,±ix  ±
iy  ( )2,1=i  are given by 

,2,2
41

1
41

1
aaxaax −=+= −+  

,2,2
52

1
52

1
aayaay −

=
+

= −+  

,2,2
32

2
32

2
aaxaax −

=
+

= −+  

2,2
43

2
43

2
aayaay −

=
+

= −+  
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and the matrix 4M  in (1.5) becomes 

.

2222

2222

0011

32414352

43523241
4

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−++

−
−

−
−

++
=

aaaaaaaa

aaaaaaaaM  

This time we indicate successive transformations at the right side of the 
transposed matrices. Furthermore, we employ the notation BA ~  which 
means that A and B are similar: 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−++

−
−

−
−

++

2222

2222

0011

32414352

43523241

aaaaaaaa

aaaaaaaa  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−++
+−+−++

32414352

43523241

0011
~

aaaaaaaa
aaaaaaaa  

( ( ) ( ))2;3and2;2by rowrow EE⇐  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−++−+
+−+−−++−+

3241543252

4352432141

0001
~

aaaaaaaaaa
aaaaaaaaaa  

( ( ))1;2,1by −⇐ columnE  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−++−
+−+−−++−

32415432

43524321
0
0

0001
~

aaaaaaaa
aaaaaaaa  

( ( ) ( ))5241 ;3,1and;2,1by aaEaaE rowrow −−−−⇐  
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
+−+−+−

324151

435251
0
0

0001
~

aaaaaa
aaaaaa  

( ( ) ( ))1;2,4and1;2,3by columncolumn EE⇐  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−+−−
+−+−+−

4325421

435251
200

0
0001

~
aaaaaaa

aaaaaa  

( ( )).1;3,2by rowE⇐  

Therefore, when ,051 ≠+− aa  we see that 24 ≤Mrank  if and only if 

every entry in the last row vanishes, namely, .2 34251 aaaaa =+=+  On 

the other hand, when ,051 =+− aa  we see that 24 ≤Mrank  if and only if 

the determinant of the 22 × -matrix composed of the south-east entries is 
equal to zero. We can compute its determinant keeping in mind that 15 aa =  

as follows: 

⎟
⎠

⎞
⎜
⎝

⎛
+−+−−

+−+−

4325421

4352
2

det
aaaaaaa

aaaa
 

⎟
⎠

⎞
⎜
⎝

⎛
+−−−

+−−
=

432421

4321
22

det
aaaaaa

aaaa
 

⎟
⎠

⎞
⎜
⎝

⎛
−−
+−−

=
3241

4321det
aaaa
aaaa

 

( )( )1;2,1by −⇐ rowE  

⎟
⎠

⎞
⎜
⎝

⎛
−−+−
+−−+−

=
324321

434321det
aaaaaa
aaaaaa

 

( )( )1;1,2by −⇐ columnE  

⎟
⎠
⎞

⎜
⎝
⎛

−
+−−+−

=
42

434321
0

det
aa
aaaaaa
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( )( )1;2,1by −⇐ rowE  

( ) ( ).424321 aaaaaa −−+−=  

Therefore, we obtain the following: 

Proposition 2.2. For a melody ( )51 ...,, aa=a  of length five, the           

M-graph ( )aM  has a line of symmetry if and only if one of the following 

conditions holds: 

(1) ,2 34251 aaaaa =+=+  

(2) 51 aa =  and ,42 aa =  

(3) 51 aa =  and .4231 aaaa +=+  

Remark 1. As is stated in Proposition 2.1, in case of (3), the 
quadrilateral 4321 pppp  constitutes a square. 

Remark 2. When we deal with symmetry of melodies of arbitrary length 
in Section 3, we must assume that .6≥N  This is another reason why we 
choose the cases when 4=N  or 5=N  to begin our description in these two 
Subsections 2.1 and 2.2. 

2.3. The case when 12=N  

In this subsection, we examine the case when .12=N  The reason why 
we choose this case is two-fold. Firstly, it is directly connected with the 
twelve-tone method and may be of useful for actual composition. Secondly, 
it helps us to understand what kind of elementary transformations should be 
employed in general. 

Let ( )121 ...,, aa=a  be a melody of length twelve, and let ( )1, += iii aap  

for any [ ]11,1∈i  so that ( ) ( )....,, 111 ppM =a  In this case, the coordinates 

,+ix  ,+iy  ,−ix  −
iy  ( )51 ≤≤ i  are given by 

,2,2
111

1
111

1
aaxaax −=+= −+  
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,2,2
122

1
122

1
aayaay −=+= −+  

,2,2
102

2
102

2
aaxaax −

=
+

= −+  

,2,2
113

2
113

2
aayaay −

=
+

= −+  

,2,2
93

3
93

3
aaxaax −

=
+

= −+  

,2,2
104

3
104

3
aayaay −

=
+

= −+  

,2,2
84

4
84

4
aaxaax −

=
+

= −+  

,2,2
95

4
95

4
aayaay −

=
+

= −+  

,2,2
75

5
75

5
aaxaax −

=
+

= −+  

2,2
86

5
86

5
aayaay −

=
+

= −+  

and 

., 7666 ayax ==  

Therefore, the matrix 11M  is given by 

.
00000111111

54321754321

5432165432111
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−−−=
−−−−−+++++

−−−−−+++++

xxxxxayyyyy
yyyyyaxxxxxM  

Applying ( )2;2rowE  and ( )2;3rowE  to ,11M  it becomes 

,
75849321776859432
86954326657483921

00000111111
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

XYXYZ
XYZXYM  



Mathematical Analysis of Melodies: Symmetry 65 

where “X, Y, Z” stand for “10, 11, 12”, respectively, and we employ the 
notation, which abbreviates 95 aa +−  as ,95  for example. By applying 

( ) ( ) ( )1;2,1...,,1;5,4,1;6,5 −−− columncolumncolumn EEE  successively to ,1M  

we see that 1M  is similar to the following matrix: 

.
758493218776968559443322
8695432766585749483392211

00000000001
~1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

XYXYXZYZ
XYZXYXYM  

At this point, we notice that the rank of 1M  depends only on the 

following matrix ,2M  which is obtained from the last matrix by deleting its 
first row and column: 

.
75849321877696855944332
8695432766585749483392212
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

XYXYXZY
XYZXYX

M  

 (2.2) 

Starting with this matrix, we continue to apply several elementary 
transformations as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
75849321977596855944332
869543286648574948339221

~2
XYXYXZY

XYZXYX
M  

( )( )1;5,4by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
758493219796855944332
8695432648574948339221

~
XYXYXZY

XYZXYX
 

( )( )1;5,10by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
75849321976845944332
8695432649573948339221

~
XYXXYXZY

XYZXYX
 

( )( )1;4,3by columnE⇐  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
758493219765944332
86954326473948339221

~
XYXXYXZY

XYZXYX
 

( )( )1;4,9by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
758493219765934332
8695432647348239221

~
XYXYYXZY

XYZXXYX
 

( )( )1;3,2by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
7584932197654332
869543264738239221

~
XYXYYXZY

XYZXYX
 

( )( )1;3,8by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
7584932197654232
869543264738239121

~
XYXYZXZY

XYZYYX
 

( )( )1;2,1by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
758493219765432
86954326473829121

~
XYXYZZY

XYZYX
 

( )( )1;2,7by columnE⇐  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
7584932197654432
86954326473829192

~
XYXYZY

XYZYX
 

( )( )1;1,2by −⇐ columnE  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
7584932197654942
869543264738291924

~
XYXYZY

XYZY
 

( )( ).1;1,8by −⇐ columnE  (2.3) 

Let 3M  denote the last matrix, and 3
1⋅M  ( )3

2resp. ⋅M  denote the first 

(resp. second) row of .3M  Then the rank of 3M  is smaller than or equal to 
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one if and only if there exists a pair ( ) ( ){ }0,0, 2 −∈ Rts  such that 

 ,3
2

3
1 0=+ ⋅⋅ MtMs  (2.4) 

where the right hand side denotes the zero vector of length ten. We divide 
our argument into two cases according as 0≠t  or .0=t  

Case (A): .0≠t  We may assume that .1=t  The coefficient matrix C of 
the simultaneous equation (2.4) with respect to 121 ...,, aa  is found to be 

.

0000110000
0001001000
0010000100
0100000010

1000000001
0001010000
0010010000
0100001000
1000000100

010100001010

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−−

−−
−−

−−
−−

−−
−−

−−
+−+−−−

=

ss
ss

ss
ss

ss
ss

ss
ss

ss
ssss

C  

Let ,ic  ,101 ≤≤ i  denote the ith row of the matrix C. Then we see that 

( ),000001000163 sscc −−=−  

( )100010000092 −−=− sscc  

and hence 

( ) ( )000000010001 22
9263 +−−=−−− ssccscc  

( ) ( ).00000001000112 −−= s  

Similarly, we have the following identities: 

( ) ( ) ( ),00000010001012
10374 −−=−−− sccscc  

( ) ( ),00000100010012
485 −−=−− ssccc  
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( ) ( ) ( ),00001000100012
1059 −−=++− sccsc  

( ) ( ),00010001000012
9105 −−=+− ssccc  

( ) ( ) ( ),00100010000012
854 −−=−+− sccsc  

( ) ( ) ( ),01000100000012
74103 −−=−++− sccscc  

( ) ( ) ( ).10001000000012
6392 −−=−++− sccscc  

It follows that when ,12 ≠s  we have 

( )4modwhenever, jiaa ji ≡=  

for any .12,1 ≤≤ ji  Accordingly, by setting ...,,, 2615 aaaa ==  the 

equation ( ) 0=1221 aaaCT L  is reduced to the equation 

( ) ,4321 0=′ aaaaC T  

where 

.
11

1111
⎟
⎠
⎞

⎜
⎝
⎛

−−
−−

=′
ss

C  

Namely, we arrive at the simultaneous equations 

,04321 =−+− aaaa  (2.5) 

.04321 =+−− saasaa  (2.6) 

We notice that equation (2.5) implies that the four points ( ),, 1+= iii aap  

,41 ≤≤ i  constitute a square by Proposition 2.1. By periodicity, we see that 

the sequence { }ip  rotates along the square with vertices ,1p  ,2p  ,3p  .4p  

On the other hand, if ,42 aa =  then equation (2.6) holds for any s under the 

condition that .31 aa =  In this case, (2.5) implies that 21 aa =  too, hence all 

of ( )Niai ≤≤1  are one and the same, and the M-graph consists of only 

one point. Therefore, except for this trivial case, we have ,42 aa ≠  and (2.6) 
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implies that 

.
42
31

aa
aas

−
−

=  

Next, we deal with the cases when .12 =s  

Case (A; 1): .1=s  In this case, the matrix C becomes 

,

000011110000
000110011000
001100001100
011000000110
110000000011
000101101000
001001100100
010010010010
100100001001

000000000000

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−−

−−
−−

−−
−−

−−
−−

−−

=C  

hence the equation ( ) 0=1221 aaaCT L  is equivalent to the simultaneous 

equation 

.76112121 aaaaaa +==+=+ L  

Case (A; –1): .1−=s  In this case, the matrix C becomes 

.

000011110000
000110011000
001100001100
011000000110
110000000011

000101101000
001001100100
010010010010
100100001001

020200002020

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

=C  
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Since the matrix is antisymmetric with respect to the transformation 

( ),6113 ≤≤− iaa ii a  the equation ( ) 0=1221 aaaCT L  is reduced to 

the equation ( ) ,621 0=′ bbbC T L  where ( )6113 ≤≤−= − iaab iii  and 

.

110000
011000
001100
000110
000011
101000

100100
010010
001001
002020

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−−

=′C  

The equations corresponding to the ith row with 102 ≤≤ i  hold if and only if 

.654321 bbbbbb −==−==−=  

But the first row forces 2b  to be equal to .4b−  It follows that 

,0654321 ====== bbbbbb  

which is equivalent to the condition that 

ii aa −= 13  

holds for any [ ].6,1∈i  

Case (B): .0=t  In this case, it follows from (2.4) that ,3
1 0=⋅M  which 

is equivalent to the equalities 

,1242 aaa === L  

,951 aaa ==  

,1173 aaa ==  

.2 231 aaa =+  
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We record what we obtain in this subsection as follows: 

Proposition 2.3. Let ( )121 ...,, aa=a  be a melody of length twelve, and 

let ( ),, 1+= iii aap  111 ≤≤ i  so that ( ) ( )....,, 111 ppM =a  The ordered set 

( )aM  of points has a line of symmetry if and only if one of the following 

conditions holds: 

(1) 4+= ii aa  for any [ ],8,1∈i  and .4231 aaaa +=+  

(2) .76112121 aaaaaa +==+=+ L  

(3) ....,,, 76112121 aaaaaa ===  

(4) ,1242 aaa === L  ,951 aaa ==  1173 aaa ==  and =+ 31 aa  

.2 2a  

3. Symmetry of Melodies of Arbitrary Length 

In this section, we generalize the argument in the previous section, 
especially that for the melodies of length twelve, and obtain a complete 
classification of melodies whose M-graphs have lines of symmetry. We 
divide our argument into two cases according to the parity of the length. In 
each case, our final classification result is stated at the end of respective 
subsection. 

3.1. Melodies of length mN 2=  

Let ( )maa 21 ...,,=a  be a melody of length 2m with ,3≥m  and let 

( ),, 1+= iii aap  121 −≤≤ mi  so that ( ) ( )....,, 121 −= mppM a  In this case, 

the coordinates ,+ix  ,+iy  ,−ix  −
iy  ( )11 −≤≤ mi  are given by 

,2,2
2

1
2 imiimi

i
aaxaax −−−+ −

=
+

=  

2,2
121121 imi

i
imi

i
aayaay −++−−+++ −

=
+

=  

and 
., 1+== mmmm ayax  
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Therefore, the matrix 12 −mM  is given by 

.
0001111

1211121

12112112
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−=
−
−

−−
+

+
−

++

−
−

−−+
−

++
−

mmm

mmmm
xxxayyy
yyyaxxxM

LL

LL

LL

 

Apply ( )2;2rowE  and ( )2;3rowE  to 12 −mM  and call the resulting matrix 

.1M  Its ( )ji, -entry ( )ijM1  is given by 

( )
⎩
⎨
⎧

−≤≤+
≤≤

=
,121,0

,1,1
1

1
mjm

mj
M j  

( )
( )

( )⎪⎩

⎪
⎨
⎧

−≤≤+−++−

≤≤−
=

121,13,1

,1,2,
2

1

mjmjmmj

mjjmj
M j  

and 

( )
( )

( )⎪⎩

⎪
⎨
⎧

−≤≤+−−

≤≤−++
=

,121,3,

,1,12,1
3

1

mjmjmmj

mjjmj
M j  

where we employ the notation, which abbreviates 121 −− maa  as ( ),12,1 −m  

for example. By applying the elementary transformations 

( ) ( ) ( )1;2,1...,,1;1,2,1;,1 −−−−−− columncolumncolumn EmmEmmE  

successively, we see that 1M  is equivalent to the matrix 1′M  whose ( )ji, -

entry ( )ijM 1′  is given by 

( )
⎩
⎨
⎧

−≤≤
=

=′

,122,0
,1,1

1
1

mj
j

M j  (3.1) 

( )

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤+−++−

≤≤−+−−

=−

=′

121,13,1

,2,12,2,,1

,1,12,1

2
1

mjmjmmj

mjjmjmjj

jm

M j  (3.2) 
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and 

( )

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤+−−

≤≤−+−++

=

=′

.121,3,

,2,22,12,1,

,1,2,2

3
1

mjmjmmj

mjjmjmjj

jm

M j  (3.3) 

It follows from (3.1) that the rank of 1′M  depends only on the ( )222 −× m  

matrix ,2M  which is obtained from 1′M  by deleting its first row and column. 

Its ( )ji, -entry ( )ijM 2  is obtained simply by replacing j by 1+j  in (3.2) 

and (3.3): 

( )
( )

( )⎪⎩

⎪
⎨
⎧

−≤≤−+−

−≤≤−−−+
=

,22,3,2

,11,2,12,1,
1

2

mjmjmmj

mjjmjmjj
M j  

( )
( )

( )⎪⎩

⎪
⎨
⎧

−≤≤−−+−

−≤≤−+−++
=

.22,13,1

,11,12,2,2,1
2

2

mjmjmmj

mjjmjmjj
M j  

Apply ( )1;,1 jjEcolumn −  and ( )1;,1 jmjEcolumn −+  for each ∈j  

[ ]1,2 −m  to the matrix ,2M  and we call the resulting matrix .2′M  Then 

the ( )j,1 -entry 2
1
′
jM  for [ ]1,2 −∈ mj  is computed to be 

( ) ( )jmjmjjjmjmjjM j −+−−+−−−+=′ 12,2,,12,12,1,2
1  

( )jmj −+++ 12,1  

( ).12,1 jmj −−−=  

Similarly, we have 

( )jmjmjjM j −+−++=′ 12,2,2,12
2  

( ) ( )jmjjmjmjj −+−+−+++ 2,22,12,1,  

( ).22,2 jmj −++=  
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Thus, we see that the whole entries of 2′M  are given by 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−+−

−≤≤−−−

=−−

=′

22,3,2

,12,12,1

,1,12,22,2,1
2
1

mjmjmmj

mjjmj

jmm

M j  

and 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−−+−

−≤≤−++

=−

=′

.22,13,1

,12,22,2

,1,2,12,3,2
2
2

mjmjmmj

mjjmj

jmm

M j  

When ,4≥m  we apply ( )1;1,2 −columnE  and ( )1;1,2 −+mEcolumn  to 

the matrix ,2′M  which is a ( )222 −× m  matrix and has the ( )2+m th 

column since 222 −≤+ mm  for .4≥m  Then the entries of the first column 
become as follows: 

( ) ( ) ( )22,432,112,22,2,12
11 −−−−−−⇒′ mmmmM  

( ),12,32,4,2 −−= mm  

( ) ( ) ( )32,32,42,12,3,22
21 −−−−⇒′ mmmmM  

( ).12,32,4,2 −−= mm  

On the other hand, when ,3=m  we apply only ( )1;1,2 −columnE  to the 

matrix ,2′M  then we see that 

( ) ( ) ( ),5,3,4,23,15,4,2,12
11 =−⇒′M  

( ) ( ) ( ).5,3,4,26,46,5,3,22
21 =−⇒′M  

Therefore, in any case, the entries of the resulting matrix, which we call ,3M  
are given by 
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( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−+−

−≤≤−−−

=−−

=

,22,3,2

,12,12,1

,1,12,32,4,2
3
1

mjmjmmj

mjjmj

jmm

M j  

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−−+−

−≤≤−++

=−−

=

.22,13,1

,12,22,2

,1,12,32,4,2
3
2

mjmjmmj

mjjmj

jmm

M j  

Let ( )3
2

3
1 .resp ⋅⋅ MM  denote the first (resp. second) row of .3M  Then the 

rank of 3M  is smaller than or equal to one if and only if there exists a pair 

( ) ( ){ }0,0, 2 −∈ Rts  such that 

 ,3
2

3
1 0=+ ⋅⋅ MtMs  (3.4) 

where the right hand side denotes the zero vector of length .22 −m  Let ,ic  

,221 −≤≤ mi  denote the ith component of the vector on the left hand side 
of (3.4). Then we have 

( ) ( ),12,32,4,212,32,4,21 −−+−−= mmtmmsc  

( ) ( ),2,432,12 mtmsc +−=  

( ) ( ),12,542,23 −+−= mtmsc  

L  

( ) ( ) ( ),12,22,212,1 −≤≤−+++−−−= mjjmjtjmjsc j  

L  

( ) ( ),3,1,21 +++−=− mmtmmscm  

( ) ( ),12,12,2 −+= mtmscm  

( ) ( ),22,212,31 −+−=+ mtmscm  
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L  

( ) ( ) ( ),20,12,12,2 −≤≤−−++−+=+ mkkmktkmksc km  

L  

( ) ( ).1,12,22 +−++=− mmtmmsc m  

We divide our argument into two cases according as 0≠t  or .0=t  

Case (A): .0≠t  We may assume that .1=t  Then for any [ ],1,3 −∈ mj  

we have 

( ( ) ( ))jmjjmjscc jmj −+++−−−=− +− 22,212,13  

( ( ) ( ))jmjjmjs −+−+−+−− 22,232,1  

.321222 jmjmjj sasaaa −+−−+− −++−=  (3.5) 

Similar vectors can be obtained for any [ ]3,2 −∈ mj  as 

( ( ) ( ))jmjjmjscc jmj −+++−−−=− ++ 22,212,11  

( ( ) ( ))jmjjmjs −−++−−+− 22,212,3  

.222231 jmjmjj aasasa −+−−+− −++−=  

By replacing j by 1−j  here, we see that 

 jmjmjjjmj aasasacc −+−−+−+− −++−=− 3212221  (3.6) 

holds for any [ ].2,3 −∈ mj  Combining (3.5) and (3.6), we find that the 

equalities 

( ) ( ) ( ) ( ),1 22
2

11 +−+−++ −−=−−− jjjmjjmj aasccscc  

( ) ( ) ( ) ( )jmjmjmjjmj aasccccs −+−−+−++ −−=−+−− 3212
2

11 1  

hold for any [ ].2,3 −∈ mj  It follows that when ,12 ≠s  the equalities 
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,22 +− = jj aa  (3.7) 

jmjm aa −+−− = 3212  (3.8) 

hold for any [ ].2,3 −∈ mj  It follows from (3.7) that 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=
=

− mm aa

aa
aa

4

62

51
,
,

L
 (3.9) 

and it follows from (3.8) that 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=
=

−

++

++

.

,
,

242

62

51

mm

mm

mm

aa

aa
aa

L
 (3.10) 

In order to fill the gap, we employ the equality 

( ) ( ),413421 ++−−− −++−=− mmmmmm aasaacc  

which comes from (3.5) with 1−= mj  and the equality 

( ) ( )4,1,32 +++−=− mmmmscm  

( ) .413 ++− −++−= mmmm aaaas  

These imply the following equalities: 

( ) ( ),1 13
2

2421 +−−−− −−=−− mmmmm aassccc  

( ) ( ) ( ).1 4
2

2421 +−−− −−=−− mmmmm aascccs  

Therefore, when ,12 ≠s  we have 

,13 +− = mm aa  (3.11) 

.4+= mm aa  (3.12) 
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Furthermore, in order to fill the final gap, we use 221 −− + mm cc  and ,32 −mc  

which are expressed as 

( ( ) ( ))3,1,2221 +++−=+ −− mmmmscc mm  

( ( ) ( ))1,12, +−+++ mmmms  

( ) ( ),3122 +−+− −++−= mmmm aaaas  

( ) ( ).223132 +−+−− −++−= mmmmm aaaasc  

Therefore, we have 

( ) ( ) ( ),1 22
2

32221 +−−−− −−=++ mmmmm aascccs  

( ) ( ) ( ).1 31
2

32221 +−−−− −−=++ mmmmm aassccc  

It follows that when ,12 ≠s  we have 

,22 +− = mm aa  (3.13) 

.31 +− = mm aa  (3.14) 

Combining (3.9)-(3.14), we obtain the following complete periodicity: 

Proposition 3.1. When ,12 ≠s  the equality 

4+= jj aa  

holds for any [ ].42,1 −∈ mj  

It follows from this proposition that the components ,jc  ,221 −≤≤ mj  

can be expressed solely by ,1a  ,2a  ,3a  .4a  As for ( ) ( ,32,4,211 −−= msc  

),12 −m  we note that the set { }12,32 −− mm  coincides with the set { }3,1  

modulo four. Hence, it is expressed as 

( ) ( ).1 43211 aaaasc +−+−−=  
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As for jc  with [ ],1,2 −∈ mj  it follows from the expression 

( ) ( )jmjjmjsc j −+++−−−= 22,212,1  

that the differences of the indices of both terms on the right hand side are 
equal to ( ),2 jm −  which is congruent to 0 modulo 4 when ( ).2modjm ≡  

Hence, if ( ),2modjm ≡  then jc  always vanishes. On the other hand, when 

( ),2modjm ≡/  we see that 

( ) ( )
( ) ( )⎩

⎨
⎧

≡−−+±
≡+−−±

=
.2mod1if,
,2mod0if,

4321

4321
masaasa
msaasaa

c j  

Next, we consider the case [ ]22, −∈ mmj  so that 

( ) ( ).13,13,2 jmmjjmmjsc j −−+−+−+−=  

Note that the differences of the indices of both terms on the right hand 
side are equal to ( ),124 +− jm  which is congruent to 0 if ( ).2mod1≡j  

Hence, in this case, jc  vanishes. On the other hand, when ( ),2mod0≡j  

we see that 

( ) ( )
( ) ( )⎩

⎨
⎧

≡−−+±
≡+−−±

=
.2mod1if,
,2mod0if,

4321

4321
masaasa
msaasaa

c j  

Thus, the simultaneous equation ( ) 0=−2221 ...,,, mccc  is reduced according 

to the parity of m to the following two equations: 

When m is even, 

⎩
⎨
⎧

=+−−
=−+−

.0
,0

4321

4321
saasaa

aaaa
 

When m is odd, 

⎩
⎨
⎧

=−−+
=−+−

.0
,0

4321

4321
asaasa

aaaa
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Therefore, when m is even, the simultaneous equation has the same form as 
the one obtained in Subsection 2.3, hence the sequence { }ip  rotates along the 

square with vertices ,1p  ,2p  ,3p  ,4p  and except for the trivial case when 

,21 maa ==L  we have 

.
42
31

aa
aas

−
−

=  

Even when m is odd, the simultaneous equation can be solved similarly 
and we see that the sequence { }ip  rotates along the square with vertices ,1p  

,2p  ,3p  4p  too and except for the trivial case when ,21 maa ==L  we 

have 

.
31
24

aa
aas

−
−=  

Next, we deal with the cases when .12 =s  

Case (A; 1): .1=s  In this case, let kmkk aab −++= 12  for any ∈k  

[ ].,1 m  Then all of the components ,jc  [ ]22,1 −∈ mj  can be expressed in 

terms of kb  as follows: 

,01 =c  

,412 bbc +−=  

,523 bbc +−=  

L  

,32 mmm bbc +−= −−  

,21 mmm bbc +−= −−  

,21 bbcm −=  

,321 bbcm −=+  

L  

.122 mmm bbc −= −−  
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Therefore, the simultaneous equation ( ) 0=−2221 ...,,, mccc  is equivalent to 

the conditions 

,21 mbbb === L  

namely, 

.112221 +− +==+=+ mmmm aaaaaa L  

Case (A; –1): .1−=s  In this case, let kmkk aad −+−= 12  for any ∈k  

[ ].,1 m  Then all of the components ,jc  [ ]22,1 −∈ mj  can be expressed in 

terms of kd  as follows: 

( ),2 421 ddc +−=  

,412 ddc +=  

,523 ddc +=  

L  

,32 mmm ddc += −−  

,21 mmm ddc −= −−  

,21 ddcm +=  

,321 ddcm +=+  

L  

.122 mmm ddc += −−  

The condition that 0=jc  holds for any [ ]22,2 −∈ mj  is equivalent to the 

equalities 

( ) .1 1
321 m

m dddd −−===−= L  

But the first condition 01 =c  forces 2d  to be equal to .4d−  It follows that 

,01 === mdd L  
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which is equivalent to the condition that 

imi aa −+= 12  

holds for any [ ].,1 mi ∈  

Case (B): .0=t  In this case, the condition becomes as follows: 

( ) 012,32,4,2:0 =−− mmC  

and 

 

( )
( )

( )
( )
( )

( )⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=+

=−
=

=−

=−
=−

−

.02,:

,012,3:
,02,2:

,0,2:

,042,2:
,032,1:

3

2

2

2

1

mmC

mC
mC

mmC

mC
mC

m

m

LL

LL

 (3.15) 

Here for ease of description below, we name each equation as is indicated. 
We note that the equations 21 ...,, −mCC  can be expressed as 

 imi aa −−= 22  for any [ ]32,1 −∈ mi  (3.16) 

and that the equations mCC ...,,2  can be expressed as 

 imi aa −+= 22  for any [ ].2,2 mi ∈  (3.17) 

We divide our argument into two cases according to the parity of m. 

Proposition 3.2. When m is even, the simultaneous equation (3.15) holds 
if and only if 

,242 maaa === L  

,3251 −=== maaa L  

.1273 −=== maaa L  
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When m is odd, it holds if and only if 

,1231 −=== maaa L  

,262 maaa === L  

.2284 −=== maaa L  

Proof. In either case, we notice that 

.421,4 −≤≤= + mjaa jj  

This is because the equality (3.16) with ji =  provides us with the equality 

jmj aa −−= 22  

and the equality (3.17) with jmi −−= 22  shows that 

( ) .4222222 +−−−+−− == jjmmjm aaa  

Furthermore, putting mi =  in (3.16) and (3.17), we have 

.22 +− == mmm aaa  

Therefore, the “only-if” part of the proposition is shown to hold. The “if-
part” is deduced from the following observation. The number of equations in 
(3.15) is equal to ( ) ( ) ,3212 −=−+− mmm  which is three less than the 

number of unknowns. Hence, the dimension of the space of solutions of 
(3.15) is at least equal to three. Thus, the conditions given in the statement of 
the proposition are sufficient for the validity of (3.15). This completes the 
proof. ~ 

Combining the equality 0: 1232420 =−−+ −− mm aaaaC  and 

Proposition 3.2, we obtain the following: 

Proposition 3.3. When m is even, the simultaneous equation (3.15) 
together with 0C  holds if and only if 

,42 maaa === L  

,3251 −=== maaa L  
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,1273 −=== maaa L  

.2 231 aaa =+  

When m is odd, the simultaneous equation (3.15) together with 0C  holds if 

and only if 

,1231 −=== maaa L  

,262 maaa === L  

,2284 −=== maaa L  

.2 142 aaa =+  

Thereby, we complete our classification of melodies of even length 
whose M-graph has lines of symmetry. The result is as follows: 

Theorem 3.1. Let ( )maa 21 ...,,=a  be a melody of even length 2m with 

3≥m  and let ( ),, 1+= iii aap  121 −≤≤ mi  so that ( ) ( )....,, 121 −= mppM a  

The ordered set ( )aM  of points has a line of symmetry if and only if one of 

the following conditions holds: 

(1) 4+= ii aa  for any [ ]42,1 −∈ mi  and .4231 aaaa +=+  

(2) .112221 +− +==+=+ mmmm aaaaaa L  

(3) ....,,, 112221 +− === mmmm aaaaaa  

(4.1) When m is even, 

,242 maaa === L  

,3251 −=== maaa L  

1273 −== maaa  

and .2 231 aaa =+  
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(4.2) When m is odd, 

,1231 −=== maaa L  

,262 maaa === L  

2284 −== maaa  

and .2 142 aaa =+  

3.2. General case when 12 += mN  

When the length of a melody is odd, the process of column-reducing is 
similar to the one employed in the even case. Here arises, however, a 
difficulty, which prevents us from obtaining the periodicity for the fiber at 

generic ( ) ., 1P∈ts  We need additional consideration to reach our conclusion. 

Let ( )121 ...,, += maaa  be a melody of length 12 +m  with ,3≥m  and 

let ( )1, += iii aap  for any [ ]mi 2,1∈  so that ( ) ( )....,, 21 mppM =a  In this 

case, the coordinates ,+ix  ,+iy  ,−ix  −
iy  for [ ]mi ,1∈  are given by 

,2,2
12

1
12 imiimi

i
aaxaax −+−−++ −

=
+

=  

2,2
221221 imi

i
imi

i
aayaay −++−−+++ −

=
+

=  

and the matrix mM2  is given by 

.
000111

2121

21212
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−=
−−−+++

−−−+++

mm

mmm
xxxyyy
yyyxxxM

LL

LL

LL

 

Apply ( )2;2rowE  and ( )2;3rowE  to mM2  and call the resulting matrix 

.1M  The ( )ji, -entry ( )ijM1  is given by 

( )
⎩
⎨
⎧

≤≤+
≤≤

=
,21,0

,1,1
1

1
mjm

mj
M j  
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( )
( )

( )⎪⎩

⎪
⎨
⎧

≤≤+−++−

≤≤−+
=

mjmjmmj

mjjmj
M j 21,23,1

,1,12,
2

1  

and 

( )
( )

( )⎪⎩

⎪
⎨
⎧

≤≤+−+−

≤≤−++
=

.21,13,

,1,22,1
3

1

mjmjmmj

mjjmj
M j  

By applying the transformations 

( ) ( ) ( )1;2,1...,,1;1,2,1;,1 −−−−−− columncolumncolumn EmmEmmE  

successively, we see that 1M  is equivalent to the matrix 1′M  whose ( )ji, -

entry ( )ijM 1′  is given by 

( )
⎩
⎨
⎧

≤≤
=

=′

,22,0
,1,1

1
1

mj
j

M j  

( )

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤+−++−

≤≤−+−+−

=

=′

mjmjmmj

mjjmjmjj

jm

M j

21,23,1

,2,22,12,,1

,1,2,1

2
1  

and 

( )

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤+−+−

≤≤−+−++

=+

=′

.21,13,

,2,32,22,1,

,1,12,2

3
1

mjmjmmj

mjjmjmjj

jm

M j  

At this point, we notice that the rank of 1′M  depends only on the ×2  

( )12 −m  matrix ,2M  which is obtained from 1′M  by deleting its first row 

and the first column. Its ( )ji, -entry ( )ijM 2  is given as follows: 

( )
( )

( )⎪⎩

⎪
⎨
⎧

−≤≤−++−

−≤≤+−−+
=

,12,13,2

,11,12,2,1,
1

2

mjmjmmj

mjjmjmjj
M j  
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( )
( )

( )⎪⎩

⎪
⎨
⎧

−≤≤−+−

−≤≤−+−+++
=

.12,3,1

,11,22,12,2,1
2

2

mjmjmmj

mjjmjmjj
M j  

Apply ( )1;,1 jjEcolumn −  and ( )1;,1 jmjEcolumn −+  for each ∈j  

[ ]1,2 −m  to the matrix 2M  and we call the resulting matrix .2′M  Then the 

( )j,1 -entry 2
1
′
jM  for [ ]1,2 −∈ mj  is computed to be 

( )jmjmjjM j −+−+=′ 12,2,1,2
1  

( )jmjmjj −+−+−+ 22,12,,1  

( )jmj −+++ 22,1  

( ).2,1 jmj −−=  

Similarly, we have 

( )jmjmjjM j −+−+++=′ 22,12,2,12
2  

( )jmjmjj −+−+++ 32,22,1,  

( )jmj −++ 12,  

( ).32,2 jmj −++=  

Thus, we see that the entries of 2′M  are given by 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−++−

−≤≤−−

=−

=′

12,13,2

,12,2,1

,1,2,12,2,1
2
1

mjmjmmj

mjjmj

jmm

M j  

and 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−+−

−≤≤−++

=+

=′

.12,3,1

,12,32,2

,1,12,2,3,2
2
2

mjmjmmj

mjjmj

jmm

M j  
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Furthermore, applying ( )1;1,2 −columnE  and ( )1;1,2 −+mEcolumn  to the 

matrix ,2′M  the entries of the first column become as follows: 

( ) ( ) ( )12,422,12,12,2,12
11 −−−−−⇒′ mmmmM  

( ),2,22,4,2 mm −=  

( ) ( ) ( )22,312,412,2,3,22
21 −−+−+⇒′ mmmmM  

( ).2,22,4,2 mm −=  

Therefore, the entries of the resulting matrix, which we call ,3M  are given 
by 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−++−

−≤≤−−

=−

=

,12,13,2

,12,2,1

,1,2,22,4,2
3
1

mjmjmmj

mjjmj

jmm

M j  

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−+−

−≤≤−++

=−

=

.12,3,1

,12,32,2

,1,2,22,4,2
3
2

mjmjmmj

mjjmj

jmm

M j  

Let ( )3
2

3
1 .resp. ⋅MM  denote the first (resp. second) row of .3M  Then 

the rank of 3M  is smaller than or equal to one if and only if there exists a 

pair ( ) ( ){ }0,0, 2 −∈ Rts  such that 

 ,3
2

3
1 0=+ ⋅⋅ MtMs  (3.18) 

where the right hand side denotes the zero vector of length .12 −m  Let ,ic  

,121 −≤≤ mi  denote the ith component of the vector on the left hand side 
of (3.18). Then we have 
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( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

++++=

−≤≤−++−++=

−+=

++=

++++−=

−≤≤−+++−−=

+−=

++−=

−+−=

−

+

+

−

.1,2,1

,10,2,112,2

,12,22,3

,2,112,2

,4,11,2

,12,32,22,1

,2,532,2

,12,422,1

,2,22,4,22,22,4,2

12

1

1

3

2

1

mmtmmsc

mkkmktkmksc

mtmsc

mtmsc

mmtmmsc

mjjmjtjmjsc

mtmsc

mtmsc

mmtmmsc

m

km

m

m

m

j

L

L

L

L

 (3.19) 

We divide our argument into two cases according as 0≠t  or .0=t  

Case (A): .0≠t  We may assume that .1=t  Then for any [ ],1,3 −∈ mj  

we have 

( ( ) ( ))jmjjmjscc jmj −+++−−=− +− 32,22,13  

( ( ) ( ))jmjjmjs −+−+−+−− 32,242,1  

.42222 jmjmjj sasaaa −+−+− −++−=  (3.20) 

Similar expressions can be obtained for any [ ]2,2 −∈ mj  as 

( ( ) ( ))jmjjmjscc jmj −+++−−=− ++ 32,22,11  

( ( ) ( ))jmjjmjs −−++−+− 12,22,3  

.321231 jmjmjj aasasa −+−−+− −++−=  
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Therefore, by replacing j by ,1−j  we see that 

 jmjmjjjmj aasasacc −+−+−+− −++−=− 422221  (3.21) 

holds for any [ ].1,3 −∈ mj  It follows from (3.20) and (3.21) that for any 

[ ],1,3 −∈ mj  we have 

( ) ( ) ( ) ( ),1 22
2

13 +−+−+− −−=−−− jjjmjjmj aasccscc  

( ) ( ) ( ) ( ).1 422
2

13 jmjmjmjjmj aasccccs −+−+−+− −−=−+−−  

Therefore, we see that when ,12 ≠s  the equalities 

,22 +− = jj aa  (3.22) 

jmjm aa −+− = 422  (3.23) 

hold for any [ ].1,3 −∈ mj  It follows from (3.22) that 

,51 aa =  

,62 aa =  

L  

13 +− = mm aa  

and it follows from (3.23) that 

,51 ++ = mm aa  

,62 ++ = mm aa  

L  

.1232 +− = mm aa  

However, we want to fill the gap, we notice that the same strategy as is 
used in the case when N is even, does not work. For this reason, we introduce 
the two kinds of alternating sums and auxiliary sums according to the parity 
of m: 
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Definition 3.1. When m is even, we let 

( )∑
−

=

−−=
12

1

1 ,1
m

i
i

ieven
m cd  (3.24) 

.3222 −+ −++= mmm
even
m cccce  (3.25) 

When m is odd, we let 

( ) ( )∑ ∑
=

−

+=

− −+−=
m

i

m

mi
i

i
i

iodd
m ccd

1

12

1

1 ,11  (3.26) 

.3222 −+ ++−= mmm
even
m cccce  (3.27) 

Then we can show the following: 

Lemma 3.1. Notation being as above, we have 

,422 ++− −++−=+ mmmm
even
m

even
m saasaaed  (3.28) 

.422 ++− +−−=+ mmmm
odd
m

odd
m saasaaed  (3.29) 

Proof. Let mC  be a ( ) ( )1212 +×− mm -matrix whose ( )ji, -entry is the 

coefficient of ja  in .ic  Then it follows from (3.19) that its jth column jA  

[ ]( )12,1 +∈ mj  is specified by the following: 

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−+−=
+−−=

+−−−=
+−=

++

++

+

,1
,

,1
,

325214

2143

1312

21

mm

mm

mm

m

eseseeesA
eseseA

eseseesA
eseA

 (3.30) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−=

+−−=
+−−=

−−−−−

++

++

,

,
,

3242142

54746

43635

mmmmm

mm

mm

eseseeA

eseseeA
eseseeA

L
 (3.31) 

⎩
⎨
⎧

+−=
+−=

−−−

−−−−
,

,

12222

223231

mmmm

mmmm
eseeA

eseeA
 (3.32) 
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( ) ( ) ,11 1211 −−+ +−+= mmm esesA  (3.33) 

⎩
⎨
⎧

+−=
+−=

−−−+

−−−+
,
,

223233

122222

mmmm

mmmm
seeseA
seeseA

 (3.34) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−=

+−−=
+−−=

++−

−−−−+

−−−−+

,

,
,

436332

4252255

3242144

mmm

mmmmm

mmmmm

seeeseA

seeeseA
seeeseA

L
 (3.35) 

( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

+−=
+−−−=

+−−=
+−−+−=

+

+

++−

++−

.
,1

,
,1

212

1312

21412

3252122

mm

mmm

mmm

mmm

seeA
seeeesA

seeeA
seeeseesA

 (3.36) 

First, we deal with the case when m is even. Let [ ],, j
even
m ad  ≤≤ j1  

,12 +m  denote the coefficient of ja  in .even
md  The first equality in (3.31) 

shows that [ ] ,0, 5 =ad even
m  since ( ),2mod13 ≡+m  ( ),2mod04 ≡+m  

hence 5A  becomes equal to zero if we put ( ) 11 −−= i
ie  formally. In a similar 

vein, it follows from (3.31) that [ ] 0, =j
even
m ad  for every [ ].2,5 −∈ mj  

Arguing similarly with the equalities in (3.35), we see that every coefficient 

of [ ] 0, =j
even
m ad  for any [ ].32,4 −+∈ mmj  For the remaining coefficients, 

it follows from (3.30), (3.32)-(3.34) and (3.36) that we have 

 [ ] [ ] [ ] [ ] ,1,,1,,,,1, 4321 −=−==−= sadadsadsad even
m

even
m

even
m

even
m  

 [ ] [ ] [ ] ,0,,,,, 11 ==−= +− m
even
mm

even
mm

even
m adsadsad  

 [ ] [ ] ,1,,1, 32 −== ++ m
even
mm

even
m adad  

 [ ] [ ] ,,,1, 1222 sadsad m
even
mm

even
m −=−= −−  

 [ ] [ ] .1,,1, 122 sadad m
even
mm

even
m −== +  (3.37) 
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On the other hand, it follows from the definition (3.27) that 

3222 −+ −++= mmm
even
m cccce  

( ) 124221 +− −++−= mm aaaas  

( ) mm aaaas 21122 −++−+ +  

( ) 223124 −− −++−+ mm aaaas  

( )( )3241 +−+− −++−− mmmm aaaas  

( ) ( ) 4321 11 asasaas +−++−+−=  

4312 ++−− −++− mmmm saasaa  

( ) ( ) .11 1221222 +−− −+−+−+ mmmm asasaas  

Combining this with (3.37), we find that 

,422 ++− −++−=+ mmmm
even
m

even
m saasaaed  

which is to be proved. 

The case when m can be similarly dealt. The point is that the signs of the 

latter half of odd
md  are opposite to those of even

md  and hence the coefficients 

appearing in (3.31) and (3.35) vanish too as in the case m is even. ~ 

Another useful equalities are as follows: 

Lemma 3.2. Notation being as above, we have 

,422121 ++−−− −++−=+ mmmmmm asaasacc  (3.38) 

( ) mmmmm saasacc −+−+=+ −−−− 122232 1  

( ) .1 432 +++ +−+− mmm saasa  (3.39) 

Proof. It follows from (3.19) that 

( ) 4112121 +++−−− −++−=+ mmmmmm aaaascc  

( ) 121 +++ −++−+ mmmm aaaas  

.422 ++− −++−= mmmm asaasa  
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Similarly, it follows from (3.19) that 

( ) 32412232 +−+−−− −++−=+ mmmmmm aaaascc  

( ) 213 +−+ −++−+ mmmm aaaas  

( ) mmm saasa −+−+= −− 12 1  

( ) ,1 432 +++ +−+− mmm saasa  

which is to be proved. ~ 

Now we combine the two lemmas above and obtain the following: 

Proposition 3.4. When m is even, we have 

( ) ( ) ( ),1 22
2

121 +−−− −−=+−+ mmmm
even
m

even
m aasccsed  

( ) ( ) ( ) ( ),1 4
2

121 +−− −−=+−+ mmmm
even
m

even
m aascceds  

( ) ( ) ( ).1 312232 +−−− −+−=+++ mmmm
even
m

even
m aascced  

When m is odd, we have 

( ) ( ) ( ),1 22
2

121 +−−− −+−=+++ mmmm
odd
m

odd
m aasccsed  

( ) ( ) ( ) ( ),1 4
2

121 +−− −+−=+++ mmmm
odd
m

odd
m aascceds  

( ) ( ) ( ).1 312232 +−−− −−=+−+ mmmm
odd
m

odd
m aascced  

Proof. When m is even, it follows from (3.28) and (3.38) that 

( )121 −− +−+ mm
even
m

even
m ccsed  

( ) ( )422422 ++−++− −++−−−++−= mmmmmmmm asaasassaasaa  

( ) ( )22
2 1 +− −−= mm aas  

and that 

( ) ( )121 −− +−+ mm
even
m

even
m cceds  
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( ) ( )422422 ++−++− −++−−−++−= mmmmmmmm asaasasaasaas  

( ) ( ).1 4
2

+−−= mm aas  

Furthermore, it follows from (3.28) and (3.39) that 

( )2232 −− +++ mm
even
m

even
m cced  

( )422 ++− −++−= mmmm saasaa  

( ) ( )( )43212 11 +++−− +−+−−+−++ mmmmmm saasasaasa  

( ) ( ).1 31 +− −+−= mm aas  

When m is odd, it follows from (3.29) and (3.38) that 

( )121 −− +++ mm
odd
m

odd
m ccsed  

( ) ( )422422 ++−++− −++−++−−= mmmmmmmm asaasassaasaa  

( ) ( )22
2 1 +− −+−= mm aas  

and that 

( ) ( )121 −− +++ mm
odd
m

odd
m cceds  

( ) ( )422422 ++−++− −++−++−−= mmmmmmmm asaasasaasaas  

( ) ( ).1 4
2

+−+−= mm aas  

Furthermore, it follows from (3.29) and (3.39) that 

( )2232 −− +−+ mm
odd
m

odd
m cced  

( )422 ++− +−−= mmmm saasaa  

( ) ( )( )43212 11 +++−− +−+−−+−+− mmmmmm saasasaasa  

( ) ( ).1 31 +− −−= mm aas  

This completes the proof. ~ 
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Combining (3.22), (3.23) with Proposition 3.4, we obtain the following: 

Proposition 3.5. When 12 ≠s  for any [ ],32,1 −∈ mi  we have 

.4+= ii aa  

It follows from this proposition that the components ,jc  ,121 −≤≤ mj  

can be expressed solely by ,1a  ,2a  ,3a  .4a  As for ( ) ( ,22,4,211 −−= msc  

),2m  we note that the set { }mm 2,22 −  coincides with { }4,2  modulo four. 

Hence, 1c  is equal to zero. As for jc  with [ ],1,2 −∈ mj  it follows from 

(3.19) that 

( ) ( ).32,22,1 jmjjmjsc j −+++−−=  

Letting the value of pairs ( )jm,  run through ,2
4Z  we find that there are 

four cases into which jc  falls: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )⎪

⎪
⎩

⎪⎪
⎨

⎧

≡+−+±
≡++−±
≡−−+±
≡++−±

=

.4mod2,3,1,3,2,1,1,1,if,1
,4mod3,3,0,3,3,1,0,1,if,1

,4mod3,2,2,2,3,0,2,0,if,1
,4mod1,2,0,2,1,0,0,0,if,1

431

321

421

432

jmasasa
jmsaasa
jmasaas
jmsaasa

c j  

Next, we consider the case [ ]12, −∈ mmj  so that 

( ) ( ).3,113,2 jmmjjmmjsc j −+−+−++−=  

This time the shapes of jc  are classified as follows: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )⎪

⎪
⎩

⎪⎪
⎨

⎧

≡++−±
≡+−+±
≡++−±
≡−−+±

=

.4mod3,3,0,3,2,1,1,1,if,1
,4mod2,3,1,3,3,1,0,1,if,1
,4mod3,2,0,2,2,0,1,0,if,1
,4mod2,2,1,2,3,0,0,0,if,1

321

431

432

421

jmsaasa
jmasasa
jmsaasa
jmasaas

c j  

Thus, the simultaneous equation ( ) 0=−2221 ...,,, mccc  is reduced according 

to the parity of m to the following two equations: 
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When m is even, 

 
( )

( )⎩
⎨
⎧

=++−
=−−+

.01
,01

432

421
saasa
asaas

 (3.40) 

When m is odd, 

( )
( )⎩

⎨
⎧

=+−+
=++−

.01
,01

431

321
asasa

saasa
 

In any case, we can show the following: 

Lemma 3.3. The points ( ),, 1+= iii aap  ,11 −≤≤ Ni  rotate along the 

square made of the first four points ....,, 41 pp  

Proof. We deal only with the case when m is even, since the odd case 
can be treated similarly. It follows from (3.40) that 

,1
1

1 421 asas
sa

+
+

+
=  

.11
1

423 as
sasa
+

+
+

=  

Therefore, we find that 

( )322121 , aaaapp −−=−  

( ),,11
42 ss

aa −
+
−=  

( )433232 , aaaapp −−=−  

( ),1,1
42 ss

aa
+
−=  

( )144343 , aaaapp −−=−  

( ),,11
42 ss

aa −
+
−=  

( )211414 , aaaapp −−=−  

( ).1,1
42 −−

+
−= ss

aa  
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Hence, the pair of adjacent sides 1+− ii pp  and 21 ++ − ii pp  are transversal 

for [ ].2,1 −∈ Ni  Furthermore, the square of the length of every side is 

computed to be 

( ),11
2

2
422

1 +⎟
⎠
⎞⎜

⎝
⎛

+
−=− + ss

aapp ii  

hence the proof is complete. ~ 

Next, we deal with the cases when .12 =s  

Case (A; 1): .1=s  In this case, let kmkk aab −++= 22  for any ∈k  

[ ].1,1 +m  Then all of the components ,jc  [ ]12,1 −∈ mj  can be expressed 

in terms of kb  as follows: 

,01 =c  

,412 bbc +−=  

,523 bbc +−=  

L  

,32 mmm bbc +−= −−  

,121 +−− +−= mmm bbc  

,21 bbcm −=  

,321 bbcm −=+  

L  

.112 +− −= mmm bbc  

Therefore, the simultaneous equation ( ) 0=−1221 ...,,, mccc  is equivalent to 

the conditions 

,121 +=== mbbb L  
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namely, 

.2 1222121 +++ =+==+=+ mmmmm aaaaaaa L  

Case (A; –1): .1−=s  In this case, let kmkk aad −+−= 22  for any 

[ ].,1 mk ∈  Then all of the components [ ]12,1, −∈ mjc j  can be expressed 

as follows: 

( ),2 421 ddc +−=  

,412 ddc +=  

,523 ddc +=  

L  

,32 mmm ddc += −−  

,21 −− = mm dc  

,21 ddcm +=  

321 ddcm +=+  

L  

,122 mmm ddc += −−  

.12 mm dc =−  

Therefore, we have 

,01 === mdd L  

which is equivalent to the condition that 

imi aa −+= 22  

holds for any [ ].,1 mi ∈  

Case (B): .0=t  Letting ( ) ( )0,1, =ts  in (3.19), we have 

( ) 02,22,4,2:0 =− mmC  
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and 

 

( )
( )

( )
( )
( )

( )⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

=++

=

=+

=+−

=−

=−

+

−

.02,1:

,02,3:

,012,2:

,01,2:

,032,2:

,022,1:

1

3

2

2

2

1

mmC

mC

mC

mmC

mC

mC

m

m

LL

LL

 (3.41) 

Here for ease of description below, we name each equation as indicated. We 
note that the equations 21 ...,, −mCC  can be expressed as 

 imi aa −−= 12  for any [ ] { }mmmi ,1\22,1 −−∈  (3.42) 

and that the equations 12 ...,, +mCC  can be expressed as 

 imi aa −+= 32  for any [ ].12,2 +∈ mi  (3.43) 

Therefore, for any [ ] { },,1\32,1 mmmi −−∈  we have ,412 +−− == iimi aaa  

the latter equality is coming from (3.43). Thus, we have the periodicity 

 [ ] { }.,1\32,1,4 mmmiaa ii −−∈= +  (3.44) 

Furthermore, it follows from (3.43) that 

,41 +− = mm aa  (3.45) 

,3+= mm aa  (3.46) 

which will be used frequently later. We want to fill the gap in (3.44), namely, 
to show that 

,31 +− = mm aa  (3.47) 

.4+= mm aa  (3.48) 

Note that these two are equivalent under the conditions (3.45) and (3.46). 
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Therefore, we have only to show one of these equalities. We divide our 
argument into four cases according to the value of m modulo four. 

Case I: ( ).4mod0≡m  We put .4km =  It follows from (3.44) that 

.22242462 −+− ====== mkk aaaaa LL  

Therefore, the equation 0C  implies that 

 .24 maa =  (3.49) 

On the other hand, it follows from (3.44) that 

,484 kaaa === L  (3.50) 

.28444 mkk aaa === ++ L  (3.51) 

Since the leftmost side of (3.50) and the rightmost side of (3.51) coincide by 
(3.49), we see that the rightmost side of (3.50) and the leftmost side of (3.51) 
coincide, namely, we have 

,4444 ++ === mkkm aaaa  

which shows the validity of (3.48). Thus, we obtain the full periodicity, 
namely, 

 4+= ii aa  for any [ ].32,1 −∈ mi  (3.52) 

Case II: ( ).4mod1≡m  We put .14 += km  It follows from (3.44) that 

.2242462 mkk aaaaa ====== +− LL  

Therefore, the equation 0C  implies that 

 .224 −= maa  (3.53) 

On the other hand, It follows from (3.46) and (3.44) that 

 .223 −+ == mmm aaa  (3.54) 

Furthermore, it follows from (3.46) and (3.45) that 

 .414 +− == mm aaa  (3.55) 
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Hence, combining (3.54), (3.53) and (3.55), we obtain 

 ,4+= mm aa  (3.56) 

which is (3.48). 

Case III: ( ).4mod2≡m  We put .24 += km  It follows from (3.44) 

that 

.244484 mkk aaaaa ====== + LL  

Therefore, the equation 0C  implies that 

 .222 −= maa  (3.57) 

On the other hand, it follows from (3.44) that 

,2 maa =  (3.58) 

.224 −+ = mm aa  (3.59) 

Therefore, it follows from (3.57)-(3.59) that 

 ,4+= mm aa  (3.60) 

which is (3.48). 

Case IV: ( ).4mod3≡m  We put .34 += km  It follows from (3.44) 

that 

.2244484 −+ ====== mkk aaaaa LL  

Therefore, the equation 0C  implies that 

 .22 maa =  (3.61) 

On the other hand, it follows from (3.46) and (3.44) that 

 .23 mmm aaa == +  (3.62) 

Furthermore, it follows from (3.44) and (3.45) that 

 .412 +− == mm aaa  (3.63) 
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Hence, combining (3.61)-(3.63), we obtain 

,4+= mm aa  

which is (3.48). 

Applying the above consideration, we obtain the following final 
specification, which divides the variables into two mutually equal ones: 

Proposition 3.6. The system of equations 0C  and (3.41) holds if and 

only if the periodicity 

[ ]32,1,4 −∈= + miaa ii  

and the following conditions hold: 

,, 4321 aaaa ==  when ( ),2mod0≡m  

,, 3241 aaaa ==  when ( ).2mod1≡m  

Proof. Case I: ( ).2mod0≡m  It follows from (3.43) that .122 += maa  

Combining this with the periodicity, we see that 

.2121 aaa m == +  

Furthermore, combining the equality ,124 −= maa  which follows from 

(3.43), with the periodicity, we have 

.4123 aaa m == −  

Case II: ( ).2mod1≡m  It follows from (3.43) that two equalities =4a  

,12 −ma  maa 23 =  hold. These together with the periodicity imply that 

,4121 aaa m == −  

.322 aaa m ==  

Moreover, our system of equations 

( ),20 −≤≤ miCi    ( )12 +≤≤ mjC j  

consist of 12 −m  equations for 12 +m  unknowns ( ).121 +≤≤ mja j  
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Hence, the dimension of the solution space must be greater than or equal to 
( ) ( ) .21212 =−−+ mm  We, however, have already found that there are 

only two free variables in each case, and hence there cannot be further 
reduction of the number of free variables. This completes the proof. ~ 

Thereby, we complete our classification of melodies of odd length whose 
M-graph has lines of symmetry. The result is as follows: 

Theorem 3.2. Let ( )121 ...,, += maaa  be a melody of odd length 12 +m  

with 3≥m  and let ( ),, 1+= iii aap  mi 21 ≤≤  so that ( ) ( )....,, 21 mppM =a  

The ordered set ( )aM  of points has a line of symmetry if and only if one of 

the following conditions holds: 

(1) 4+= ii aa  for any [ ]32,1 −∈ mi  and 

(1.1) ,1
42

1 +
+= s

asaa  1
42

3 +
+= s

saaa  hold for some { },1\ ±∈ Rs  when 

m is even. 

(1.2) ,1
31

2 +
+

= s
saaa  1

31
4 +

+
= s

asaa  hold for some { },1\ ±∈ Rs  when 

m is odd. 

(2) .2 1222121 +++ =+==+=+ mmmmm aaaaaaa L  

(3) ....,,, 222121 ++ === mmmm aaaaaa  

(4) 4+= ii aa  for any [ ]32,1 −∈ mi  and 

(4.1) ,, 4321 aaaa ==  when m is even. 

(4.2) ,, 3241 aaaa ==  when m is odd. 

4. Examples of Symmetric Melodies 

In this final section, we illustrate the results obtained in Theorems 3.1 
and 3.2 by a few examples. The first subsection deals with melodies having 
period four. In the second and the third subsections, we treat melodies of 
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lengths twelve and eleven, respectively, with amazing symmetries. In each 
figure, the dashed line signifies the line of symmetry of respective M-graphs. 

4.1. Symmetric melodies with period four 

The following graph is obtained by setting ,11 =a  ,22 =a  43 =a  in 

Theorem 3.1, (1) with :4=m  

 

Figure 4. ( ) :3,4,2,1,3,4,2,1M  Theorem 3.1, (1) with .4=m  

The next two graphs are examples of Theorem 3.1, (4.1) with ,4=m  

where we set ,11 =a  ,22 =a  and of Theorem 3.1, (4.2) with ,3=m  where 

,21 =a  :12 =a  
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Figure 5. ( ) :2,3,2,1,2,3,2,1M  Theorem 3.1, (4.1) with .4=m  

 

Figure 6. ( ) :1,2,3,2,1,2M  Theorem 3.1, (4.2) with .3=m  

The following two graphs are examples of Theorem 3.2, (1.1) with 
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,4=m  where we set ,12 =a  ,34 =a  ,2=s  and of Theorem 3.2, (1.2) with 

,3=m  where ,11 =a  ,33 =a  :2=s  

 
Figure 7. ( ):35,3,37,1,35,3,37,1,35M  Theorem 3.2, (1.1) with .4=m  

 
Figure 8. ( ) :3,37,1,35,3,37,1M  Theorem 3.2, (1.2) with .3=m  
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The next two graphs are examples of Theorem 3.2, (4.1) with ,4=m  
where we set ,11 =a  ,23 =a  and of Theorem 3.2, (4.2) with ,3=m  where 

:2,1 21 == aa  

 
Figure 9. ( ) :1,2,2,1,1,2,2,1,1M  Theorem 3.2, (4.1) with .4=m  

 
Figure 10. ( ) :2,2,1,1,2,2,1M  Theorem 3.2, (4.2) with .3=m  
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4.2. Symmetric melodies with length twelve 

Firstly, we consider the melodies of length twelve. Since melodies which 
satisfy either condition specified in the cases (1), (4.1) and (4.2) of Theorem 
3.1 are periodic with period four, their M-graphs go around some 
quadrangles and nothing interesting appears. For this reason, we focus on the 
melodies, which fall into the category (2) or (3) of Theorem 3.1. The first 
figure is the M-graph of the melody 

( ),11,4,8,1,6,2,9,5,10,3,7,0=a  

in which no repeated tones appear. This satisfies the condition (2) of the 
theorem and the line of symmetry is defined by :11+−= xy  

 

Figure 11. ( ).11,4,8,1,6,2,9,5,10,3,7,0M  

The next figure shows the M-graph of the melody 

( ),1,6,2,4,5,7,7,5,4,2,6,1=a  

which satisfies the condition (3) of the theorem: 
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Figure 12. ( ).1,6,2,4,5,7,7,5,4,2,6,1M  

This has a line of symmetry defined by .xy =  

4.3. Symmetric melodies with length eleven 

Here we illustrate a few symmetric melodies of length eleven. Since 
melodies which satisfy either condition specified in the cases (1), (4) of 
Theorem 3.2 are also periodic with period four, we focus on the melodies, 
which fall into the category (2) or (3) of Theorem 3.2. The first figure is the 
M-graph of the melody ( ),10,3,9,6,8,5,2,4,1,7,0=a  in which no 

repeated tones appear. This satisfies the condition (2) of the theorem and the 
line of symmetry is defined by :10+−= xy  
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Figure 13. ( ).10,3,9,6,8,5,2,4,1,7,0M  

The next figure shows the M-graph of the melody 

( ),0,2,7,5,3,8,3,5,7,2,0=a  

which satisfies the condition (3) of the theorem: 

 
Figure 14. ( ).0,2,7,5,3,8,3,5,7,2,0M  

This has a line of symmetry defined by .xy =  
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We conclude this paper by the figure of a symmetric melody of length 
16: 

 

Figure 15. ( ).8,3,15,1,6,5,11,2,13,4,10,9,14,0,12,7M  

References 

 [1] G. Gündüz and U. Gündüz, The mathematical analysis of the structure of some 
songs, Phys. A 357 (2005), 565-592. 

 [2] F. Hazama, Mathematical analysis of melodies: slope and discrete Fréchet 
distance, Far East J. Math. Sci. (FJMS) 97(5) (2015), 583-615. 


