Advances and Applications in Discrete Mathematics

1 © 2016 Pushpa Publishing House, Allahabad, India

A Published Online: December 2015

http://dx.doi.org/10.17654/DM017010049

Volume 17, Number 1, 2016, Pages 49-112 ISSN: 0974-1658

MATHEMATICAL ANALYSIS OF MELODIES:
SYMMETRY

Fumio Hazama

Tokyo Denki University
Hatoyama, Hiki-Gun

Saitama, Japan

e-mail: hazama@mail.dendai.ac.jp

Abstract

A plane graph, called an M-graph, is attached to every melody. The
main purpose of the paper is to obtain a complete classification of
melodies of arbitrary length whose M-graphs have lines of symmetry.
A crucial role is played by a matrix pencil, attached to the set of those
melodies, whose fiber at a point is revealed to hide a twelve-tone row
composed by Webern.

0. Introduction

In this paper, we investigate symmetry of melodies. More precisely, we
attach a plane graph, called an “M-graph”, to each melody by the algorithm
introduced in [1], and consider when the M-graph has a line of symmetry.
For example, the M-graph of the twelve-tone row used in String Quartet op.
28 by Webern has a marvelous symmetry as is observed in Figure 1 below.
We will give a complete classification of melodies with symmetric M-graph.
Some partial results in this direction are obtained in the previous paper by the
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author [2] under the assumption that melodies consist of mutually distinct
tones. In order to remove the assumption, we reformulate our problem so that
we can study an arbitrary set of points in the plane, and establish a simple
linear-algebraic criterion for the set to have symmetry. Thereafter, we apply
the criterion to the M-graphs of melodies. As a result, we find that the
problem is translated into the one about the distribution of the ranks of a

certain matrix pencil parametrized by the projective line P, and detect that

Webern’s melody and the like are hidden in the fiber at (1, 1) P,

P2 ‘Nm

O \_pl y=—x+ 11

"
~
~

Figure 1. Webern: String Quartet op. 28.

Our classification shows that one cannot surpass Webern in creating
melodies with symmetric M-graph if we restrict our attention to those of
length twelve. More precisely, we prove that if a melody a = (ay, ..., ay ) of
an arbitrary length N, which is expressed as a sequence of integers, has a line
of symmetry, then it necessarily is (1) periodic with period four or (2)
symmetric itself in the sense that a; = ay 41_; holds for any i € [1, N] or (3)

antisymmetric in the sense that a; = —ay,1_j + k holds for any i e [1, N]

with a fixed constant k. The melody by Webern falls into the category
(3) with N =12 and k =11. However, our result might be somewhat
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disappointing for anyone who tries to create a new symmetric melody of
length twelve, it can create as many melodies of arbitrary length with
symmetry as one hopes. In any case, our result certifies the ingenuity of
Webern who could not have envisaged our classification.

The plan of this paper is as follows: Section 1 deals with symmetry of
general plane graphs. A simple criterion for a graph to have a line of
symmetry is formulated in terms of a certain matrix composed of the
coordinates of vertices of the graph. In Section 2, we recall the definition of
the M-graph of a melody. Thereafter, we examine the cases of melodies of
lengths 4, 5 and 12, applying the general criterion obtained in the previous
section. Our analysis of the case of length 12 will enable one to understand
the process employed in Section 3 where we deal with symmetries of
melodies of arbitrary length. Here we need to divide our argument into two
parts according to the parity of the length. In Section 4, we apply our results
to obtain several good-looking symmetric melodies. The reader is invited to
take a look at several M-graphs illustrated in the last pages, which have
amusing symmetries.

1. Symmetry of Points in the Plane

Let N > 3 be an integer and let p; = (X, ¥j), 1 <i < N, be N points in

the real plane R2. Let ¢ be a line and let r: R? — R? denote the reflection
map with respect to /. We call ¢ the line of symmetry of the ordered set p =

(pg, ..., PN ), if the condition

(pi) = PNs+1—i» 1<i<N (1.1)

holds. Note that the situation differs slightly according to the parity of N.
When N is even, the condition (1.1) holds if and only if both of the following
two conditions hold:

(E1) The midpoint of the segment pjpn,1—j lies on ¢ for any i€

4]
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(E2) The segment p;ppn41—j Intersects transversally with ¢ for any i €

1]

On the other hand, when N is odd, the condition (1.1) holds if and only if
all of the following three conditions hold:

(O1) The midpoint of the segment pjpyn1—j lies on ¢ for any i€
R

(02) The point py 11)/2 lieson £.

(O3) The segment pjpn 41— intersects transversally with ¢ for any i e
R

We can express these conditions simply in terms of a certain matrix. In
order to simplify our description, we put

Xi + X _j - X — X _i
Xi+ _ A 2N+1 L X = i 2N+1 L
. + i _ PR i

v = Yi 3;N+1 Loy = Yi 3;N+1 i

forany i € [1, N].

When N = 2m with m > 2, there exists a line ¢ such that the condition
(E1) holds if and only if the inequality

1 1 1
rank| X7 X3 - Xm | <2 (1.2)
i Y2 v Ym

holds, for (E1) is equivalent to the existence of a triple (a, b, c) e R3\
{(0, 0, 0)} such that

L p it X§m+l—i codit y22m+1—i -0




Mathematical Analysis of Melodies: Symmetry 53

holds for any i € [1, m], namely, all of the midpoints

Xi * Xom1-i Yi+ Yomsd-i
2 ' 2

of pjPom1-i (i € [, m]) lie on one and the same line £ p ¢) : @ +bx +cy

= 0. Moreover, if the condition (E2) is met for ¢ = /(5 ), then we must

have

Xi = Xom+d-i _pYi = Yom+i-i _

¢ 2 2

for any i e [1, m]. Therefore, both conditions (E1) and (E2) hold for some
line if and only if the inequality

17 .. 1 0 - 0
rank| X7 - X —yp - —Ym | <2 (1.3)
it Ymo Xt Xm

holds.

When N =2m + 1, both conditions (O1) and (02) hold for some line if
and only if

1 1 1
rank| XLF >2<2m+1 . Xm +2Xm+2 X1 | < 2.
Vit Yomer . Ymt Yms2
2 2 Ym+1

Accordingly, all of the three conditions (O1), (02) and (O3) hold for
some line if and only if the inequality

1 ... 1 1 o .- 0
rank| X; - Xm o Xme1 —Y1 r —Ym | <2 (1.4)
Voo Ym Yma X X

holds. Furthermore, in each case, the coefficient (a, b, ¢) of the line ¢ of

symmetry is given by a basis of the kernel of the linear map R - R",
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which is defined by the right multiplication of the matrix in (1.3) or (1.4).

Note here that RN is regarded as a vector space of row vectors of length N.
We record these facts as a proposition for later use:

Proposition 1.1. Let N be an integer > 3. For a given ordered set p =

(P, -, Py ) OF N pointsin R? with p; = (X;, ¥;), 1<i <N, let

Xi + XN a1_i X — XN i
Xi+ _ A 2N+1 L X = i 2N+1 L
yi = Yi 3;N+1 Ly = Yi y2N+1 i
for i < L%J When N is even, we put N = 2m and let
1 ... 1 0 - 0
My =X = Xm =W = Ym| (1.5)
Yo Ymoo4 o Xm

When N is odd, we put N = 2m + 1 and let

1 ... 1 1 0o - 0
My =X = Xn Xma =Y - —Ym | (1.6)
Vi Ym Ymel X ot Xm

Then p has a line of symmetry if and only if rank My < 2. Furthermore, the

coefficient (a, b, ¢) of the line 7 : a + bx + cy = 0 of symmetry is given by a

basis of the kernel of the linear map R® > RN defined by the right
multiplication of the matrix M.

We illustrate this by a few examples.

Example 1.1. Let p; =(5,4), pp =(2,5), p3 =(-6,1), ps = (-7, -2).
In this case, we have
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Hence, the matrix M, in (1.4) becomes

1 1 0 0
-1 -2 -3 -2
1 3 6 4

and it is of rank equal to 2. Furthermore, by means of elementary column
transformations, it becomes

1 0 00
0 1 0 0}
-1 -2 0 O

hence the kernel of the associated linear map is spanned by (a, b, ¢) =
(L, 2,1). Therefore, the line of symmetry of p = (py, P2, P3, P4) is given
by 1+ 2x + y = 0 or equivalently by y = —2x — 1.

Figure 2. Symmetric point set of length four.

Example 1.2. Let p; =(-3,0), ps =(-2,2), p3=( 3), psa =(2,0),

ps = (1, —2). In this case, we have
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y3 =1 y; =1

Hence, the matrix Mg in (1.5) becomes

1 11 0 O
-1 0 1 -1 -1
-1 1 3 -2 -2

and it is of rank equal to 2. Furthermore, by means of elementary column
transformations, it becomes

1 0
0 1
1 2

o O O

0 O
0 0
0 O

and hence the kernel of the associated linear map is spanned by (a, b, ¢) =
(<1, =2, 1). Therefore, the line of symmetry of p = (p;, Py, P3, P4, Pg) iS
defined by -1 - 2x + y = 0 or equivalently by y = 2x + 1.

Figure 3. Symmetric point set of length five.
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2. Symmetry of M-graphs

In [1], a method of visualization of a melody is introduced. It attaches a
plane graph to a given melody and the authors employ the graph to
investigate how the characteristic of a melody is reflected to its shape. In this
section, we recall the definition and study when the graph has symmetry in
the sense of the previous section for small N.

In order to express a melody by a definite sequence of integers, we let C4
(middle C) correspond to 0, C#4 to 1, and so on. In this way, we can
associate a sequence of integers with each melody. For example, the melody
“C4, D4, F4, E4”, which is the main theme of the fourth movement of the
Jupiter symphony by Mozart, corresponds to the sequence “0, 2, 5, 4”. From
now on, we identify a melody of finite length with the sequence of integers
of finite length, which is constructed by this rule. Furthermore, to any
sequence a = (ay, ay, ..., ay) Of integers, we attach a sequence of points

P =(pg, P2, - PN—g) With pj € R (1 <i <N —=1) by the following rule:

pL= (g, @), P2 = (8, @3), .., PN-1 = (AN_1, AN).

Let G(a) = (V(a), E(a)) be the directed graph with the set of vertices

V(@)= (py, P2; - PN-1)
and the set of edges
E(@) = {(p1, P2), (P2, P3), s (Pn—2, PN-1)}-

We call G(a) the M-graph associated to the melody a (“M” stands for

melody). However, since we focus only on the ordered set of its vertices in
the present paper, we set

M(@) = (py, P2, - PN-1)
and call it the M-graph of the melody a by abuse of language.

We are interested in the problem to determine whether or not the
M-graph of a melody has a line of symmetry. We examine a few cases with
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small N. When N = 3, however, the M-graph becomes a segment and has

evidently a line of symmetry. For this reason, we begin with the simplest
nontrivial case when N = 4.

2.1. The case when N =4
Let a=(a, a,, az, a4) be a melody of length four, and let p; =

(a1, @p), pp =(ap, a3z), p3=(ag, as) so that M(a)=(py, p2, p3). In

this case, the coordinates xi", yi~ are given by

+ d; +az - d; —aj
X1 ZT, X1 ZT,

+_dytay - _ @9
nN="m e =T

and the matrix M3 in (1.6) becomes

1 1 0 1 1 0

Mg=x" X3 -y |= a%ag ap —w- (2.1)
+ - a, +a 3 — a
Yyi Y2 X % ag %

The last matrix can be reduced to a simpler form by a number of elementary
transformations. Here and throughout the paper, we come to employ
elementary row (resp. column) transformations many times, so it is worth to
introduce the notation for them:

Definition 2.1. For any ¢ € R, we denote the elementary transformation,
which adds cx (the ith row) to the jth row by E,q,(i, j; c) and the
transformation, which multiplies ¢ to the ith row by Ey,(i; c). The
corresponding column transformations are denoted by E oumn(i, J; ¢) and

Ecolumn (i; ©), respectively.

Now applying E,q(2; 2) and E,u,(3; 2) to the rightmost matrix in

(2.1), we see that the matrix M3 is similar to
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1 1 0
d; + a3 23.2 —ay +ay |
ap+a, 2ag g —ag

Furthermore, applying Ecoiumn(2, L —1) and E¢opymn(3, L —1) successively

to this matrix, it becomes

0 1 0
dg—ay+az—a, 2&2 —ay +ay |
- +ay—ag+ay 2a3 a —ag

Finally, by E, (2, 3;1), this matrix is transformed to

0 1 0
a1 —ay +az —ay 28.2 —ay +a,
0 2&24—23.3 d) —dy) —adzg +ay

Therefore, we see that rank M3 < 2 if and only if
(al —ady +ag —a4)(a1 —ay —ag + 3.4) =0.
Hence, we obtain the following:

Proposition 2.1. For a melody a=(as,.., a4) of length four, the
M-graph M (a) has a line of symmetry if and only if one of the following
conditions holds:

(1) al—a2+a3—a4=0,
(2) al—az—a3+a4=0.

Furthermore, if the condition (1) is met, then the two segments p;p, and

po p3 are transversal to each other and have the same length.

Proof. Only the last assertion needs to be proved. It follows from (1) that
az —ay = —(a; —ay). Hence,
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(pr—P2)-(p2 — p3) = (g —ap)(az —ag) + (az — a3)(az — ay)
= (ag —ap)(ap —a3) - (a — ag)(a — ap)
=0.
Furthermore, we have

(P —P2)-(PL—P2)— (P2 — P3)- (P2 — P3)
= ((a — ap)” + (a2 — a3)?) — (2 — a3)” + (a3 — a4)?)

= ((ay - az)2 +(ag - a3)2) —((a2 - as)2 +(ag - az)z)
=0.
This completes the proof. O

Remark. The reason why we add the last statement to the proposition is
that we will come across to the condition (1) several times when we deal with
melodies of arbitrary length, and that we will need to know the shape of the
first three points in their M-graph.

2.2. Thecasewhen N =5

Now we examine the case when N =5. Let a =(ay, ..., as) be a melody
of length five, and let p; = (a;, aj41), 1 <i <4 sothat M(a)=(py, ..., Pa)-

In this case, the coordinates x, yi© (i =1, 2) are given by

+ a +ay X_=a1—3.4
2 1 2

+ _aQy t+ag - _Qay—ag
yl_T’ yl_T'

+ dp +az X__az—ag
2 2T 2

+ _3+ay - _ -
Y2 =775 Y2=— 5
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and the matrix My in (1.5) becomes

1 1 0 0
M, = d +ay ar + aj _a2—a5 _a3—a4
AT 2 2 2 2 |
ay + ag az + ay ad —ay dy —ag
2 2 2 2

This time we indicate successive transformations at the right side of the
transposed matrices. Furthermore, we employ the notation A ~ B which
means that A and B are similar:

1 1 0 0
d +ay ap +ag dy — ag az —ay
2 2 2 2
dy + ag az + ay d —ay dp — a3
2 2 2 2
1 1 0 0
~latay dp +az3 —ay+ag —-azt+ay

dp +a; az+ay a1 —ay ap, —ag
(< by Eow(2; 2) and Epgy(3; 2))

1 0 0 0
~ |y t+ay —ap +ay +az3 —dy —ady +ag —agz+ay
dy +dg —adp +az+ay —ag a —ay dy —ag

(< by Ecoumn(d 2; -1))

1 0 0 0
~10 —-y+ay+ag—ay, -a+ag —-ag+ay
0 —ay +azg+ay —ag d —ay ay, —ag

(< by Erow(l 25 &g — a4) and Eyy(L, 3; —a, — a5))
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1 0 0 0
~10 -y +agy —-dp+ag -—-azt+tay
0 o —ag & —ay ay —ag

(< by Ecoumn(3, 2;1) and Egopymn(4, 2; 1))

1 0 0 0
~10 —dq + ag —ay + as —az +ay
0 0 q—ay—a+tag ay—2ag+ay

(< by Erow(2, 32)).

Therefore, when —a; + a5 # 0, we see that rank M4 <2 if and only if
every entry in the last row vanishes, namely, a; + ag = a + a4 = 2az. On
the other hand, when —a; + ag = 0, we see that rank M4 < 2 if and only if

the determinant of the 2 x 2-matrix composed of the south-east entries is
equal to zero. We can compute its determinant keeping in mind that ag = a;

as follows:

det —ay + ag —az +ay
e
q—ay—a+ag ay-—2a3+ay

a — a —adq + a4,
— det 1 2 3 4
2&1—3.2—&4 32—2334-3.4

a —a —ag + 4,
— det 1 2 3 4
q —ay dy —ag

(< by Erow(L 2; -1))

dtal—a2+a3—a4 —az + ay
= de
dp —ay +ag—a, dp —ag

(< by Ecolymn(2, 15 1))

a1 —ady) +ag —a —adq + Qa,
— det 1 2 3 4 3 4
0 dy —ay
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(< by Erow(L 2; -1))

= (& —ay + a3 —ay)(a — ay).
Therefore, we obtain the following:

Proposition 2.2. For a melody a=(ay, ..., a5) of length five, the
M-graph M(a) has a line of symmetry if and only if one of the following
conditions holds:

@ d +adg =ady +ag = 2&3,
(2) a; = ag and a, = a4,
(3) ay =ag and a; + ag = a, + ay.

Remark 1. As is stated in Proposition 2.1, in case of (3), the
quadrilateral pyp,p3ps constitutes a square.

Remark 2. When we deal with symmetry of melodies of arbitrary length
in Section 3, we must assume that N > 6. This is another reason why we
choose the cases when N = 4 or N = 5 to begin our description in these two
Subsections 2.1 and 2.2.

2.3. The case when N =12

In this subsection, we examine the case when N = 12. The reason why
we choose this case is two-fold. Firstly, it is directly connected with the
twelve-tone method and may be of useful for actual composition. Secondly,
it helps us to understand what kind of elementary transformations should be
employed in general.

Let a=(ay, ..., 312) be a melody of length twelve, and let p; = (a;, aj,1)

for any i € [1, 11] so that M(a) = (py, ..., P11)- In this case, the coordinates

x5, Vi, X7, yi (L<i<5) aregiven by

X+_al+311 X—_al_all
1 = 2 ) 1 = 2 )
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+ _8tap y—zaz—a12

Y1 o N 5
X2+:a2;a10, X5=a2_2a10:
ygza?;‘;all, y§=a3_2all,
X§:a342ra9’ X§=a3;a9,
y,&\¢=<'314+26110, y?7=<'314—25110,
XZ=a4-£a8, XZ:a4;a8,
vi =525, yp =520

+_SBTy - B
-2 ™

+ dg + ag - dg —ag
ySZTI y5:T

and
X =86, Y = a7
Therefore, the matrix My is given by

1 1 1 1 1 1 0 0 0 0 0
My =X X2 X3 X5 X 8 -y1 Y2 Y3 Y4 Vs |

Vi Y2 Y3 Vi Y5 a7z X X3 X3 X3 X
Applying E o (2; 2) and E;qy(3; 2) to Myy, it becomes

1 1 1 1 1 1 0 o0 0 0 0
MI=|1y 2X 39 48 57 66 2z 3Y 4X 59 68|,
2Z 3Y 4X 59 68 77 1Y 2X 39 48 57
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where “X, Y, Z” stand for “10, 11, 127, respectively, and we employ the
notation, which abbreviates —as +ag as 59, for example. By applying

Ecotumn (3. 6; =1), Ecotumn(4: 5 =1), ..., Ecotumn(L 2; —1) successively to M2,
we see that M is similar to the following matrix:
1 0 0 0 0 0 0O 0 0 0 O
ML ~|1y T12XY 239X 3489 4578 5667 2Z 3Y 4X 59 68|
2Z 23YZ 34XY 459X 5689 6778 1Y 2X 39 48 57
At this point, we notice that the rank of Mt depends only on the

following matrix M 2 which is obtained from the last matrix by deleting its

first row and column:
M2 [12XY 239X 3489 4578 5667 2Z 3Y 4X 59 68
23YZ 34XY 459X 5689 6778 1Y 2X 39 48 57)
(2.2)

Starting with this matrix, we continue to apply several elementary
transformations as follows:

M2 - [12XY 230X 3489 4578 4668 2Z 3Y 4X 59 68
23YZ 34XY 459X 5689 5779 1Y 2X 39 48 57

(<= by Ecorumn(4, 5; 1))
_(12XY 239X 3489 4578 46 2Z 3Y 4X 59 68
23YZ 34XY 459X 5689 79 1Y 2X 39 48 57

(< by Ecoumn(20, 5; 1))
_(12XY 239X 3489 3579 46 2Z 3Y 4X 59 68
23YZ  34XY 459X 468X 79 1Y 2X 39 48 57

(< by Ecoumn(3, 4: 1))
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_(12XY 239X 3489 37 46 2z 3Y 4X 59 68
23YZ 34XY 459X 6X 79 1Y 2X 39 48 57

(< by Ecorumn(9, 4 1))

_ 12XY 239X 248X 37 46 2Z 3Y 4X 59 68
23YZ 34XY 359Y 6X 79 1Y 2X 39 48 57

(< by Ecolymn(2, 3 1))

~(I2x? 239X 28 37 46 2Z 3Y 4X 59 ESJ

<) X|

23YZ 34X Y 6X 79 1Y 2X 39 48 57

(63}
(o}

(<= by Ecoumn(8, 3;1))
_(12XY 139y 28 37 46 2Z 3Y 4X 59 68
23YZ 24XZ 5Y 6X 79 1Y 2X 39 48 57
(<= by Ecoumn (@ 2; 1))
_(12XY 19 28 37 46 2Z 3Y 4X 59 &8
23YZ 4Z 5Y 6X 79 1Y 2X 39 48 57
(<= by Ecoumn(7: 2 1))
_ 29XY 19 28 37 46 2Z 3Y 4X 59 68
234Y 4Z 5Y 6X 79 1Y 2X 39 48 57
(< by Ecoumn(2, 1, -1))
_(249Y 19 28 37 46 2Z 3Y 4X 59 68
249Y 4Z 5Y 6X 79 1Y 2X 39 48 57
(<= by Egoumn(8, 1; -1)). (2.3)
Let M3 denote the last matrix, and M3 (resp. M3) denote the first

(resp. second) row of M 3. Then the rank of M2 is smaller than or equal to
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one if and only if there exists a pair (s, t) € R? - {(0, 0)} such that
sM{ +tM3. =0, (2.4)

where the right hand side denotes the zero vector of length ten. We divide
our argument into two cases accordingas t = 0 or t = 0.

Case (A): t = 0. We may assume that t = 1. The coefficient matrix C of
the simultaneous equation (2.4) with respect to aq, ..., 8, is found to be

0 s—1 0 s-1 0 0 0 0 -s+1 0 —-s+1 0
s 0 0 1 0 0 00 s 0 0 -1
0O s 0 0 1 0 0 s 0 0 -1 0
O 0 -s 0 0 1 s 0 0 -1 0 0
O 0 0 -s 0 s 1 0 -1 0 0 0

€=l1 %5 0 0 0 000 0 0 4 s
0 1 -s 0O 0 00 0 -1 s 0
O 0 1 -s 0 0 00 -1 s 0 0
0 0 0 s 0 0 -1 s 0 0 O
O 0 0 0 1 -s-1s 0 0 0 0

Let ¢j, 1<i <10, denote the ith row of the matrix C. Then we see that
c3—-C=(-1000100s000 -9),
Cp—C=(-s000s 001000 -1

and hence
C3—Cg—5(Cp—Cg)=(s>°-1000 -s2+1 00000 0 0)
=(s>-1)1000-100000 0 O0)
Similarly, we have the following identities:
Cs—Cr—5(cg—Cp)=(s>-1)(0 1 000 100 0 0 0 0),

Cs—Cg—5C,=(s>-1)(0 01000 -100 0 0 0),
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—Cg +5(C5 +¢19)=(s>-1)(0 0 01000 -100 0 0),
Cs—Clg+5Cg =(s>-1)(0 0 0 01000 -10 0 0),
—cq+5(Ccs —cg)=(s>-1)(0 00001000 -10 0),
—c3+c10+s(c4—c7)=(52—1)(0 000001000 -10),
—Cy+Cg+5(C3—Cg)=(s>-1)(0 00 0000100 0 -1
It follows that when s? = 1, we have
a = aj, whenever i = j (mod4)
for any 1<1i, j <12. Accordingly, by setting as = a{, ag = ay, ..., the
equation CT(a; a, --- app) = 0 is reduced to the equation
cT(y a az a4)=0,

where

Namely, we arrive at the simultaneous equations
4 —ay +az—ay = 0, (25)
a; —sap —ag +sa, = 0. (2.6)

We notice that equation (2.5) implies that the four points p; = (a;, j.1),
1<i <4, constitute a square by Proposition 2.1. By periodicity, we see that
the sequence {p;} rotates along the square with vertices p;, p,, Pz, Pa-
On the other hand, if a, = a4, then equation (2.6) holds for any s under the
condition that a; = ag. In this case, (2.5) implies that a; = a, too, hence all
of @ (L1<i < N) are one and the same, and the M-graph consists of only

one point. Therefore, except for this trivial case, we have a, # a4, and (2.6)
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implies that
d — a3

S = .
dy —dy

Next, we deal with the cases when s2 =1,

Case (A; 1): s =1. In this case, the matrix C becomes

0O 0 0 0 00 0 0 0 0 0 O
10 0 1 0 0 0 0 1 0 0 -1
0 -1 0O 1 0 0 1 0 0 -1 0
0O 0 1 0 0 1 1 0 0 1 0 0
O 0 0 4 0 1 1 0 -1 0 0 0
=1 420 0 0 0 0 0 0 0 4 1]
0o 1 -1 0 0 0 0 0 0 -1 1 0
0 0 10 0 0 0 -1 1 0 0
0 0 1 -1 0 0 -1 1 0 0
0 0 O 1 1 11 0 0 0 0

hence the equation C" (a; a» -+ &) =0 is equivalent to the simultaneous
equation

d +p =ay + 1 =+ =ag + ay.

Case (A; -1): s = —1. In this case, the matrix C becomes

o -2 0 -20 0 0 0 2 0 2 0
1 0 0 1 0 0 0O O -1 O -1
o 1. o0 0 1 0 O -1 0 O 1 O
o o121 0 01 -1 0 0 -1 0 O
C - o 0 0o 1 01 1 0 -1 0 0 O
11 0 0 0 0O O O 0 1 -1
o0 11 0 0 O O O O -1 -1 O
o 0 1.1 0 0 O O -1 -1 0 O
o 0 0o 1120 0 -1 1 0 0 O
o o o 06 1.2 1 -1 0 0 0 O
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Since the matrix is antisymmetric with respect to the transformation
aj > aggi (L<i<6), theequation C'(a; a, -+ a,) =0 is reduced to

the equation C'"(by by --- bg) =0, where by =a — a3 ; (L<i<6)and

0 -2 0 -2 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0o 0 1 0 o0 1
|0 0 0 1 0 -
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0O 0 0 1 1 0
o 0 0 0 1 1

The equations corresponding to the ith row with 2 <i <10 hold if and only if
by = by =bg = —by = bs = —Dg.
But the first row forces b, to be equal to —by. It follows that
by =by =bg =by =bs =bg =0,
which is equivalent to the condition that
8j = a3-j
holds for any i e [1, 6].

Case (B): t = 0. In this case, it follows from (2.4) that Mf’_ =0, which
is equivalent to the equalities

az = ay = a3,

a4 +az = 28.2.
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We record what we obtain in this subsection as follows:

Proposition 2.3. Let a = (a, ..., a;2) be a melody of length twelve, and
let pj = (a, aj;1), 1 <i <11 sothat M(a) = (py, ..., p11)- The ordered set
M (a) of points has a line of symmetry if and only if one of the following
conditions holds:

(1) aj = aj,4 forany i €[1, 8], and a; + a3 = a, + ay.

(2) ag+a;p =ay +a;; =+ = ag + ay.

(3) a =ayp, ap = a9, ..., ag = ay.

4) ag=ag=---=8p, g =a5 =48y, ag=ay =aq1 and a +ag =
2a,.

3. Symmetry of Melodies of Arbitrary Length

In this section, we generalize the argument in the previous section,
especially that for the melodies of length twelve, and obtain a complete
classification of melodies whose M-graphs have lines of symmetry. We
divide our argument into two cases according to the parity of the length. In
each case, our final classification result is stated at the end of respective
subsection.

3.1. Melodies of length N = 2m

Let a=(ay, ..., ayy) be a melody of length 2m with m > 3, and let

pi = (g, aj41), 1<i<2m-1sothat M(a) = (py, ..., Pom_1)- In this case,

the coordinates x;*, vi", X, yi (L<i<m-1) are given by

+ _ 8 +aymj — _ @ —am-j
xt =3 22mol oy A Tam=l

' 2 1 2

+ _ 41+ Aman — _ Q41 — Am41-i
yl - 2 ’ yl - 2

and

Xm = 8m,  Ym = Qm1-
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Therefore, the matrix Mo,,_1 is given by

1 1 .- 1 1 0 0 0
Momg =| X X3 Xm1 @m Y1 Y2 ~Ym-1 |-
i Y2 v Yma Amu X X Xm—1

Apply Erow(2; 2) and E; gy (3;2) to Myy,_1 and call the resulting matrix
ML Its (i, j)-entry (Ml)ij is given by

1, 1<j<m
(Ml)lj:{
0!

m+1l<j<2m-1,

L (j, 2m - j), 1< j<m,
(M%), = .
(j-m+L3m+1-j), m+l<j<2m-1
and

( 1) (j+L2m+1-j), 1<j<m,
ML), =
°) (Jj—m, 3m-—j), m+1<j<2m-1,
where we employ the notation, which abbreviates a —a,m_4 as (1, 2m —1)

for example. By applying the elementary transformations

Ecolumn(M =1, m; =1), Ecopymn(m =2, m =1, 1), ..., Ecopymn @ 25 1)

successively, we see that ML is equivalent to the matrix MY whose G, j)
entry (Ml')ij is given by

: 1, j=1
(M7 = {o, 2<j<2m-1 G
(1, 2m - 1), i=1

(m? )2J (j—-1j,2m—j,2m+1—-j), 2<j<m, (3.2)

(j—-m+13m+1-j), m+1<j<2m-1
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and
(2, 2m), i=1

(Mfkj= (j,j+L2m+1-j,2m+2-j), 2<j<m, (3.3)
(j-m, 3m-j), m+1<j<2m-1.

It follows from (3.1) that the rank of M r depends only on the 2 x (2m — 2)
matrix M2, which is obtained from M r by deleting its first row and column.

Its (i, j)-entry (MZ)ij is obtained simply by replacing j by j+1 in (3.2)

and (3.3):
(I!J+112m_1_1;2m__])’ 1SjSm—l,
M)y =4 . _
(j—-m+23m-j), m<j<2m-2,
(MZ) (j+L j+2,2m—j,2m+1-j), 1<j<m-1
2-:
D ol-me13m-jo1), m<j<2m-2

Apply Ecoymn(J =1 J;1) and Egopymn(j +m =1, j;1) for each je
[2, m —1] to the matrix M?, and we call the resulting matrix M ' Then

the (1, j)-entry M12J for j e [2, m —1] is computed to be

ME = j+L2m-1-j,2m- )+ (G-1 j,2m—j, 2m+1-])
+(j+L2m+1-j)
=(j-L2m-1- ).
Similarly, we have
M3 =(j+1 j+2 2m—j, 2m+1- )
+(Jj+L2m+1-j,2m+2—j)+(j, 2m—j)

=(j+2,2m+2-j).
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Thus, we see that the whole entries of M 2" are given by
(1,2,2m-22m-1), =1,
MP =1(G-1 2m - j-1), 2<j<m-1,
(j—-m+23m-j), m<j<2m-2
and
(2,3, 2m -1, 2m), j=1
M3 =1(j+2 2m+2- ), 2<j<m-1,
(j-m+1L,3m-j-1), m<j<2m-2.
When m > 4, we apply Egoumn(2, 1 -1) and Ecoiymn(m +2, 1 -1) to

the matrix M2, which is a 2 x (2m —2) matrix and has the (m + 2)th

columnsince m + 2 < 2m — 2 for m > 4. Then the entries of the first column
become as follows:

ME = (1,2 2m-2 2m-1)— (1, 2m-3) - (4, 2m - 2)
=(2, 4, 2m -3, 2m -1),

M3 = (2, 3, 2m —1, 2m) — (4, 2m) — (3, 2m — 3)
= (2, 4, 2m -3, 2m - 1).

On the other hand, when m = 3, we apply only E.qumn(2, 1, -1) to the

matrix M 2’, then we see that
M121 =(1,24,5)-(1,3=(2 4, 3,5),
M3 = (2,3,5,6)- (4, 6) = (2,3,3,5)

Therefore, in any case, the entries of the resulting matrix, which we call M 3,
are given by
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(2,4,2m-3,2m-1), j=1,
MP =1( -1 2m - j-1), 2<j<m-1,

(j—m+2,3m-j), m< j<2m-2,

(2,4,2m -3, 2m-1), j=1
M3 =4(j+2 2m+2- ), 2<j<m-1,
(j-m+L,3m-j-1), m<j<2m-2.

Let Mf (resp. MS.) denote the first (resp. second) row of M 3. Then the

rank of M3 is smaller than or equal to one if and only if there exists a pair
(s, t) € RZ - {(0, 0)} such that

sMP +tM3 =0, (3.4)

where the right hand side denotes the zero vector of length 2m — 2. Let c;,
1<i < 2m -2, denote the ith component of the vector on the left hand side
of (3.4). Then we have

¢ =5(2,4,2m -3, 2m-1)+t(2, 4, 2m -3, 2m - 1),
¢, = s(1, 2m - 3) + t(4, 2m),

cg = (2, 2m — 4) + t(5, 2m - 1),

cj=s(i-L2m-1-j+t(j+2,2m+2-j),(2< j<m-1),

Cmg =S(M=2, m)+t(m+1 m+3),
Cm = S(2, 2m) + (1, 2m - 1),

Cma1 = (3, 2m —1) + t(2, 2m - 2),
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Cmik =S(K+2,2m-k)+t(k +1, 2m-1-k), (0 <k <m - 2),

Com—2 = S(M, m+2)+t(m-1 m+1).
We divide our argument into two cases accordingas t =0 or t = 0.

Case (A): t # 0. We may assume that t = 1. Then for any j e[3, m-1],

we have

¢j ~Cmoarj =(s(i-L2m-1- )+ (j+2 2m+2-j))
~(s(J-L2m+3-j)+(j-22m+2- )
=-@j_p +aj.2 +SAm_1j — SAmi3-j- (3.9)
Similar vectors can be obtained for any j e [2, m — 3] as
Cj —Cmitej = (I -1 2m-1- )+ (j+2,2m+2~ )
~(s(j+3.2m-1-j)+(j+2.2m-2-j))
=—-Sajq +3Saj.3 +8m-2-j — R2m+2-j-
By replacing jby j —1 here, we see that
Cj-1~Cm+j = —SAj_p + SAji2 + Am_1—j — Agm+3- (3.6)

holds for any j €[3, m —2]. Combining (3.5) and (3.6), we find that the
equalities

2
(Cj —Cmy1rj) —S(Cj1 —Cmsj) = (5° —D(aj_2 — aj;2),

2
=S(Cj — Cmy1+j) + (Cj1 — Cmsj) = 1= 57)(Aom-1—j — B2m+3-j)

hold forany j e [3, m — 2]. It follows that when s® = 1, the equalities
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aj_2 = aji2;
am-1-j = A2m+3-j

hold for any j € [3, m —2]. It follows from (3.7) that

d; = ag,
dp = ag,
8m-4 = am
and it follows from (3.8) that
8m+1 = Amy5,
m+2 = Am+6:
am-4 = am-

In order to fill the gap, we employ the equality

Cm-1 — Com—4 = (—8m_3 + @my1) + S(@m — Amy4),
which comes from (3.5) with j = m —1 and the equality

Cn_p =s(M—=3 m+1)+(m, m+4)
= S(-ap-3 + 8n+1) + 8n — Amia-

These imply the following equalities:

Cm-1~Com-4 = SCp—2 = (52 —1)(am-3 — ams1),

S(Cm_1 ~ Com-4) — Cm_2 = (5% =1)(ap — ap.4)-
Therefore, when s2 2 1, we have

m-3 = 8m+1s

am = 8m44-

77

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Furthermore, in order to fill the final gap, we use Cp_1 + Com_2 and Cop_3,
which are expressed as

Cm1 + Com_2 = (S(M =2, m)+ (M +1, m +3))
+(s(Mm, m+2)+(m -1, m+1))
= S(-am-2 + 8my2) + (@m-1 — 8m+3),
Com-3 = S(-@m-1 + 8my3) + (@m_2 — @my2)-
Therefore, we have
$(Cm_1 + Com—2) + Cam_3 = (1= 5%) (8m_ — am42),
(Cm—1 + Com—2) + SCam_3 = (1 = 5°) (am_1 — 8m.3).
It follows that when s = 1, we have
am-2 = 8m42, (3.13)
m-1 = 8m43- (3.14)
Combining (3.9)-(3.14), we obtain the following complete periodicity:
Proposition 3.1. When s #1, the equality
aj =aji4
holds for any j € [1, 2m — 4].

It follows from this proposition that the components ¢j, 1< j<2m-2,
can be expressed solely by &, a,, az, a4. Asfor ¢; = (s -1)(2, 4, 2m - 3,

2m —1), we note that the set {2m — 3, 2m — 1} coincides with the set {1, 3}
modulo four. Hence, it is expressed as

q=(s-1)(-a +ay —az +as).
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As for ¢ with j e [2, m 1], it follows from the expression
cj=s(j-L2m-1-j)+(j+2 2m+2-j)
that the differences of the indices of both terms on the right hand side are
equal to 2(m — j), which is congruent to 0 modulo 4 when m = j (mod 2).

Hence, if m = j (mod 2), then Cj always vanishes. On the other hand, when

m # j (mod2), we see that

) {J_r(al—saz —az+sa,), if m=0(mod?2),
| =

t(sy +ay, —sag—ay), Iif m=1(mod?2).

Next, we consider the case j e [m, 2m — 2] so that
cj=s(j-m+23m-j+(j-m+13m-1-j).

Note that the differences of the indices of both terms on the right hand
side are equal to 4m — 2(j +1), which is congruent to 0 if j =1 (mod 2).

Hence, in this case, Cj vanishes. On the other hand, when j =0 (mod 2),

we see that

~[t(ag —sap —ag +sa4), if m=0(mod?2),
V7 \#(say + @, —sag —ay), if m=1(mod2).

Thus, the simultaneous equation (cy, €5, ..., Coy;_2) = 0 is reduced according
to the parity of m to the following two equations:
When m is even,
a —ap+ag—ay =0,
a —Say —ag +say =0.
When m is odd,

al—a2+a3—a4=0,
sa; +a, —sag —ay =0.
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Therefore, when m is even, the simultaneous equation has the same form as
the one obtained in Subsection 2.3, hence the sequence {p;} rotates along the
square with vertices p;, pp, Ps3, Pg, and except for the trivial case when

a; =--- = apy, We have

a1 —ag

ap —ay

Even when m is odd, the simultaneous equation can be solved similarly
and we see that the sequence {p;} rotates along the square with vertices py,

P2, P3, Ps too and except for the trivial case when a; = --- = app,, we
have
as—a
s=4_22
a —ag

Next, we deal with the cases when s2 =1,

Case (A; 1): s=1. In this case, let b, = ay + ayy41_x for any k e
[, m]. Then all of the components c;, j € [L 2m — 2] can be expressed in

terms of by as follows:

Cl=0,
Cp = by +by,
C3 = —hy + b,

Cm-2 = ~bm-3 + by,
Cm—1 = —Bm_2 + b,

Cm = Dby — by,

Cm+1 = by — by,

Com—2 = b1 — by.
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Therefore, the simultaneous equation (cq, €5, ..., Cy_2) = 0 is equivalent to
the conditions

namely,
) +aym =ap +aym_1 = = An T Anl

Case (A; -1): s = —1. Inthis case, let dy = ay —apy 1k forany k
[L, m]. Then all of the components c;, j e [L 2m — 2] can be expressed in

terms of dy as follows:
CL = —2(d2 + d4),
Co = dl + d4,

C3 = d2 +d5,

Cm—2 = dp_3 +dp,
Cm-1 = dm_2 —dm,
Ch = dl + d2,

Cm+1 = dp +d3,

Com—2 = dm_1 + dp.
The condition that cj = 0 holds for any j €[2, 2m - 2] is equivalent to the
equalities
dy = —dy = dg = = (<)"d,,,.

But the first condition ¢; = 0 forces d, to be equal to —dy4. It follows that
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which is equivalent to the condition that
8 = A2m+1-i
holds for any i e [1, m].
Case (B): t = 0. In this case, the condition becomes as follows:

Co: (2,4,2m-3,2m-1)=0

and
C: (1,2m-3) =0,
C,: (2,2m -4) =0,
Cmz: (M-2,m)=0, (3.15)
Cy: (2,2m) =0,
Cy: (3,2m-1)=0,
Cn: (M, m+2)=0.

Here for ease of description below, we name each equation as is indicated.
We note that the equations Cq, ..., C,,_» can be expressed as

aj = ayy_o_j forany i e [1, 2m - 3] (3.16)
and that the equations C,, ..., C, can be expressed as
aj = asm,o_j forany i e[2, 2m]. (3.17)
We divide our argument into two cases according to the parity of m.

Proposition 3.2. When m is even, the simultaneous equation (3.15) holds
if and only if

ay =a4 = =aym,
& =ag == An-3

az =ay = = ayy-1-
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When m is odd, it holds if and only if

a =ag = - =am-1
ay =ag = =am,
a4 =a8g = =dym-2

Proof. In either case, we notice that
aj =ajp4, 1< j<2m-4.
This is because the equality (3.16) with i = j provides us with the equality
aj = am-2-j

and the equality (3.17) with i = 2m — 2 — j shows that

am-2-j = &2m+2-(2m-2-j) = Aj+4-
Furthermore, putting i = m in (3.16) and (3.17), we have

am = 8m-2 = 8m42-

Therefore, the “only-if” part of the proposition is shown to hold. The “if-
part” is deduced from the following observation. The number of equations in
(3.15) is equal to (m —2)+ (m —1) = 2m — 3, which is three less than the
number of unknowns. Hence, the dimension of the space of solutions of
(3.15) is at least equal to three. Thus, the conditions given in the statement of

the proposition are sufficient for the validity of (3.15). This completes the
proof. O

Combining the equality Cy:ay+a4 —ayy_3—aym-1 =0 and
Proposition 3.2, we obtain the following:

Proposition 3.3. When m is even, the simultaneous equation (3.15)
together with Cg holds if and only if

ay =84 = =8m,

a4 =ag = =3dym-3;
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dzg =ay = = ayy-1
al + a3 = 2a2.

When m is odd, the simultaneous equation (3.15) together with C, holds if
and only if

8 =az =--=am-1,
ay =8ag = =aym,
g =ag =" =dym-2,

dy +ayg = 26.1.

Thereby, we complete our classification of melodies of even length
whose M-graph has lines of symmetry. The result is as follows:

Theorem 3.1. Let a = (ay, ..., apyy) be a melody of even length 2m with
m>3 and let p; =(aj, aj,1), 1<i<2m-1so that M(a)=(py, .., Pom_1)-

The ordered set M(a) of points has a line of symmetry if and only if one of
the following conditions holds:

(1) aj = aj 4 forany i e[l 2m—4] and a; + a3 = a, + a4.
(2) g +aym =@y +agm-1 =--- = 8y + Amy1.

() a; = gy, @ = @1, - 8m = Amy1-

(4.1) When m is even,

az = a7 = ayp

and a; + ag = 2ay.
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(4.2) When m is odd,

ay =ag = -2
and a, + a4 = 2.
3.2. General case when N =2m +1

When the length of a melody is odd, the process of column-reducing is
similar to the one employed in the even case. Here arises, however, a
difficulty, which prevents us from obtaining the periodicity for the fiber at

generic (s, t) e PL. We need additional consideration to reach our conclusion.

Let a = (ay, ..., aoy41) be a melody of length 2m +1 with m > 3, and

let p; = (aj, aj,1) forany i € [, 2m] so that M(a) = (py, ..., Pom). In this

case, the coordinates x;", yi", xi', y; for i e [1, m] are given by

xr= it Amai - & T 8mei

i 2 ) 1 2 )

+ _ 8i41 + 3mi0-j — _ %41 — Omy2i
yl - 2 ’ yl - 2

and the matrix M, is given by

Mom =X X3 = Xm =y Y2 - “Ym |
YioY: o YmoX X Xn

Apply Eow(2; 2) and E;qy(3; 2) to Moy, and call the resulting matrix
ML The (i, j)-entry (Ml)ij is given by

1, 1<j<m,
(Mlhj: .
0, m+1<j<2m,
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j,2m+1-j), 1< j<m,
(M), = ( :
(j m+1 3m+2-j),

and

(j+L2m+2-j), 1<j<m,
Mgy =90 |
(j-m3m+1-j), m+1<j<2m.
By applying the transformations

Ecolumn(M =1, m; —1), Ecopymn(M — 2, m =1; -1), ..., Ecolumn(@ 2; 1)

successively, we see that ML s equivalent to the matrix MY whose @, j)
entry (Mly)ij is given by

! 1’ J:ly
(M%) _{0, 2<j<2m,

& 2m),
(M), =1(G -1 j.2m+1-j 2m+2- ),

(j—m+13m+2-j),

and

(2, 2m +1),
(MY )31 (b i+L2m+2-j,2m+3-j),
(J—m,3m+1-j),

At this point, we notice that the rank of MY depends only on the 2 x
(2m —1) matrix M 2. which is obtained from M?* by deleting its first row

and the first column. Its (i, j)-entry (M 2)ij is given as follows:

M?) ¥Ij+12m—L2m—j+D, 1<j<m-1,
hj =

(j-m+2,3m+1-j), m< j<2m-1,
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(jJ+L j+2,2m+1-j,2m+2-j), 1<j<m-1

(Mz)zj :{

Apply Ecoymn(J =1 J;1) and Egopymn(j +m =1, j;1) for each je

(j—-m+13m-j), m< j<2m-1.

[2, m —1] to the matrix M? and we call the resulting matrix M?. Then the
@, j)-entry MfJ for j €[2, m —1] is computed to be
MP =(J, j+L2m—j, 2m+1-j)
+(j-L j,2m+1-j,2m+2 - j)
+(j+L2m+2-j)
=(j-12m - j).
Similarly, we have
Mg'_ v . e
5] =(j+1 j+2,2m+1—-j,2m+2—j)
+(J, j+L2m+2-j,2m+3-j)
+(j,2m+1-j)
=(j+2,2m+3-j).
Thus, we see that the entries of M 2" are given by
(1, 2, 2m -1, 2m), j=1
MF =1(j -1 2m - j), 2<j<m-1,
(jJ=-m+2,3m+1-j), m<j<2m-1

and
(2,3 2m,2m+1), j=1
M3 =1(j+22m+3-j), 2<j<m-1,

(j-m+1,3m-j), m<j<2m-1.
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Furthermore, applying Ecolumn (2, 3, —1) and Ecojymn(m + 2, 1; -1) to the

matrix M 2’, the entries of the first column become as follows:
MZ = (1,2, 2m -1, 2m) - (1, 2m — 2) - (4, 2m —1)

= (2, 4, 2m — 2, 2m),

M2 = (2,3 2m, 2m +1)— (4, 2m +1) - (3, 2m — 2)
= (2, 4, 2m -2, 2m).

Therefore, the entries of the resulting matrix, which we call M 3, are given
by
(2, 4, 2m - 2, 2m), j=1
MP =15 -1 2m - j), 2<j<m-1

(j=-m+2,3m+1-j), m<j<2m-1,

(2,4,2m-2,2m), j=1,
M3 =4(j+22m+3-j), 2<j<m-1

(j-m+1,3m-j), m<j<2m-1.

Let Mf’. (resp. Mg’.) denote the first (resp. second) row of M3, Then

the rank of M2 is smaller than or equal to one if and only if there exists a
pair (s, t) e R? - {(0, 0)} such that

sMP +tM3 =0, (3.18)

where the right hand side denotes the zero vector of length 2m —1. Let c;,
1<i <2m -1, denote the ith component of the vector on the left hand side
of (3.18). Then we have
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¢, = 5(2, 4, 2m =2, 2m) + t(2, 4, 2m — 2, 2m),
¢, = s(1, 2m - 2) + t(4, 2m + 1),
c3 = 5(2, 2m - 3) + t(5, 2m),

ci=s(i-L2m-j+t(j+2,2m+3-j),(2<j<m-1),
Chmg =s(M=-2, m+1)+t(m+1 m+4), (3.19)
Cm = S(2, 2m +1) + t(1, 2m),

Cma1 = S(3, 2m) +t(2, 2m - 1),

Cmak =S(k+2,2m+1-k)+t(k+1 2m-k), (0 <k <m-1),

Com_g =S(M+1 m+2)+t(m m+1).
We divide our argument into two cases accordingas t = 0 or t = 0.

Case (A): t # 0. We may assume that t = 1. Then forany j e[3, m-1],
we have

Cj —Cmezsj = (S(j =L 2m = j)+(j +2 2m+3 - }))
~(s(j-L2m+4-j)+(j-22m+3-j))
=—aj_p +aj42 + SAym_j — SAomi4—j- (3.20)
Similar expressions can be obtained for any j € [2, m — 2] as
Cj —Cmiarj = (S(A =L 2m =)+ (j+2,2m+3-]))

—(s(j+32m-j)+(j+2 2m-1-j))

=—Saj1 +Saji3+am-1-j — &2m+3-j-
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Therefore, by replacing j by j —1, we see that
Cj-1 = Cmtj = —S@j_2 +88j,2 + Am_j — Am44— | (3.21)

holds for any j e [3, m —1]. It follows from (3.20) and (3.21) that for any

j € [3 m—1], we have
2
(Cj —Cm-3+j) —S(Cj1 —Cmyj) = (s° = 1)(aj_2 —aj;2),
2
—S(Cj — Cm—3+j)+ (Cj_l - Cm+j) = (1_ S )(aZm—j - a2m+4—j)-

Therefore, we see that when s? = 1, the equalities

aj_z = aj+2, (322)

Am-j = Am+4- | (3.23)

hold for any j € [3, m —1]. It follows from (3.22) that

d1 = asg,
dy = dg,
Am-3 = dm41

and it follows from (3.23) that
Am+1 = @m+5;

Am+2 = Am+6>

aym-3 = Am+1-

However, we want to fill the gap, we notice that the same strategy as is
used in the case when N is even, does not work. For this reason, we introduce
the two kinds of alternating sums and auxiliary sums according to the parity
of m:
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Definition 3.1. When m is even, we let

2m-1

dr%ven _ Z (_1)i_1ci:
i=1

even

€m =C +Cpn +Cny2 — Com-3-

When m is odd, we let

dd m 4 2m-1 )
dot = > () e+ > (e,
i=1 i=m+1

even
€m =C2 —Cm +Cmy2 + Com-3-
Then we can show the following:

Lemma 3.1. Notation being as above, we have

A" + € = ~8m_p + Say + any2 — SA. 4,
odd odd
dn™ +em =am_2 — S8y — 82 + SAma-

91

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Proof. Let C, be a (2m —1) x (2m + 1) -matrix whose (i, j)-entry is the

coefficient of a; in ¢j. Then it follows from (3.19) that its jth column A;

(j €[4 2m +1]) is specified by the following:

A =—se) + e,

Ay = (s—1)e; — se3 — Sy + €mat.

Ag = —S€4 — Semy1 + €m.2,

Ay =(s—1)ep + e —se5 — Sepyp + €43,

As = €3 —S€g — Sem.3 + €4,
Ag = €4 —S€7 — Sem4 + s,

Am—2 = €m_4 — Sem_1 — S€m_4 + €23,

{Am—l = €m-3 — S€am-3 + €2m_2,
Am = €m_2 — Sepm_2 + €am_1,

(3.30)

(3.31)

(3.32)
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Ani1 = (s +1)epm_q — (s +1)egm_y, (3.33)

{Am+2 = Sem—_2 — €om—2 *+ S€am_1, (3.34)
Am+3 = S€m_3 — €xm—3 + S€am_2,
Am+a = Sem_4 — €m_1 — €2m_4 + SE€m_3,
= € £ —Em_ 5 — €y + Sy 4,
Am+5 m-5 m-2 2m-5 2m-4 (3.35)

Aom-3 = €3 — €5 — €mi3 + Semy4,

Pom-2 = (1 —5)€ + €y — €5 — €mp + Sepy3,

Pom-1 = —€4 — €m1 + Sem.2, (3.36)
Pom = (L —s)e; — €3 — €y + Sy,

Pom+1 = —€2 + Seny.

First, we deal with the case when m is even. Let [dy®", aj], 1< j<
2m +1, denote the coefficient of a;j in dn". The first equality in (3.31)
shows that [dy®", ag] =0, since m+3=1(mod2), m+4 =0 (mod?2),
hence Ag becomes equal to zero if we put e = (—1)i_1 formally. In a similar
vein, it follows from (3.31) that [dy*", aj] =0 for every je[5 m -2].
Arguing similarly with the equalities in (3.35), we see that every coefficient
of [dn®", aj]=0 forany je[m+4,2m-3]. For the remaining coefficients,

it follows from (3.30), (3.32)-(3.34) and (3.36) that we have

[dn™" ay]=s -1 [dy" ap]=s, [dn" ag]=-1 [dp™" as]=s-1,
[dn™", gl =-s, [dn™" ag]l=s, [dy*" apa]=0,

[dn™", ami2] =1 [dn™, amis] = -1,

[dn®", aom_2]=1-5, [dn*", agmal = s,

[d8 @y ] =1 [dEY", apym,q]=1-s. (3.37)
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On the other hand, it follows from the definition (3.27) that

even
€m =0 +Cy +Cni2 —Com-3

= s(—ay + aym_2) + 34 — Am1

+5(-az + azmy1) + 81 — Az

+8(—ag + apm-1) + a3 — am_2

—(s(-am—1 + 8m44) + @n_2 — Am3)
=(-s+1)ay —say +azg + (-s+1)ay,

—8m-2 +Sdm_1 + 8m4+3 ~ S8m44

+(s —Dagm_2 + Sagm_1 — am + (S —1agms1-

Combining this with (3.37), we find that

A" +em " = —am_2 +Sa;m + Amy2 — SAni4,

which is to be proved.

The case when m can be similarly dealt. The point is that the signs of the

latter half of d°% are opposite to those of dE'®" and hence the coefficients
appearing in (3.31) and (3.35) vanish too as in the case m is even. O

Another useful equalities are as follows:
Lemma 3.2. Notation being as above, we have
Cm-1+Com-1 = —S8m-2 + @m + S8m42 — Amy4, (3.38)
Com-3 + Com—2 = 8n_2 + (=S +1)am_1 — sap
—ami2 + (S —1)ap 3 + samya. (3.39)
Proof. It follows from (3.19) that
Cm-1 + Com-1 = S(-8m_2 + 8m11) + Ams1 — Am+4
+8(=8m41 + Ame2) + Am — Amat

= —S8m_2 + 8m * Samy2 ~ Amyg.
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Similarly, it follows from (3.19) that
Com—3 + Com—2 = S(~8m_1 + @m+4) + Am_2 — 843

+8(—am + am43) + Amog — Amay2

am_p + (-s+1)aym_1 — say

—ams2 + (S —1)an.3 + Sami4,
which is to be proved.
Now we combine the two lemmas above and obtain the following:

Proposition 3.4. When m is even, we have

AN 1 g8 _s(c 1+ Copyq) = (52 -1)(am_2 — @m+2)

S(dr%\/en + e%ven) —(Cm—1 + Com-1) = (52 -1 (ap — am4a),

dny " +em ™" + (Com_3 + Com—2) = (-5 + 1) (a1 — @my3)-
When m is odd, we have

dd dd 2
d'® +em’ +S(Cp_g + Com1) = (-=5° +1)(am_2 — am2),

dd dd 2
S(dr?] + er?w )+ (Cm—1 + Com-1) = (=5 +1)(ay — an44),

dd dd
dpC +em’ —(Com-z + Com—2) = (s —1)(am_1 — am+3)-

Proof. When m is even, it follows from (3.28) and (3.38) that
d even even
m

+em - —S(Cm_1 + Com-1)

= (—8pm_2 + S8y + Ami2 — SaAmia) — S(=SAm_2 + Am + SAmu2 — Amia)

= (32 -D(am-2 — am+2)

and that

S(dr%ven + eﬁ]ven) —(Cm_1 + Com-1)
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= S(-am_2 + S&y + am42 — SAmia) = (~SAn_2 + &y + SAmi2 — Amia)
2
=(s* = 1)(am — am+a)-
Furthermore, it follows from (3.28) and (3.39) that

even even
dp +€m

+ (Com-3 + Com-2)
= (-am_2 + Say + Amy2 — SAm44)
+(am-2 + (=S +1)ap g — sam —amy2 + (S —L)amy3 + San14)
= (-s+1)(am-1 — ams3)-
When m is odd, it follows from (3.29) and (3.38) that

odd odd
dm +em +5(Cp_g + Com_1)

= (am-2 = S8m — 8my2 + Samy4) + S(=S8m_2 + 8y + SAmy2 — Amya)
_ 2
= (=" +D(am-2 — am2)
and that
dd dd
s(dm " +em )+ (Cmo1 + Com_1)
= S(am_2 — Sam — Amy2 + SAmyg) + (=SAm_2 + Am + SAmy2 — Ami4)
_ 2
= (=5 +1)(am — am14).

Furthermore, it follows from (3.29) and (3.39) that

odd odd
dm +em —(Com—3 + Com—2)

= (8m-2 — Sam — 8my2 + SAm4)
—(am_2 + (-s +Dap_3 —sap —an2 + (S —1)ayn,3 + San.4)
= (s -1)(ap-1 — am43)-

This completes the proof. O
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Combining (3.22), (3.23) with Proposition 3.4, we obtain the following:
Proposition 3.5. When s2 = 1 for any i € [1, 2m — 3], we have
8 = 844
It follows from this proposition that the components cj, 1< j <2m -1,
can be expressed solely by &, a,, as, ag. As for ¢; = (s —1)(2, 4, 2m — 2,
2m), we note that the set {2m — 2, 2m} coincides with {2, 4} modulo four.

Hence, c; is equal to zero. As for cj with j e [2, m —1], it follows from

(3.19) that

cj=s(J-L2m-j)+(j+2 2m+3-j).

Letting the value of pairs (m, j) run through Zﬁ, we find that there are

four cases into which Cj falls:

t(ay —(s+1)azg+sas), if (m, j)=(0,0),(0,1),(2,0),(2,1)(mod4),
t((s+1)a —say —ay), if (m, j)=(0,2),(0,3),(2,2),(2 3)(mod4),
(g —(s+1)ay +saz), if (m, j)=(L0),(13),(3,0),(3,3)(mod4),
t(sy +ag—(s+1)ay), if (m, j)=(@11), (1 2),(31),(32)(mod4).

Cj=

Next, we consider the case j e [m, 2m —1] so that
cj=s(j-m+2,3m+1-j)+(j—-m+1 3m-j).
This time the shapes of c; are classified as follows:

t((s+1)y —sap —ay), if (m, j)=(0,0),(0,3),(2,1),(2,2)(mod4),
t(ay —(s+1)ag+saq), if (m, j)=(0,1),(0,2),(20),(2,3)(mod4),
t(sy +ag—(s+1)ay), if (m, j)=(10),(13),(31) (3 2)(mod4),
(g —(s+1ay +sag), if (m, j)=(1), (1 2),(30),(3 3)(mod4).

Cj=

Thus, the simultaneous equation (cy, Co, ..., Com_2) = 0 is reduced according

to the parity of m to the following two equations:
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When m is even,

{(s +1)a; —sa, —ay =0, (3.40)

a, — (s +1)ag +say = 0.

When m is odd,

3 —(s+1)ay +sag =0,
sy +az—(s+1)ay = 0.

In any case, we can show the following:

Lemma 3.3. The points pj = (&, aj41), 1<i < N -1, rotate along the
square made of the first four points py, ..., pa.

Proof. We deal only with the case when m is even, since the odd case
can be treated similarly. It follows from (3.40) that

a=—a,+— a
175412 g1 %%

S
Ay = ———a, + ——ay.
3T 5412 T g1

Therefore, we find that
pL— P2 = (8 —ap, 8 —a3)

_dy -4
T os+1 (-1 s),

P2 — Pp3 = (ap — a3, az — ay)

dy —ay

= (s, 1),

s+1
P3— Pa = (a3 — a4, a4 — &)

dy —ay

= 1 -s),

s+1
Ps— P =(ag —ag, & —ay)

_% a4 o
s+l (=s, -1).
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Hence, the pair of adjacent sides p; — pj.1 and pj,1 — Pj,.» are transversal
for i e[, N —2]. Furthermore, the square of the length of every side is
computed to be

2
a, —a
- pal = (2534 62 )

hence the proof is complete. O

Next, we deal with the cases when s2 =1,

Case (A; 1): s =1. In this case, let by =ay + ayn,o_k for any k e
[, m +1]. Then all of the components cj, j e [1, 2m —1] can be expressed

in terms of by as follows:

C = 0,
Cy = —by + by,
C3 = —bz + b5,

Cm-2 = ~Pm-3 + by,
Cm-1 = —Pm_2 + b1,
Cm = by — by,

Cm+1 = bp — by,

Com-1 = bm — b1

Therefore, the simultaneous equation (cy, Cy, ..., Coy—1) = 0 is equivalent to
the conditions

by =by =+ = by,
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namely,
ap +8ymy1 = 2 + 8y = = am + Ay = 28y

Case (A; -1): s=-1. In this case, let dy = ay —apy.2_k for any
k € [1, m]. Then all of the components c;, j € [1, 2m —1] can be expressed

as follows:
C = —2(d2 + d4),
Co = dl + d4,

C3 = d2 +d5,

Cm-2 = Um-3 + dn,
Cm-1 = dm_2,
Cm = dl + d2,

Cms1 = dp +d3

Com—2 = dm_1 +dp,
Com-1 = dpy-

Therefore, we have

which is equivalent to the condition that

aj = adym+2-j

holds for any i e [1, m].
Case (B): t = 0. Letting (s, t) = (1, 0) in (3.19), we have

Co: (2,4,2m-2,2m)=0
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and

C: (1,2m-2) =0,
Cy: (2,2m-3) =0,

Chn2: (M=2,m+1)=0,
C,: (2,2m+1) =0,
Cy: (3, 2m) = 0,

(3.41)

Cmi: (M+Lm+2)=0.

Here for ease of description below, we name each equation as indicated. We
note that the equations Cq, ..., C;,,_o can be expressed as

aj = asm_1—j forany i € [1, 2m - 2]\{m -1, m} (3.42)
and that the equations C,, ..., C;,,1 can be expressed as

aj = ayms3_j forany i €[2, 2m +1]. (3.43)

Therefore, for any i [, 2m —3]\{m -1, m}, we have a; = ayy_1_i = @j4,
the latter equality is coming from (3.43). Thus, we have the periodicity

8 = a4, i€ll,2m-3\{m-1, m}. (3.44)

Furthermore, it follows from (3.43) that
m-1 = 8m+4, (3.45)
am = ame3 (3.46)

which will be used frequently later. We want to fill the gap in (3.44), namely,
to show that

Am-1 = 8m+3s (3.47)
am = Am+4- (3.48)

Note that these two are equivalent under the conditions (3.45) and (3.46).
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Therefore, we have only to show one of these equalities. We divide our
argument into four cases according to the value of m modulo four.

Case I: m =0 (mod4). We put m = 4k. It follows from (3.44) that
ay =8 = = A4k-2 = Q4k42 = 0 = Am-2-
Therefore, the equation Cy implies that
ay = agpy- (3.49)
On the other hand, it follows from (3.44) that
ag =ag =--- = ay, (3.50)
Qgk+4 = Bgksg =0 = . (3.51)

Since the leftmost side of (3.50) and the rightmost side of (3.51) coincide by
(3.49), we see that the rightmost side of (3.50) and the leftmost side of (3.51)
coincide, namely, we have

m = a4k = A4k+4 = Am44;

which shows the validity of (3.48). Thus, we obtain the full periodicity,
namely,

aj = aj,4 forany i e[l 2m - 3]. (3.52)
Case II: m=1(mod4). We put m = 4k + 1. It follows from (3.44) that
Ay =8 = =agk-2 = k42 = = -
Therefore, the equation Cy implies that
g = aym_2- (3.53)
On the other hand, It follows from (3.46) and (3.44) that
8m = 8m43 = Ao2m-2- (3.54)
Furthermore, it follows from (3.46) and (3.45) that

84 = 8m-1 = Am44- (3.55)
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Hence, combining (3.54), (3.53) and (3.55), we obtain

am = am+4, (3.56)
which is (3.48).

Case IlI: m =2 (mod4). We put m = 4k + 2. It follows from (3.44)
that

84 =ag ==k = k4 =0 = A2me
Therefore, the equation Cy implies that
dy = doyp—2- (3.57)
On the other hand, it follows from (3.44) that
ay = an, (3.58)
mi4 = A2m-2- (3.59)
Therefore, it follows from (3.57)-(3.59) that
an = Amia, (3.60)
which is (3.48).

Case IV: m=3(mod4). We put m = 4k + 3. It follows from (3.44)
that

Qg =ag =+ =g = k44 = = Am-2-
Therefore, the equation Cy implies that
ay = axym. (3.61)
On the other hand, it follows from (3.46) and (3.44) that
8m = 8m43 = am: (3.62)
Furthermore, it follows from (3.44) and (3.45) that

4y = a1 = Am44- (3.63)
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Hence, combining (3.61)-(3.63), we obtain
am = 8mi4,
which is (3.48).

Applying the above consideration, we obtain the following final
specification, which divides the variables into two mutually equal ones:

Proposition 3.6. The system of equations Cy and (3.41) holds if and
only if the periodicity
aj =44, i€ll,2m-3]
and the following conditions hold:
3 =ay, ag=ay, when m=0 (mod2),
 =a, ap=ag when m=1(mod2).

Proof. Case I: m =0 (mod 2). It follows from (3.43) that a; = aym41.

Combining this with the periodicity, we see that
a1 = am41 = A2

Furthermore, combining the equality a, = asy,_1, which follows from
(3.43), with the periodicity, we have

ag = dym-1 = ag-

Case II: m =1 (mod 2). It follows from (3.43) that two equalities a, =

aym_1, a3 = @y hold. These together with the periodicity imply that
a; = aym-1 = ag,
ap, = ayy = ag.
Moreover, our system of equations
Ci(0<ism-2), Cj(2<j<m+1)

consist of 2m —1 equations for 2m +1 unknowns a; (1< j <2m +1).
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Hence, the dimension of the solution space must be greater than or equal to
(2m +1) - (2m —1) = 2. We, however, have already found that there are
only two free variables in each case, and hence there cannot be further
reduction of the number of free variables. This completes the proof. O

Thereby, we complete our classification of melodies of odd length whose
M-graph has lines of symmetry. The result is as follows:

Theorem 3.2. Let a = (&, ..., asm41) be a melody of odd length 2m +1
with m >3 and let p; = (g;, aj41), 1<i<2m sothat M(a) = (py, ..., Pom)-
The ordered set M(a) of points has a line of symmetry if and only if one of
the following conditions holds:

(1) aj = aj,4 forany i e[1, 2m - 3] and

_say t+ay _ay +say N
(11) a = i1 a3 = 571 hold for some s € R\{+1}, when
m is even.
& +sa3 _ say + ag N
(1.2) ap = STl ay = 71 hold for some s € R\{t1}, when
m is odd.
(2) a1 + apmy1 = A +Aym =" = Ay + Anz2 = 2841

(3) & = am1, 82 = gm, - Am = A2
(4) a; = aj,4 forany i € [1, 2m - 3] and
(4.1) a; = ap, ag = a4, whenm is even.

(4.2) a; = a4, a, = ag, whenm is odd.
4. Examples of Symmetric Melodies

In this final section, we illustrate the results obtained in Theorems 3.1
and 3.2 by a few examples. The first subsection deals with melodies having
period four. In the second and the third subsections, we treat melodies of
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lengths twelve and eleven, respectively, with amazing symmetries. In each
figure, the dashed line signifies the line of symmetry of respective M-graphs.

4.1. Symmetric melodies with period four

The following graph is obtained by setting & =1, a, =2, azg =4 in
Theorem 3.1, (1) with m = 4:

\
\

P2, Pe
3
P17
D1
Ps
0 Py
y = =3x'+ 10

\

Figure4. M(1, 2, 4, 3,1, 2, 4, 3): Theorem 3.1, (1) with m = 4.

The next two graphs are examples of Theorem 3.1, (4.1) with m = 4,
where we set &y =1, a, = 2, and of Theorem 3.1, (4.2) with m = 3, where

a =2 a=0L
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h

>
Il
(S

Pa

Figure5. M(1, 2,3, 2,1, 2, 3, 2): Theorem 3.1, (4.1) with m = 4.

P3

P2 P4

P11 D5

X=2

Figure 6. M(2, 1, 2, 3, 2,1): Theorem 3.1, (4.2) with m = 3.

The following two graphs are examples of Theorem 3.2, (1.1) with
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m = 4, where we set a, =1, a4 = 3, s = 2, and of Theorem 3.2, (1.2) with

m=3, where gy =1, ag=3, s=2:

Figure 7. M(5/3,1, 7/3, 3,5/3,1, 7/3, 3, 5/3): Theorem 3.2, (1.1) with m = 4.

y=-2x+6

Figure 8. M(1, 7/3, 3,5/3,1, 7/3, 3): Theorem 3.2, (1.2) with m = 3.
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The next two graphs are examples of Theorem 3.2, (4.1) with m = 4,
where we set a; =1, ag = 2, and of Theorem 3.2, (4.2) with m = 3, where

3.121, a2:2:

3
X ==

Figure9. M(1, 1, 2, 2,1, 1, 2, 2,1): Theorem 3.2, (4.1) with m = 4.

Ps Pé6
P1@———@ D>
D4 , P3
0 i
i 3
X = —
2

Figure 10. M(1, 2, 2,1,1, 2, 2): Theorem 3.2, (4.2) with m = 3.
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4.2. Symmetric melodies with length twelve

Firstly, we consider the melodies of length twelve. Since melodies which
satisfy either condition specified in the cases (1), (4.1) and (4.2) of Theorem
3.1 are periodic with period four, their M-graphs go around some
guadrangles and nothing interesting appears. For this reason, we focus on the
melodies, which fall into the category (2) or (3) of Theorem 3.1. The first
figure is the M-graph of the melody

a=(0,72310,529 26,18, 4,11),

in which no repeated tones appear. This satisfies the condition (2) of the
theorem and the line of symmetry is defined by y = —x + 11:
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Figure 11. M(0, 7, 3,10, 5, 9, 2, 6, 1, 8, 4, 11).

The next figure shows the M-graph of the melody
a=(,6,24,517,7514261),

which satisfies the condition (3) of the theorem:
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Figure 12. M(L 6, 2, 4,5,7, 7,5, 4, 2, 6, 1).

This has a line of symmetry defined by y = x.

4.3. Symmetric melodies with length eleven

Here we illustrate a few symmetric melodies of length eleven. Since
melodies which satisfy either condition specified in the cases (1), (4) of
Theorem 3.2 are also periodic with period four, we focus on the melodies,
which fall into the category (2) or (3) of Theorem 3.2. The first figure is the
M-graph of the melody a=(0,7,1 4,2,5,8, 6,9, 3,10), in which no
repeated tones appear. This satisfies the condition (2) of the theorem and the
line of symmetry is defined by y = —x + 10:
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Figure 13. M(0, 7,1, 4, 2,5, 8, 6, 9, 3, 10).

The next figure shows the M-graph of the melody
a=(0275738,3572,0),

which satisfies the condition (3) of the theorem:

Figure 14. M(0, 2, 7,5, 3,8, 3,5, 7, 2, 0).

This has a line of symmetry defined by y = x.
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We conclude this paper by the figure of a symmetric melody of length
16:

P2 N

Figure 15. M (7,12, 0, 14, 9, 10, 4,13, 2,11, 5, 6, 1, 15, 3, 8).
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