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Abstract

In this paper, we prove that the Hasse principle for any system of
rational cubic forms, any system of rational homogeneous forms of
degree at least 3 in an arbitrary number of variables is equivalent to
the Hasse principle of certain systems of rational quadratic forms. This
shows, in particular, the Hasse principle for any system of rational
cubic forms or rational homogeneous forms of degree at least 3 in an
arbitrary number of variables holds if and only if the intersection of
the nonempty sets of nontrivial rational solutions of each quadratic
form of the associated system of quadratic forms is nonempty.

1. Introduction

In Diophantine number theory, one is concerned with the fundamental
question of whether a homogeneous polynomial
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P(xq, x3, X3, ey X,) =0 (1.1)

with rational coefficients has a nontrivial rational solution. Answering this
question, in general, is very difficult and not always possible. This is the
central theme of Hilbert’s Tenth Problem [5].

1.1. The Hasse principle

If a nontrivial rational solution to (1.1) exists, then we call it a global

solution since QQ is a global field. Since Q is a subfield of each of its

completion Q p s, where p is a finite or infinite prime, this solution is also a
nontrivial solution in each Q - The Hasse principle says that the reverse

direction also holds. That is, if equation (1.1) has a nontrivial solution in

each completion Q r called a local solution since Q » is a local field, then it

also has a solution in Q. If the polynomial in (1.1) has this property, then we
say that it satisfies the Hasse principle. Not every homogeneous polynomial
satisfies the Hasse principle. One of the best-known examples of such a

polynomial is given by Selmer [8]:
3x3 +4y° +52° = 0. (1.2)

For the Hasse principle for forms of degrees 3 and 4, see [2] and [6] for
some results. Concerning systems of forms, the Hasse principle for systems
of quadratic forms has been studied by Davenport [1], Heath-Brown [3] and
others. For systems of cubic forms, there are currently no similar systematic
studies. Some results are obtained for such systems such as those found in [4]
and [9].

1.2. The Hasse Minkowski theorem

Minkowski established, around 1920, the Hasse principle for quadratic

forms with rational coefficients.
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Theorem 1.1. Let F(x, x5, X3, ..., X,) = 0 be a quadratic form with
rational coefficients. Then F(xi, x5, X3, ..., X,,) = 0 has a nontrivial local
solution at all places if and only if F(x|, x5, X3, ..., X,) = 0 has a nontrivial
global solution, i.e., a nontrivial rational solution. That is, the Hasse

principle holds for F(xi, x5, x3, ..., x,) = 0.

For cubic forms of two variables, Fujiwara [2] obtains the following
result:

Theorem 1.2. Let P(x;, x;) =0 be a cubic form with rational
coefficients, called a binary cubic form. Then the Hasse principle holds for
P(Xl, Xz) = 0.

For any system of binary rational cubic forms, the following result is

known:

Theorem 1.3 [9]. If

Gl(xa y):()

GH(x, =0
5= 2(x, ¥)

Gm(xa y)=0

is a system of binary rational quadratic forms, then S satisfies the Hasse

principle.

The argument for this theorem makes use of the result concerning

quadratic forms in [7].
2. Result

In this paper, we prove that the Hasse principle for any rational cubic
form or rational homogeneous form of degree at least 3 in an arbitrary
number of variables is equivalent to the Hasse principle of a certain system

of rational quadratic forms.
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Theorem 2.1. Let

Gl(xl, XDy aeey xn) =0
S _ .Gz(xl, XDy eeey Xn) =0
G, (x1, X9, ey X,) =0

be a system of rational homogeneous cubic forms in n variables. Then there
exists a system of finitely many rational quadratic forms T such that the

Hasse principle for S is equivalent to the Hasse principle for T .

If all forms in S are replaced by rational homogeneous forms of degree

at least 3 in n variables, then the same statement also holds.

This result shows that the Hasse principle for any system of rational
cubic forms or rational homogeneous forms of degree at least 3 in an
arbitrary number of variables holds if and only if the intersection of the
nonempty sets of nontrivial rational solutions of each quadratic form of the
associated system of quadratic forms is nonempty. This provides in particular
an intuitive way for seeing why it is more difficult for the Hasse principle for

forms of degrees higher than two to hold.
3. Proof of Result

Proof. (Proof of Theorem 2.1)
(I) All forms in S are cubic forms:

For eachiin {l, ..., m}, define
Fij(x1, X2, vy Xp) = XG5, X, s Xy) (3.1)

for j =1, ..., n. Thus, we obtain the system
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Fi(xp, X, o0y %) = 0
Fp(x, X2, s x,) = 0

Fln(xb X5 oo xn) =0

F21(x1, XDy eey Xn) =0
Fry(x1, X9, o0y X,) =0

an(xl, XDy eeey xn) =0

Fo(x1, x5, ooy x,,) =0
sz(xl, XDy eeny xn) =0

Fon(x1, x95 oy x,) = 0.
Next, let us define the following variables:

Xu, v = XX,

for u, v € {1, ..., n}. Then
Xitv = KXoy =0
for u, v e {l, ..., n} and
Xy X e = Xy, s Xy =0
as well as
Xy Xt = Xy 1 Xy 5 =0

forall u, v, s, t € {l, ..., n}. Now let us denote the system

&3

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Xy = Xy uXyy =0
Xiis = XXy s =0
Xzit = Xy uXst =0
X2 =X, Xy =0

(3.7
sz,t - Xv,vXt,t =0
st,t _Xs,th,t =0
Xy Xs,t = Xy, sXy, =0
Xy Xt =Xy, Xy s =0
by
)_([uvst] =0
and the system
{)?[uvst] = 0}{[uvst]|u,v, s,tefl,..,n}} (3.8)
by
Xy, ..n=0,

where {[uvst]|u, v, s, t €{l, ..., n}} denotes the collection of all distinct

unordered quadruples [uvst] with u, v, s, ¢ being in {l, ..., n}. There are

(Z) such collections of distinct unordered quadruples. Thus, for each [uvst],

system X [uvst] = O consists of 8(2) rational quadratic forms.

Proposition 3.1. Let I denote either Q or Q,, for some prime p finite

or infinite. System S has a nontrivial solution in F if and only if the system
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(X1, Xo 15 e Xy 1) =0
Fip(X1,2, X325 000 Xy 2) =0

FH(AHJw Xbﬂw.”,ﬁ%,n)=:0

Fy (X110, X215 0 X,1) = 0
Fyp( X1, X325 s Xy 2) =0

}En(xqgw ngw'"ax%,n):zo

ot (X115 X015 o0 Xpp1) =0
Fop (X125 X325 000 Xy 2) =0

Fﬁn(xqgw Xéﬂw'"ax%,n):zo

3.9
)(L”qn =0 G2

n . . .
of mn +8( 4j rational homogeneous quadratic forms has a nontrivial
solution in F.

Proof. By construction, the ‘only if” direction is clear. Let us prove the if
direction.

Forie{l, .. n}and je{l, .., m},

B )
Fy(Xy o X oo Xy )= Y ) x2% + > dD XX, (3.10)
1<u<n 1fu#v<n

for al%}’ s and afé@-’ s some elements of F for all u and v in {l, ..., n}.

Suppose system £ has a nontrivial solution in F, say,

(AL woos AL s s Ay 1o s A ) (3.11)
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where 4;’s are in F forall i, j and 4;,; # 0 for some 4; ;. Then we have
2 _
‘%hv _<Auﬂﬂ4wv =0
2
Auys_"h,uA&s =0
2
Au,t - Au,uAt,t =0
2
A;,s _Av,vAs,s =0 (3.12)
t Av,vAt,t =0
2
As,t - As,sAt,t =0
Au,vAs,t - Au,sAv,t =0
Xu,vAs,t - Au,tAv,s =0
by (3.7) and
0= Z M;JM)JAMJ Z u%Auf vy (3.13)

1<u<n 1<u#v<n

for i € {l, .., n} and j e {l, .., m} as well as for all w and v in {l, ..., n}. It

follows that
( Ap) A, Aio,l Aio,jo -1,
Aigjo 7 Ao Aigio T iosdo
Aio,j0+1 Ai(),}’l A}’l 1 A}’l,}’l
~ s s 1 7 (3.14)
10, /0 i0, Jo i, Jo 105 J0

is also a nontrivial solution to system £. By (3.12), it follows that

2 —
Aioajo = iy, 104y, jo (3.15)

and thus

A #0 and A o 0. (3.16)
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Hence,
Al,l Al,n Ai(),l Aio,io—l 1 Aio,i0+1
5 eens 5 eees 5 eees , 1, ,
Ai() ) Ai() , 10 Ai() ) Ai() ) Ai() )
Aio,i0+l Ai(),n An,l An,n
vl Zen el 3.17)
ig, iQ ig, ig i0, 1o 10, 10
and
( A1 A Ajo.1 Aj. jo-1 1 Ajy. jo+1
5 eens 5 eees Y eens , 1, ,
jojo Ajodo Ajosdo 4jo. Jo 4jo. jo
Ajo,j0+1 Ajo,n An,l An,n
Joodorl | Zen SRl o (3.18)
J0>J0 J0>J0 J0>J0 J0>J0

are also nontrivial solutions to system £ by (3.16). In particular, we have

2
Au,v _ Au,u AV7V =0
Ao io Ao i Aig. i
2
Au,s _ Au,u As,s -0
Aio,io Ai(),i() Aio,io
2
Ay 3 Ay u A ~0
Ai(),i() Ai(),i() AiOyiO
2
Av,s _ Av,v As,s —0
Aio,io Aio,io Aio,io
2
4, ¢ 3 Ay Ay _0
Al'o,io Aio,lo Aio,io
2
As,t _ As,s At,t -0
Ao io Ao i Aig. i
Au,v As,t _ Au,s Av,t 0
Ai(),io Ai(),io Ai(),io Ai(),i()
Au,v As,t _ Au,t Av,s -0
Aio,io Ai(),io Ai(),io Aio,i() (319)
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As aresult, it follows from (3.19) that the following statements hold:

(1) Foreachiin {1, ..., n},

4; i 4; i, 2 Ay i 2
UL [—A,- bk (3.20)

0,10 0,10

(2)For i, j e {l, ..., n},

Ai,j _ Ai,l'o Aio,j _ Ai,l'o Aj,io _ Aio,i Aio,j

Aig. iy B Aig.ig Hig.ig  Aig.ig Aig.ig  “ig.ig Aig.ig
_ i Ajig. , (3.21)
Aig o i, io
From (3.9)-(3.10), it can be verified that the following equations hold for
iefl,..n}and jedl,..m}:

A Ay A, ;
0=F(A4 ;, A ;,... A, ;)= F;| —L —=L  —2J
U( Lj> 2, n, Jj U(Aio,io Aio,io Aio,io
2
g . N A A
_ @) [ @) g s
DI B B SR e (3.22)
1<u<n '0-10 1fu#v<n 0.0 “70-10

In particular,

0= F}io (Al,i()’ Az,i()’ ey Ai()—l,i()’ Ai(),i()’ Ai()+1,i()’ ey Al’l,i())

_ Al,io AZ,iO Aio—l,io 1 Aio +1, g An,io
- F}io

A. 2 A. EERAAS ] A. 2 2 A. 9 *** Ai

io, io i io i, iQ i0, 0 0,10

2
_ @) [ Auig @) Auwip A
- Z auiouio(A. + Z auiovi() A A

1<u<n l0-10 1<u#v<n 10,10 “10-10

Al, iO AZ, io AiO -1, io Aio +1, io An, io
L L A L Y (3.23)
N ig, ig RN 10,10 10,10
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for each i in {l, ..., n} since

Aui _ Aj.ig Aig.ig

(3.24)
Aig,ig g ig Aig.ig
for each u in {1, ..., n}. Therefore,
Al,io , A2,i0 s Aio—l,i() , 1, Ai0+1,i0 _— A}’l,io (325)
Aio,io Aiosio Aio,io Aio,io Aio,io
is a nontrivial solution in F of the system
Gl(xl, XDy eeny xn) =0
Gz(xl, XDy eeny )Cn) =0
G, (x1, X3, ey X,) =0
as needed. O

Therefore, the Hasse principle of any system of cubic forms S is
equivalent to the Hasse principle of the associated system of quadratic
forms L.

(II) Forms in & are homogeneous forms of degree at least 3 in n
variables:

Suppose that S has m forms and let d; denote the homogeneous degree

of form G;(xy, ..., x,,) for i =1, ..., m. Let d be the maximal of the d;’s. Let

D be the least even positive integer such that D > d. Define system L as
follows:
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Fil(xl, XDy eey xn) =0
Fp(xy, X2, s ;) =0

Fin(¥1, X2, o 3,) = 0

F21(X1, XDy aeey xn) =0

Fzz(xl, X2y eeny )Cn) =0
an(xl, XDy eey xn) =0

le(xl, XDy aeey Xn) =0

sz(xl, X2y eeny xn) =0

Fon (X1, x5, iy x,) = 0,

where

D—d;
F;J(xlﬂ x29 ceey xn) = xj lGl(xl, xz, ey xn).

(3.26)

(3.27)

Next, let us define the following variables: let / consist of all vectors of the

form
o= (o, ..., at,),
where o;’s are nonnegative integers such that

S o -2

1<i<n

For each o in /, let us define the following variables:

Xy = Hxl-q".

1<i<n

(3.28)

(3.29)

(3.30)
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Then for each element X,

Xg - XpX, =0 (3.31)
for all elements B = (By, ..., B,) and v = (y1, ..., ¥,,) in I such that

20 =B; +v; (3.32)

for each i in {l, ..., n}. For any pair of p = (u, ..., u,,) and v = (vq, ..., v,,)
i/,

X, Xy = Xy Xy =0 (3.33)
forall n = (ny, ..., n,) and € = (g, ..., €,) inIsuch that

W, +v;=m; +¢ (3.34)

for each i in {1, ..., n}. Now let us represent the system consisting of all

equations of the form (3.31) by
Xoer =0 (3.35)
and the system consisting of all equations of the form (3.33) by

X, v)erxt = 0. (3.36)
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System £ can be rewritten as:

FiiXaligen,cry) =0
FIZ({Xa}{qe]lzg[}) =0

Fn(Xatiger, ) =0

le({Xa}{adz]g]}) =0
F22({X(x}{a6122g1}) =0

an({X(X}{(xelzng]}) =0

le({XOL}{aelmlgl}) =0
Fm2({Xa}{ae[m2g[}) =0

Fon((Xadtger, <) =0, (3.37)

where [;; is an appropriate subset, depending on (3.27), of / for each 7 in
{l, ..., m} and j in {1, ..., n}. By combining (3.35), (3.36) and (3.37), we
have the following:

Proposition 3.2. Let I denote either Q or Q,, for some prime p finite

or infinite. Then system S has a nontrivial solution in F if and only if the

system



Local Global of Homogeneous Forms 93

F(X o gen ) = 0
Fl2({X(x}{q6112g1}) =0

Fin({Xa}{aejlngj}) =0

(X ot gery en) =0
F22({Xa}{ae[22g[}) =0

FQH({X(X}{aelzngI}) =0

F’Vll({X(l}{(xe]mlgl}) =0
FmZ({Xa}{(xe[ng[}) =0

an({X(x}{ae]mng]}) =0
Xoer =0 (3.38)

X(u,v)e]x[ =0
of homogeneous quadratic forms has a nontrivial solution in F.

Proof. A method similar to that found in the proof of Proposition 3.1
also works. U

Theorem 2.1 follows as a result. O
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