
 

JP Journal of Algebra, Number Theory and Applications 
© 2016 Pushpa Publishing House, Allahabad, India 
Published Online: January 2016 
http://dx.doi.org/10.17654/NT038010079 
Volume 38, Number 1, 2016, Pages 79-94                               ISSN: 0972-5555 

 

Received: October 3, 2015;  Accepted: November 16, 2015 
2010 Mathematics Subject Classification: 11D09, 11D25, 11D45, 11D72, 11E16, 11E76. 
Keywords and phrases: Diophantine equation, quadratic form, cubic form, higher degree 
form, Hasse principle, local-global principle, systems of forms, solutions of systems of forms.  

Communicated by K. K. Azad 

ON THE LOCAL AND GLOBAL PRINCIPLE FOR 
SYSTEMS OF RATIONAL HOMOGENEOUS FORMS  

IN A FINITE NUMBER OF VARIABLES 

Lan Nguyen 

Department of Mathematics 
University of Wisconsin-Parkside 
U. S. A. 
e-mail: nguyenl@uwp.edu 

Abstract 

In this paper, we prove that the Hasse principle for any system of 
rational cubic forms, any system of rational homogeneous forms of 
degree at least 3 in an arbitrary number of variables is equivalent to 
the Hasse principle of certain systems of rational quadratic forms. This 
shows, in particular, the Hasse principle for any system of rational 
cubic forms or rational homogeneous forms of degree at least 3 in an 
arbitrary number of variables holds if and only if the intersection of 
the nonempty sets of nontrivial rational solutions of each quadratic 
form of the associated system of quadratic forms is nonempty. 

1. Introduction 

In Diophantine number theory, one is concerned with the fundamental 
question of whether a homogeneous polynomial 
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( ) 0...,,,, 321 =nxxxxP  (1.1) 

with rational coefficients has a nontrivial rational solution. Answering this 
question, in general, is very difficult and not always possible. This is the 
central theme of Hilbert’s Tenth Problem [5]. 

1.1. The Hasse principle 

If a nontrivial rational solution to (1.1) exists, then we call it a global 
solution since Q  is a global field. Since Q  is a subfield of each of its 

completion s,’pQ  where p is a finite or infinite prime, this solution is also a 

nontrivial solution in each .pQ  The Hasse principle says that the reverse 

direction also holds. That is, if equation (1.1) has a nontrivial solution in 
each completion ,pQ  called a local solution since pQ  is a local field, then it 

also has a solution in .Q  If the polynomial in (1.1) has this property, then we 

say that it satisfies the Hasse principle. Not every homogeneous polynomial 
satisfies the Hasse principle. One of the best-known examples of such a 
polynomial is given by Selmer [8]: 

.0543 333 =++ zyx  (1.2) 

For the Hasse principle for forms of degrees 3 and 4, see [2] and [6] for 
some results. Concerning systems of forms, the Hasse principle for systems 
of quadratic forms has been studied by Davenport [1], Heath-Brown [3] and 
others. For systems of cubic forms, there are currently no similar systematic 
studies. Some results are obtained for such systems such as those found in [4] 
and [9]. 

1.2. The Hasse Minkowski theorem 

Minkowski established, around 1920, the Hasse principle for quadratic 
forms with rational coefficients. 
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Theorem 1.1. Let ( ) 0...,,,, 321 =nxxxxF  be a quadratic form with 

rational coefficients. Then ( ) 0...,,,, 321 =nxxxxF  has a nontrivial local 

solution at all places if and only if ( ) 0...,,,, 321 =nxxxxF  has a nontrivial 

global solution, i.e., a nontrivial rational solution. That is, the Hasse 
principle holds for ( ) .0...,,,, 321 =nxxxxF  

For cubic forms of two variables, Fujiwara [2] obtains the following 
result: 

Theorem 1.2. Let ( ) 0, 21 =xxP  be a cubic form with rational 

coefficients, called a binary cubic form. Then the Hasse principle holds for 
( ) .0, 21 =xxP  

For any system of binary rational cubic forms, the following result is 
known: 

Theorem 1.3 [9]. If 

( )
( )

( )
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is a system of binary rational quadratic forms, then S satisfies the Hasse 
principle. 

The argument for this theorem makes use of the result concerning 
quadratic forms in [7]. 

2. Result 

In this paper, we prove that the Hasse principle for any rational cubic 
form or rational homogeneous form of degree at least 3 in an arbitrary 
number of variables is equivalent to the Hasse principle of a certain system 
of rational quadratic forms. 
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Theorem 2.1. Let 

( )
( )

( )
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be a system of rational homogeneous cubic forms in n variables. Then there 
exists a system of finitely many rational quadratic forms T  such that the 
Hasse principle for S  is equivalent to the Hasse principle for .T  

If all forms in S are replaced by rational homogeneous forms of degree 
at least 3 in n variables, then the same statement also holds. 

This result shows that the Hasse principle for any system of rational 
cubic forms or rational homogeneous forms of degree at least 3 in an 
arbitrary number of variables holds if and only if the intersection of the 
nonempty sets of nontrivial rational solutions of each quadratic form of the 
associated system of quadratic forms is nonempty. This provides in particular 
an intuitive way for seeing why it is more difficult for the Hasse principle for 
forms of degrees higher than two to hold. 

3. Proof of Result 

Proof. (Proof of Theorem 2.1) 

(I) All forms in S  are cubic forms: 

For each i in { },...,,1 m  define 

( ) ( )nijnij xxxGxxxxF ...,,,...,,, 2121 =  (3.1) 

for ....,,1 nj =  Thus, we obtain the system 
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Next, let us define the following variables: 

vuvu xxX =:,  (3.3) 

for { }....,,1, nvu ∈  Then 

0,,
2
, =− vvuuvu XXX  (3.4) 

for { }nvu ...,,1, ∈  and 

0,,,, =− tvsutsvu XXXX  (3.5) 

as well as 

0,,,, =− svtutsvu XXXX  (3.6) 

for all { }....,,1,,, ntsvu ∈  Now let us denote the system 
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 (3.7) 

by 

[ ] 0=uvstX  

and the system 

{ [ ] } [ ] { }{ }ntsvuuvstuvstX ...,,1,,,0 ∈|=  (3.8) 

by 

,0...,,1 =nX  

where [ ] { }{ }ntsvuuvst ...,,1,,, ∈|  denotes the collection of all distinct 

unordered quadruples [ ]uvst  with tsvu ,,,  being in { }....,,1 n  There are 








4
n  such collections of distinct unordered quadruples. Thus, for each [ ],uvst  

system [ ] 0=uvstX  consists of 






48 n  rational quadratic forms. 

Proposition 3.1. Let F denote either Q  or pQ  for some prime p finite 

or infinite. System S  has a nontrivial solution in F if and only if the system 
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 (3.9) 

of 




+ 48 nmn  rational homogeneous quadratic forms has a nontrivial 

solution in F. 

Proof. By construction, the ‘only if’ direction is clear. Let us prove the if 
direction. 

For { }ni ...,,1∈  and { },...,,1 mj ∈  

( ) ( ) ( )∑ ∑
≤≤ ≤≠≤

+=
nu nvu

vjuj
ij

ujvjuj
ij

ujujjnjjij XXaXaXXXF
1 1

2
,,2,1 ...,,,  (3.10) 

for ( ) s’ij
ujuja  and ( ) s’ij

ujvja  some elements of F for all u and v in { }....,,1 n  

Suppose system L  has a nontrivial solution in F, say, 

( ),...,,...,,...,, ,1,,11,1 nnnn AAAA  (3.11) 
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where s’ijA  are in F for all i, j and 000 ≠jiA  for some .00 jiA  Then we have 
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by (3.7) and 

( ) ( )∑ ∑
≤≤ ≤≠≤

+=
nu nvu
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ujvjuj
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1 1

20  (3.13) 

for { }ni ...,,1∈  and { }mj ...,,1∈  as well as for all u and v in { }....,,1 n  It 

follows that 
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is also a nontrivial solution to system .L  By (3.12), it follows that 

000000 ,,
2

, jjiiji AAA =  (3.15) 

and thus 

000 , ≠iiA     and    .000 , ≠jjA  (3.16) 
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Hence, 
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and 
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are also nontrivial solutions to system L  by (3.16). In particular, we have 
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 (3.19) 
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As a result, it follows from (3.19) that the following statements hold: 

(1) For each i in { },...,,1 n  
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 (3.20) 

(2) For { },...,,1, nji ∈  
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From (3.9)-(3.10), it can be verified that the following equations hold for 
{ }ni ...,,1∈  and { }:...,,1 mj ∈  
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In particular, 
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for each i in { }n...,,1  since 
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for each u in { }....,,1 n  Therefore, 
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is a nontrivial solution in F of the system 
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as needed. ~ 

Therefore, the Hasse principle of any system of cubic forms S  is 
equivalent to the Hasse principle of the associated system of quadratic   
forms .L  

(II) Forms in S  are homogeneous forms of degree at least 3 in n 
variables: 

Suppose that S  has m forms and let id  denote the homogeneous degree 

of form ( )ni xxG ...,,1  for ....,,1 mi =  Let d be the maximal of the .s’id  Let 

D be the least even positive integer such that .dD ≥  Define system L  as 
follows: 
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where 

( ) ( )....,,,...,,, 2121 ni
dD

jnij xxxGxxxxF i−=  (3.27) 

Next, let us define the following variables: let I consist of all vectors of the 
form 

( ),...,,1 nαα=α  (3.28) 

where s’iα  are nonnegative integers such that 

∑
≤≤

=α
ni

i
D

1
.2  (3.29) 

For each α in I, let us define the following variables: 

∏
≤≤

α
α =

ni
i

ixX
1

.:  (3.30) 
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Then for each element ,αX  

02 =− γβα XXX  (3.31) 

for all elements ( )nββ=β ...,,1  and ( )nγγ=γ ...,,1  in I such that 

iii γ+β=α2  (3.32) 

for each i in { }....,,1 n  For any pair of ( )nµµ=µ ...,,1  and ( )nνν=ν ...,,1  

in I, 

0=− εηνµ XXXX  (3.33) 

for all ( )nηη=η ...,,1  and ( )nεε=ε ...,,1  in I such that 

iiii ε+η=ν+µ  (3.34) 

for each i in { }....,,1 n  Now let us represent the system consisting of all 

equations of the form (3.31) by 

0=∈α IX  (3.35) 

and the system consisting of all equations of the form (3.33) by 

( ) .0, =×∈νµ IIX  (3.36) 
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System L  can be rewritten as: 
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where ijI  is an appropriate subset, depending on (3.27), of I for each i in 

{ }m...,,1  and j in { }....,,1 n  By combining (3.35), (3.36) and (3.37), we 

have the following: 

Proposition 3.2. Let F denote either Q  or pQ  for some prime p finite 

or infinite. Then system S  has a nontrivial solution in F if and only if the 
system 
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of homogeneous quadratic forms has a nontrivial solution in F. 

Proof. A method similar to that found in the proof of Proposition 3.1 
also works. ~ 

Theorem 2.1 follows as a result. ~ 
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