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Abstract

In this paper, we discuss the equilibrium problem for a continuous
bifunction over the fixed point set of a firmly nonexpansive mapping.
We then present an iterative algorithm, which uses the firmly
nonexpansive mapping at each iteration, for solving the problem. The
algorithm is quite simple and it does not require monotonicity and
Lipschitz-type condition on the equilibrium function. At the end of the
paper, we present a numerical example and an application to the power
control in CDMA data networks.

1. Introduction

In recent years, equilibrium problem (EP) is an important subject that
recently has been considered in many research papers. It is well known that
various classes of optimization, variational inequality, Kakutani fixed point,
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Nash equilibrium in noncooperative game theory and minimax problems can
be formulated as an equilibrium problem of the form (EP) [5].

The typical form of equilibrium problems is formulated by means of Ky
Fan’s inequality due to Ky Fan’s contribution to this field and is given as [5]:

find x* € C suchthat f(x*, y)>0 forall y € C, EP(f, C)

where C is a nonempty closed convex subset in R" and f :CxC — R is
a bifunction such that f(x, x) =0 for all x € C. The set of solutions of
EP(f, C) is denoted by Sol(f, C).

If f(x, y)=(F(x), y—-x), where F is a mapping from C to C, then
problem EP(f, C) becomes the following variational inequality:
find x* € C such that (F(x™), y —x*)>0 forall y e C.  VI(F, C)

The set of solutions of VI(F, C) is denoted by Sol(F, C).

It is well-known that x* is solution of VI(F, C) if and only if it is the
fixed point of the mapping Prc(1 —AF), that is, x* = Prc(x — AF(xY)),
where A >0 and Prc is Euclidean projector on C. Under the assumptions
that F is strongly monotone and Lipschitz continuous, the mapping
Prc (1 — AF) s strictly contractive over C, hence the sequence {xk}kGN

generated by the projected gradient algorithm

x0 e C,
xK1 = pro (xk - AR (xK)),

converges to the unique solution x* of VI(F, C) [51].

If F is monotone and Lipschitz, then the projected gradient algorithm

may not be convergent. For example, suppose C = R? and F is a rotation
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with % angle. It is obvious that F is monotone and Lipschitz. However,

since | x¥*1 | > | x¥ || for all k, the sequence {xk}kGN generated by the

projected gradient algorithm does not converge to the origin - the unique
solution of VI(F, C).

In order to deal with this situation, Korpelevich introduced in [21] an
extragradient algorithm:

x0 e C,
yk = Prc(xk - KF(xk)),
XK1 = pro (xK = AF (yX)).

Under the assumptions that F is L-Lipschitz and monotone, A e (O, %j

the sequences {xk}keN and {yk}keN converge to the same point x* e

Sol(F, C).

This extragradient algorithm has been extended to equilibrium problem
in [29]:

XOEC,

yK = argmin{kf(xk, y)+%|| y —xK |:ye C},

X<+ = argmin{kf(yk, y) + %” y-xK|:ye C}.

Under the assumptions that f is pseudomonotone and Lipschitz-type
continuous, the authors showed that the sequence {xk}kGN converges to a
solution of EP(f, C).

To avoid the Lipschitzian condition, the Armijo-backtracking linesearch
has been introduced in [45] to solve VI(F, C). The authors used a
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hyperplane separating xK from the solution set. Then the new iterate x**? is

the projection of xX onto this hyperplane. This method is also extended for
pseudomonotone equilibrium problems in [1].

Since all the above methods require monotonicity or pseudomonotonicity
of function f, a natural question arises: Is it possible to solve equilibrium
problems without the monotone and Lipschitz conditions on f.

To answer this question, we introduce an algorithm to the following
equilibrium problem over the fixed point set: given a continuous function

f:R"xR" — R satisfying f(x, x)=0 for all x € R" and a firmly
nonexpansive mapping T : R" — R",
find a point x* e Fix(T) such that f(x*, y)>0 forall y e Fix(T),
EP(f, Fix(T))
where Fix(T) = {x e R" : Tx = x}. The solution set of this problem is
denoted by Sol(f, Fix(T)). We note that, with T = Prz, the problem

EP(f, Fix(T)) becomes problem EP(f, C). Moreover, in many cases, we

deal with the equilibrium problems, of which constraint set C is implicitly
given. Then, the basic method cannot be applied effectively.

liduka and Yamada proposed in [14] a subgradient-type method for
solving the problem (EP(f, Fix(T))):

Step 0. Choose & >0, A; >0 and x; € R" arbitrarily, and let p; ==
| % || and k = 1.

Step 1. Given x¥ e R" and py > 0, choose &, > 0 and Ay > O.
- Find a point y¥ € Ky == {x e R" : | x| < py + 1} which satisfies

f(xX, y$)=0 and max f(y, x€) < f(y¥, )+ .
yeKg
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- Choose &y e of (yk, -)(xk) arbitrarily and compute

XM= T =2 (Y9, X&) and g = maxfpy, || X1 ).

Step 2. Update k := k + 1, and go to Step 1.
The convergence of this algorithm was proved under suitable

assumptions. One of them is the boundedness of the sequence {&k Jken-

In [18], liduka considered the variational inequality problem over the

fixed point set: Given C is a nonempty closed convex subset in R" and
F : C — C is a continuous operator, T : C — C is a firmly nonexpansive
mapping. The variational inequality problem over the fixed point set can be
formulated as

find a point x* e Fix(T) such that (F(x), y — x) > 0 forall y e Fix(T).

The solution set of this problem is denoted by VI(F, Fix(T)). For
solving this problem, liduka proposed a fixed point optimization algorithm:

Step 0. Choose xt e C, M €(0, ©) and o4 € [0, 1) arbitrarily, and set
n:=1.

Step 1. Given xX e C, choose Ak € (0, ©), ay €]0,1), and compute
x€*1 as follows:

yk = T(xk - xkF(xk)),

XK+l Prc(ockxk +(1- ock)yk).

1)
Step 2. Update n:=n +1, and go to Step 1.
To prove the convergence of this algorithm, the condition: VI(F, Fix(T))
cQ={xeFix(T): f(xk, X) <0, Vk > kq} is needed.

The main goal of this paper is to extend the fixed point optimization
algorithm for solving the problem (EP(f, Fix(T))). The convergence of
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algorithm will be proved without the condition VI(F, Fix(T)) c Q= {x
Fix(T) : f(xX, x) <0, Vk > ko).

The rest of this paper is organized as follows. Section 2 briefly explains
the necessary mathematical background. Section 3 presents the fixed point
optimization algorithm and proves that it converges to a solution of problem
(EP(f, Fix(T))) under certain assumptions. Numerical results are provided

in Section 4.

2. Mathematical Preliminaries

A function g:R™ — R is said to be t-Hdlder continuous if there
exist Q >0 and t e (0,1] such that | g(x)—g(y)|<Q|x—y|* for all
X, Yy € R™ If t =1, then g is said to be Lipschitz continuous. It is obvious
that any Holder continuous function is continuous.

A fixed point of mapping T : R" — R", is a point, x € R", satisfying
T(x) = x. The set Fix(T) = {x e R" : T(x) = x} called the fixed point set
of T. Amapping T : R" — R" is said to be nonexpansive if | T(x) - T(y) ||

<|x-y]| forall x, y e R". Any nonexpansive mapping is also continuous.

We summarize some properties of the fixed point set of a nonexpansive
mapping in the following proposition:

Proposition 1 (See [11]). Let C be a nonempty, closed convex subset of

R" and T : C — C be a nonexpansive mapping. Then

(@) Fix(T) is closed and convex.

(b) If C is bounded, then Fix(T) is nonempty.

A mapping T:R" > R" is said to be firmly nonexpansive if

||T(x)—T(y)||2 <{x-vy,T(x)=T(y)) for all x, yeR". Mapping T is
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firmly nonexpansive if and only if it can be formulated as T = %I + % N,

where | is identity and N is some nonexpansive mapping. It is well-known
that any firmly nonexpansive mapping is also nonexpansive.

Given a nonempty closed convex set C in R". The metric projection
onto C is defined as Prc : R" — C, Prc(x) = argmin{|x-y|:y e C}.
The metric projection also can be defined by relation:

x" e C satisfied x" = Prex < X e C satisfied (x — x*, y - x") <0

forall y e C,

and therefore Pre is firmly nonexpansive with Fix(Prc)=C. We summarize
some properties of the nonexpansive mapping in the following proposition:

Proposition 2 (See [51]). (a) Let T; : C — C be nonexpansive mappings
(i=12,..,m). Then both T,Ty,_1-~-T;y and Zim:lwiTi are also

nonexpansive, where w; € [0, 1] and Z:nzlwi =1

(b) Let T;: C -> C(i =1, 2, ..., m) be nonexpansive mappings satisfying

i~ Fix(T;) # &. Then Fix(zz‘ll WiTi) = (o Fix(T;), where w; < (0,1]
m
and D7 wi =1.

() T:C —>C is firmly nonexpansive if and only if 2T —1 is
nonexpansive. Moreover, for given firmly nonexpansive mappings T; : C
—-C(@{=212.,m) and w; >0 satisfying Zim:lwi =1, ZirilWiTi is
firmly nonexpansive.

We need the following technical lemma:

Lemma 1 (See [49]). Suppose that {oy} and {B,} are sequences of

nonnegative real numbers such that
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ock+1Sock+[3k, k >1,

where Zf:l[}k < o0. Then the sequence {a } is convergent.

3. Fixed Point Optimization Algorithm

Assumption 1. We assume

(A1) C < R" is a nonempty, closed convex set.

(A2) T : C — C isa firmly nonexpansive mapping with Fix(T) = <.

(A3) f:CxC — R is a t-Holder continuous bifunction satisfying
f(x, x) =0 forall x e R". Function f(x, -) convex, Vx e C.

This paper discusses the following equilibrium problem over fixed point
set:

Problem 1. Under Assumption 1, we are interested in
finding a point x* e Fix(T) such that f(x*, y) >0 forall y e Fix(T).
For solving Problem 1, we investigate the asymptotic behavior of the
sequence {xk} generated by the following algorithm:
Algorithm 1 (Fixed point optimization algorithm)
Step 0. Choose x! € C, {iy} < (0, «) and {oy } = [0, 1) arbitrarily. Set
k:=1.

k

Step 1. Given x", compute x<*1 as follows:

yK = argmin{xkf(xk, y)+%|| y — xK [:ye C},
X =T(y"),

KL = o K+ (1 - oy ) 2K
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Step 2. Update k := k + 1, and go to Step 1.
Theorem 1. Assume that

(i) Sol(f, C) is nonempty.

(ii) There exists kg € N such that the set Q := {x € Fix(T): f(xk, X)
<0, Vk > kqg} is nonempty.

1
(iii) Sequences {oy } and {iy} satisfy limsupy_ . o, <1, Zlekﬁ—f

< 00,

Then the sequences {xk} and {zk} generated by Algorithm 1 have following

properties:
(a) Forevery x € Q, lim_,|| X< — x | exists. Two sequences {xk} and

{zk} are bounded.
(b) lim o XK = 2% | = 0 and lim_,..| X = T(x¥) | = 0.
) If | xK - ZK | = o(rg), then {xk} converges to X e Sol(f, Fix(T)).
Proof. (a) Since

yK = argmin{kkf(xk, y)+%|| y — x€ ||2 'y e C},

we have

0 o mf (X, )+ 1 - X P + 80 (44),

where 3¢ is the index function onto C. There exist w e of (xk, -)(yk) and

Ve NC(yk) such that

0 =AW+ yk x4 v,
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We obtain
(v, x—yk)go, vx e C
and hence
(xk —yk - AW, x—yk)so, Vvx e C.

From w e of (xk, -)(yk), it follows that

M (£ O, 0 = 106,y 2 Mefw, x = y%)

> (xk - yk, X — yk), vx e C.

This implies that
(VF =Xk, XK =) < n (PO ) - 10K y9) - yE = X6 2, wxec. (2)

k, we have

Applying (2) with x = x
R A R (S B MR (]} 3)

On the other hand, from t-Hdélder continuity of function f, it follows that
there exist Q > 0 and t < (0, 1] such that

EOK, Y =] O yR) = 10K, ) < QI (K, vk — (XK XK I
= Q| x* -y |I”. (4)

Combining (3) and (4), we have

1
| xX¥ = y* | < Qi )=

and

2
ael £, YY) [ < @)z
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1
Since Zlekﬁ‘f < oo, it implies that lim,_ .| x¥ -y =0 and

Zlewlkﬂ f(xX, y*)| < 0. Forall x e Q < Fix(T), we have

[ X5 x [ = | a4 (- a)2* — x 2

< oy XK = x P+ @ - o) | T(Y) - x |2
< oy X = x [P+ = o) yE - x P
<oyl X = x P+ @= o) (| yE - X P
XK = x 2+ 20y% = XK, XK = x))
<X = x P+ @) |y - X6 P
F 200 (F O, %) = F(xK, y9) = y* =%k ?)
= X = x P = @=ag) y* - x|
£ (L o ) (FOK, %) = (XK, y4))
<[ XK = x |2+ 2n, | £(XK, Y9 -

Since >\, M| f(xK, y¥)|<o0, by Lemma 1, we have limy_.|| X< = x|

exists for all x € Q. This implies sequence {xk} is bounded. As T is firmly

nonexpansive, it follows that {zk} is also bounded.

(b) By definition of firmly nonexpansive function, for all x e Fix(T), we

have

|24 = x[? = T(Y) =T |2 < (y¥ = x, 2 —x).
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Applying (a, b) = %(a2 +b? - (a- b)z), Va, b € C, we have

| 26 - x|? S%(II Y -x Pl - x Pl yE -2 P,
Hence,
| 2 - x?
<|y<—x P -] yE -2 PP
= (| y* =X P = x P+ 20y =X K - x))
=y PP X =P 2y X6 -2
= || xK — x ||2 - xK - ZK ||2 + 2(yk —xK, K- X), VxeFix(T). (5)
Then we have

K+l 2
[ = x|

< g X = x [P+ (L= e 26— x|
e A Ly e N
+2(yK = xK, X —x))
=X =X P =@ X =2 P2y X 2 o) )
This implies that
(- ap)] X< =26 |
< = x P = X P 21— s )y - XK, 2 ).
Let x e Q. From | x¥ — y¥ | >0, limsupy_,., o <1 and existence

of limy ]| X = x |, it implies that | x* — z¥ | — 0. Next, we have
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|2 =T =1 T =T <]y - x ).
since || y* — x| - 0, we obtain that | zX — T(x¥) | - 0. From
X =TOE) X = 2+ 2 =T,
it implies that || x* - T(x*) | - 0.

(c) The boundedness of {xk} guarantees the existence of a subsequence

{xik} of {x*} such that lim;_, . xki = % From 0 = lim;_, oo xKi —T(xki) |

=|| X = T(X) |, it implies that X e Fix(T).

Next, we shall prove that X e Sol(f, Fix(T)). It follows from (5) and (2)
that for all x e Fix(T),

R e R e B A A AR
+2(yk = xK, xk = x)
< XK = x |2+ 20y = XK, 2K = xK)
+ 204 (FO¢ 0 = 1Y) -y =X P
<[ K = x|+ 2y = xK, 2K = XKy

+ 20 (F(XK, x) = £(X5, y*)).

Hence,
0 < X = x [P =] 2 = x [P+ 2y = X, 2 - x6)
+ 2 (F (K, ) = 15, y9)
(X = x [+ 2 = x P K =2 )+ 20y = XK, 2K - XE)

+ 20 (F(XK, x) = £(X¥, y¥)).



142 Trinh Ngoc Hai

Since A >0, Vk >1, we have

Kk gk
Ak

k k
Xt -z
0£(||xk—x||+||zk—x||)|| m ||+2(y

+2(F(XK, x) = F(xX, yk)).

Let k := kj — oo. From assumption || X — z¥ | = o(Ay ), the boundedness

of {xk} and {zk} and f(xk, yk) — 0, we have
0< f(X, x), VxeFix(T).

Hence, X € Sol(f, Fix(T)) < Fix(T).

From (6), we have

| X x| < X = x P
(- a) (X =2 P2y =5 2 - x)

K o2 k_ ok
<[XT=x [+ Kyt = xT

< [ K = x 2+ Kafag] (XK, ¥9) ),
: k : : kK
where K :=sup{2] 2 —x|:k =1} <. Since " ° | F(x*, y*)| <,

applying Lemma 1, we obtain that the limit limy_, | xK — x| exists

Vx e Fix(T). Itimplies that
lim | x¥ = %] = lim | X % | =0.
k—o0 i—>o

Thatis, X< — % e Sol(f, Fix(T)). O

Remark 1. When we choose f(x, y)=(F(x), y—Xx), where F:C —

C is a continuous operator, we have the fixed point optimization algorithm
for the variational inequality problem over the fixed point set (1), which is
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proposed in [18]. However, not as in [18], the convergence of the algorithm
is obtained without the condition:

VI(F, Fix(T)) < Q= {x e Fix(T): (x* = x, F(x¥)) 2 0, Vk > kq}.

Remark 2. The condition | x* —z* | = o(k) is satisfied when we

choose suitable parameters A, (see Example 1). Analogously to [18], the

numerical results in Example 1 show that the condition | XX — ¥ || = o(i)

is not satisfied with a fast diminishing constant sequence such as Ay = kiﬁ

(B > 2). Hence, we will use a slowly diminishing constant sequence such as

1
" =k—B,Be(1, 2).

4. Numerical Examples

In this section, we present some examples to illustrate the proposed
algorithm. Some comparisons are also reported. All the programming is
implemented in MATLAB R2010b running on a PC with Intel®Core2™
Quad Processor Q9400 2.66Ghz 4GB RAM.

Example 1. We apply our Algorithm 1 to solve an equilibrium problem
arising from the Cournot-Nash equilibrium model considered in [28]. Let

C =R, f(x, y)=(Ax+ By +c, y — x), where

3 1 -2 3 4 2 0
-1 -4 3 0 2 4 2
3 1 3 2 -2 2 3
A=|1 1 2 -4 3 1 0]
0 2 0 1 3 2 3
1 3 2 0 1 3 1
2 1 3 0 1 2 4
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-3 0 1 -2 1 1 2 5
2 3 -1 2 1 1 0
o 4 1 0 1 3
B=-1 0 1 -5 2 2 - c=|-8
1 3 1 0 3 1 2 6
0o 2 1 2 -1 4 0 10
3 2 1 0 0 1 4 9

and mapping T : R’ — R’ defined by
T(x) = Prp(x),
where Prp is the metric projection onto
D={xeR’:|x-(10,0,00,00)<1}.

We note that f is not pseudomonotone and T is firmly nonexpansive
mapping. Matrix B is positive definite, hence function f(x, -) is convex for

all xeR’. Choose x' =(1,2,0,1,2,0,1), o =0, a € (0,1) and A = kiﬁ

B > 1. To check if the condition || x — y¥ | = o(Ay) is satisfied, we shall

: . . , K xk=2K

investigate the asymptotic behavior of the sequence u” = BT Itis
k

seen from Figure 1 and Figure 2 that when o = 1/2 and p=1.1,1.2, 15,
(uk)keN converges to 0 and when B = 2.0, 2.3, the sequence {uk}kGN does

not converge to 0. Moreover, since || X | <1 and || y¥ || <1, we have
| (XK, y9) | = [ (AXK + Byk +c, yK —xK) |

k ki1
<(Al+1Bl+Tehly™ =x" I
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35

—— =12, =11
| - # —a=12 p=12||
3/ — =12, p=15]|

Number of iterations

Figure 1. The condition || xk — K | = o(ry) is satisfied when o :=1/2 and
p=111215.
——— [3-= 11

i - _ - e -g=1/2,B=2.0|
= | ——0=1/2,p=23

Number of iterations

Figure 2. The condition | XX — zX | = o(%) is not satisfied when o = 1/2
and B = 2.0, 2.3.

1

—, O = l. From above argument, it implies that all
KLl

2

conditions of Theorem 1 are satisfied. Applying Algorithm 1 for problem
EP(f, Fix(T)), we have the result in Table 1. We use stopping criteria:

Choose Ay =

| XK+ xK | <& with e = 1074,
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Example 2. In this example, we will compare the performance of
extragradient algorithm (ExtraGrad) in [29] and our Algorithm 1. Consider
the equilibrium problem EP(f, D) with f is given as in [1]

fiR "R >R, f(x y)=(Ax+x"(y+X)+pn—a, y-x),

where
0 x x X
xr 0 x X
T T
A=y x 0 - x| p=(g - ug), o=(ag, .., 0g)
X X . e 0

Table 1. Sequence {x"}kGN converges to x* = (0.8530, —0.2444, —0.4909,
0.7094, —0.1133, —0.2882, —0.2801) € Sol( f, Fix(T))

Iter. Xk X xk x§ xE x§ xk K+ =Xk
k=1 1 2 0 1 2 0 1 1.6880
k=2 [0.8860| 0.9624 | 0.2404 0.8279 0.9488 | -0.0731 | 0.2504 0.5444
k=3 ]0.9951| 0.5601 | 0.1580 0.8728 0.6141 | -0.0855 | 0.2100 0.7217
k=4 [1.1698]| 0.1519 | -0.1328 | 0.7895 0.1756 | -0.1399 | 0.0175 0.2554

k=5 |1.2806| 0.0116 | —-0.1271 | 0.8228 | 0.0109 | -0.1813 |-0.0397 0.1850

k=6 |1.1363| 0.0755 | -0.0874 | 0.8984 | -0.0311 | -0.1673 | -0.0317 0.2001

k=7 |1.2673|-0.0334 | -0.1687 | 0.8811 | —-0.0436 | -0.1228 | 0.0127 0.3933

k=8 |15777|-0.0054 | -0.1185 | 0.6517 | —0.0601 | —-0.1143 | 0.0581 0.2490

k=9 |14517| 0.1127 | -0.0914 | 0.7416 | -0.1805 | -0.1616 |-0.0233 0.1762

k =294 |0.8530 | -0.2444 | -0.4909 | 0.7094 | -0.1133 | —0.2882 | -0.2801 | 9.9444.10°

The feasible set is

D={xeR" |x-(100,11 ..1)" ||<1.
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In Algorithm 1, choose C = R" and T = Prz. Then two problems
EP(f, D) and EP(f, Fix(T)) coincide. In both algorithms, we use the

same starting points x°, the stopping criteria | xK — xk+l | < 107°, 4 = 3,

Ho =3, 09 =2 and n = 30. In algorithm ExtraGrad, choose A = 0.01 and

in Algorithm 1, & = ik The results are tabulated in Table 2. We can see
11

that, in this example, the CPU time of Algorithm 1 is less than of ExtraGrad
algorithm even though the ExtraGrad algorithm requires fewer iterations.
This happens because there are two constrained convex programs need to
be solved at each iteration in the ExtraGrad algorithm instead of one
unconstrained convex program as in Algorithm 1.

Table 2. Comparison of algorithms in Example 2 with different starting
points

0 =@ .., 1" 0= 2 ...n) 2,2 ..,2)0
CPU times . CPU times . CPU times .
Iterations Iterations Iterations
(s) (s) (s)
ExtraGrad 25 8302 30 16.1573 20 14.9098 18
Algorithm 1 1 6714 100 0.7871 50 0.3878 26

Example 3. We will apply Algorithm 1 to the power-control problem for
code-division multiple-access (CDMA) systems. We use the model, which
was introduced in [15, 18]. Consider a network with n users. Let | =

1, 2, ..., n be the set of users and p :=(py, Py, -\ pn)T be the transmit
power of users. Let C, = [A™", A/™], where P™ > PM" > 0 and put
c:=]]c«
kel

The signal-to-interference-plus-noise ratio (SINR) of kth user can be
expressed by a function of p as following: y, : C — R for all



148 Trinh Ngoc Hai
phi

2 1 A
c +N2j¢kplhl

where h, € R is the channel gain for the kth user, o? > 0 is the noise power

p=(py P2 - kn)' €C, y¢(p) =

and N > 0 is processing gain.

Suppose that the utility of kth user is a function of p:

Uk(P) = 3 Red(rk(p)),

where L and M are the number of information bits and the total number of
bits in a packet, respectively, R, stands for the transmission rate for the kth
user, and g(y) = (1- e‘V)'VI is the approximate packet success rate (PSR).
Let

D = ﬂDk, where Dy = {p € R" : y,(p) = 8¢} (k € 1),
kel

where 8 > 0 (k e ) is the required SINR for the kth user in the network.
Let
f(p, a) = Y U(p) - Uk (pg, o)) ()

kel

for all p,qeC, where (b, )= (Pr, P2, Pket Qs Pceds - Pn)'

e C. We have to choose the transmit power p* e C in order to maximize
the utility of users. Moreover, each user must achieve the required SINR.
That is, find p* € Sol(f, C N D).

However, the set C (1 D can be empty, for example, when the noise o2

is large or one of the users is too far from base station. In order to avoid this
drawback, consider the generalized convex feasible set [51], Cq,, defined by

Co ={peC:@(p)= Frpeig D(p)},
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where
o) =5 Wd®, D)’ (PR, we©Dkel)

with Zkel w, =1 and d(p, Dy):=min{{p-q|:qeDy}kel,peR).
When C(D = &, we have Cq, =C (1 D. So Cg is a generalization of
CND. Since Cq is the set of all minimizers of ® over C, it cannot

be expressed explicitly. Hence, we cannot solve EP(f, Cg ) directly. We

define the mapping N : R" — R":

N(p) = P"C{ZWkPer (p)] (p e R"), ®)

kel
where Pre is the metric projection onto C. Then N is nonexpansive and
Fix(N) = Cg. Let T(p) = %p + % N(p). It can be seen that mapping T is
firmly nonexpansive and Fix(T) = Fix(N) = Cg. We will apply Algorithm
1 for problem EP(f, Fix(T)).
As in [18], we assume that L =100, M =100, Ry = 1O4bits/second,
(k el), N =100 and 62 =10 x 10~ watts. Suppose that, for all k € I,

A™M" = 0.1 watts and A™* =1 watts. The initial transmit power of all

users is 0.1 watts and hy := % (k € I'), where dj is the distance from the
k

kth user to the base station. Suppose d; = 310m, d, = 460m, d3 := 570m,
dy = 660m, dg:=740m, dg :=810m, d; :=880m, dg:=940m, dg =

1,000m and also wy = % (k € I). The required SINR for the kth user is

8k =1 (k € 1). Note that in this case, C (1 D = & because C (1 Dg = &.
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It is obvious that function f is Lipschitz continuous on C x C and we can
1

choose A, = ————. The condition Y A2-T < oo is satisfied. We
(k + 50)1 2
use oy = % % To check if convergence condition | x" —z" || = o(A,) is

satisfied, we consider the behavior of the sequence, {uy }, -, defined by

k k
X

Uk 7\-k

o, =110/
e uk=1.|'2 H

457

05;

10 10'
Number of iterations

Figure 3. The condition | x¥ — zX | = o(i) is satisfied.

It is seen from Figure 3 that limy_,,, u, = 0. That means the condition
L gL
(k +50)" 10

Applying Algorithm 1 for problem EP(f, Fix(T)), we have the result in

| x" =z" | =0(r,) is satisfied. Choose Ay =

Figure 4. We use stopping criteria: || x*1 — z¥ || < & with & =107
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1

st user
Sth user
+— Bth user

Transmit power [W]

02 #
‘

i
014
o 20 40 80 100 120 140 160 180

80
Number of iterations

Figure 4. The transmit power of 1st user, 5th user and 9th user.

From Figure 4, we can see that the transmit power of the 1st user is low
and the transmit power of the 9th user is high; in other words, transmitted
powers are high when users are far from the base station. The algorithm stops

after 175 iterations. The sequence {xk} converges to the solution x* of
EP(f, Fix(T)),

x" = (0.1309, 0.1000, 0.1243, 0.2472, 0.4008, 0.5801,
0.8101, 1.0000, 1.0000).

5. Conclusion

In this paper, we have proposed the fixed point optimization algorithm
for the equilibrium problem over fixed point set of firmly nonexpansive.
The proposed algorithm does not require the monotonicity of bifunction.
However, some convergence conditions are needed. The proposed problem
can be applied for the equilibrium problem over set C, where C does not
necessarily have explicit form. Finally, we have applied the algorithm to the
power control problem for CDMA network and have presented the numerical
examples for the transmit power. Numerical results have shown that with
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suitable choosing of parameters, the convergence conditions are satisfied and
the proposed algorithm succeeds in approximating a solution of the proposed
equilibrium problem.
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