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Abstract 

In this paper, we discuss the equilibrium problem for a continuous 
bifunction over the fixed point set of a firmly nonexpansive mapping. 
We then present an iterative algorithm, which uses the firmly 
nonexpansive mapping at each iteration, for solving the problem. The 
algorithm is quite simple and it does not require monotonicity and 
Lipschitz-type condition on the equilibrium function. At the end of the 
paper, we present a numerical example and an application to the power 
control in CDMA data networks. 

1. Introduction 

In recent years, equilibrium problem (EP) is an important subject that 
recently has been considered in many research papers. It is well known that 
various classes of optimization, variational inequality, Kakutani fixed point, 
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Nash equilibrium in noncooperative game theory and minimax problems can 
be formulated as an equilibrium problem of the form (EP) [5]. 

The typical form of equilibrium problems is formulated by means of Ky 
Fan’s inequality due to Ky Fan’s contribution to this field and is given as [5]: 

find Cx ∈∗  such that ( ) 0, ≥∗ yxf  for all ,Cy ∈  ( )CfEP ,  

where C is a nonempty closed convex subset in nR  and R→× CCf :  is 

a bifunction such that ( ) 0, =xxf  for all .Cx ∈  The set of solutions of 

( )CfEP ,  is denoted by ( )., CfSol  

If ( ) ( ) ,,, xyxFyxf −=  where F is a mapping from C to C, then 

problem ( )CfEP ,  becomes the following variational inequality: 

find Cx ∈∗  such that ( ) 0, ≥− ∗∗ xyxF  for all .Cy ∈  ( )CFVI ,  

The set of solutions of ( )CFVI ,  is denoted by ( )., CFSol  

It is well-known that ∗x  is solution of ( )CFVI ,  if and only if it is the 

fixed point of the mapping ( ),FIPrC λ−  that is, ( ( )),∗∗ λ−= xFxPrx C  

where 0>λ  and CPr  is Euclidean projector on C. Under the assumptions 

that F is strongly monotone and Lipschitz continuous, the mapping 

( )FIPrC λ−  is strictly contractive over C, hence the sequence { } N∈k
kx  

generated by the projected gradient algorithm 

( ( ))⎪⎩

⎪
⎨
⎧

λ−=

∈
+ ,

,
1

0

kk
C

k xFxPrx

Cx
 

converges to the unique solution ∗x  of ( )CFVI ,  [51]. 

If F is monotone and Lipschitz, then the projected gradient algorithm 

may not be convergent. For example, suppose 2R=C  and F is a rotation 
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with 2
π  angle. It is obvious that F is monotone and Lipschitz. However, 

since kk xx ≥+1  for all k, the sequence { } N∈k
kx  generated by the 

projected gradient algorithm does not converge to the origin - the unique 
solution of ( )., CFVI  

In order to deal with this situation, Korpelevich introduced in [21] an 
extragradient algorithm: 

( ( ))

( ( ))⎪
⎪
⎩

⎪⎪
⎨

⎧

λ−=

λ−=

∈

+ .

,

,
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kk
C

k

kk
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k

yFxPrx

xFxPry

Cx

 

Under the assumptions that F is L-Lipschitz and monotone, ,1,0 ⎟
⎠
⎞⎜

⎝
⎛∈λ L  

the sequences { } N∈k
kx  and { } N∈k

ky  converge to the same point ∈∗x  

( )., CFSol  

This extragradient algorithm has been extended to equilibrium problem 
in [29]: 

( )

( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎭⎬
⎫

⎩⎨
⎧ ∈−+λ=

⎭⎬
⎫

⎩⎨
⎧ ∈−+λ=

∈

+ .:2
1,minarg

,:2
1,minarg

,

1

0

Cyxyyyfx

Cyxyyxfy

Cx

kkk

kkk  

Under the assumptions that f is pseudomonotone and Lipschitz-type 

continuous, the authors showed that the sequence { } N∈k
kx  converges to a 

solution of ( )., CfEP  

To avoid the Lipschitzian condition, the Armijo-backtracking linesearch 
has been introduced in [45] to solve ( )., CFVI  The authors used a 
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hyperplane separating kx  from the solution set. Then the new iterate 1+kx  is 

the projection of kx  onto this hyperplane. This method is also extended for 
pseudomonotone equilibrium problems in [1]. 

Since all the above methods require monotonicity or pseudomonotonicity 
of function f, a natural question arises: Is it possible to solve equilibrium 
problems without the monotone and Lipschitz conditions on f. 

To answer this question, we introduce an algorithm to the following 
equilibrium problem over the fixed point set: given a continuous function 

RRR →× nnf :  satisfying ( ) 0, =xxf  for all nx R∈  and a firmly 

nonexpansive mapping ,: nnT RR →  

find a point ( )TFixx ∈∗  such that ( ) 0, ≥∗ yxf  for all ( ),TFixy ∈  

 ( )( )TFixfEP ,  

where ( ) { }.: xTxxTFix n =∈= R  The solution set of this problem is 

denoted by ( )( )., TFixfSol  We note that, with ,CPrT =  the problem 

( )( )TFixfEP ,  becomes problem ( )., CfEP  Moreover, in many cases, we 

deal with the equilibrium problems, of which constraint set C is implicitly 
given. Then, the basic method cannot be applied effectively. 

Iiduka and Yamada proposed in [14] a subgradient-type method for 
solving the problem ( )( )( ) :, TFixfEP  

Step 0. Choose ,01 ≥ε  01 >λ  and nx R∈1  arbitrarily, and let =ρ :1  

1x  and .1=k  

Step 1. Given nkx R∈  and ,0≥ρk  choose 0≥εk  and .0>λk  

- Find a point { }1:: +ρ≤∈=∈ k
n

k
k xxKy R  which satisfies 

( ) 0, ≥kk yxf    and   ( ) ( ) .,,max k
kkk

Ky
xyfxyf

k
ε+≤

∈
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- Choose ( ) ( )kk
k xyf ⋅∂∈ξ ,  arbitrarily and compute 

( ( ) )k
kk

k
kk xyfxTx ξλ−=+ ,1    and   { }.,max 1

1
+

+ ρ=ρ k
kk x  

Step 2. Update ,1: += kk  and go to Step 1. 

The convergence of this algorithm was proved under suitable 

assumptions. One of them is the boundedness of the sequence { } .N∈ξ k
k  

In [18], Iiduka considered the variational inequality problem over the 

fixed point set: Given C is a nonempty closed convex subset in nR  and 
CCF →:  is a continuous operator, CCT →:  is a firmly nonexpansive 

mapping. The variational inequality problem over the fixed point set can be 
formulated as 

find a point ( )TFixx ∈∗  such that ( ) 0, ≥− xyxF  for all ( ).TFixy ∈  

The solution set of this problem is denoted by ( )( )., TFixFVI  For 

solving this problem, Iiduka proposed a fixed point optimization algorithm: 

Step 0. Choose ,1 Cx ∈  ( )∞∈λ ,01  and [ )1,01 ∈α  arbitrarily, and set 
.1:=n  

Step 1. Given ,Cxk ∈  choose ( ),,0 ∞∈λk  [ ),1,0∈αk  and compute 
1+kx  as follows: 

 
( ( ))

( ( ) )⎪⎩

⎪
⎨
⎧

α−+α=

λ−=

+ .1:

,:
1 k

k
k

kC
k

k
k

kk

yxPrx

xFxTy
 (1) 

Step 2. Update ,1: += nn  and go to Step 1. 

To prove the convergence of this algorithm, the condition: ( )( )TFixFVI ,  

{ ( ) ( ) }0,0,:: kkxxfTFixx k ≥∀≤∈=Ω⊂  is needed. 

The main goal of this paper is to extend the fixed point optimization 
algorithm for solving the problem ( )( )( )., TFixfEP  The convergence of 
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algorithm will be proved without the condition ( )( ) { ∈=Ω⊂ xTFixFVI :,  

( ) ( ) }.,0,: 0kkxxfTFix k ≥∀≤  

The rest of this paper is organized as follows. Section 2 briefly explains 
the necessary mathematical background. Section 3 presents the fixed point 
optimization algorithm and proves that it converges to a solution of problem 

( )( )( )TFixfEP ,  under certain assumptions. Numerical results are provided 

in Section 4. 

2. Mathematical Preliminaries 

A function RR →mg :  is said to be τ-Hölder continuous if there      

exist 0>Q  and ( ]1,0∈τ  such that ( ) ( ) τ−≤− yxQygxg  for all 

., myx R∈  If ,1=τ  then g is said to be Lipschitz continuous. It is obvious 

that any Hölder continuous function is continuous. 

A fixed point of mapping ,: nnT RR →  is a point, ,nx R∈  satisfying 

( ) .xxT =  The set ( ) { ( ) }xxTxTFix n =∈= :R  called the fixed point set 

of T. A mapping nnT RR →:  is said to be nonexpansive if ( ) ( )yTxT −  

yx −≤  for all ., nyx R∈  Any nonexpansive mapping is also continuous. 

We summarize some properties of the fixed point set of a nonexpansive 
mapping in the following proposition: 

Proposition 1 (See [11]). Let C be a nonempty, closed convex subset of 
nR  and CCT →:  be a nonexpansive mapping. Then 

(a) ( )TFix  is closed and convex. 

(b) If C is bounded, then ( )TFix  is nonempty. 

A mapping nnT RR →:  is said to be firmly nonexpansive if 

( ) ( ) ( ) ( )yTxTyxyTxT −−≤− ,2  for all ., nyx R∈  Mapping T is 
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firmly nonexpansive if and only if it can be formulated as ,2
1

2
1 NIT +=  

where I is identity and N is some nonexpansive mapping. It is well-known 
that any firmly nonexpansive mapping is also nonexpansive. 

Given a nonempty closed convex set C in .nR  The metric projection 

onto C is defined as ,: CPr n
C →R  ( ) { }.:minarg CyyxxPrC ∈−=  

The metric projection also can be defined by relation: 

Cx ∈∗  satisfied CxxPrx C ∈⇔= ∗∗  satisfied 0, ≤−− ∗∗ xyxx  

for all ,Cy ∈  

and therefore CPr  is firmly nonexpansive with ( ) .CPrFix C =  We summarize 

some properties of the nonexpansive mapping in the following proposition: 

Proposition 2 (See [51]). (a) Let CCTi →:  be nonexpansive mappings 

( )....,,2,1 mi =  Then both 11 TTT mm "−  and ∑ =
m
i iiTw1  are also 

nonexpansive, where [ ]1,0∈iw  and ∑ = =m
i iw1 .1  

(b) Let ( )miCCTi ...,,2,1: =→  be nonexpansive mappings satisfying 

( )∩m
i iTFix1 .= ∅≠  Then ( )∩m

i i
m
i ii TFixTwFix 11 ,== =⎟

⎠
⎞⎜

⎝
⎛∑  where ( ]1,0∈iw  

and ∑ = =m
i iw1 .1  

(c) CCT →:  is firmly nonexpansive if and only if IT −2  is 
nonexpansive. Moreover, for given firmly nonexpansive mappings CTi :  

( )miC ...,,2,1=→  and 0≥iw  satisfying ∑ = =m
i iw1 ,1  ∑ =

m
i iiTw1  is 

firmly nonexpansive. 

We need the following technical lemma: 

Lemma 1 (See [49]). Suppose that { }kα  and { }kβ  are sequences of 

nonnegative real numbers such that 
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,1,1 ≥β+α≤α + kkkk  

where ∑∞
= ∞<β1 .k k  Then the sequence { }kα  is convergent. 

3. Fixed Point Optimization Algorithm 

Assumption 1. We assume 

(A1) nC R⊂  is a nonempty, closed convex set. 

(A2) CCT →:  is a firmly nonexpansive mapping with ( ) .∅≠TFix  

(A3) R→× CCf :  is a τ-Hölder continuous bifunction satisfying 

( ) 0, =xxf  for all .nx R∈  Function ( )⋅,xf  convex, .Cx ∈∀  

This paper discusses the following equilibrium problem over fixed point 
set: 

Problem 1. Under Assumption 1, we are interested in 

finding a point ( )TFixx ∈∗  such that ( ) 0, ≥∗ yxf  for all ( ).TFixy ∈  

For solving Problem 1, we investigate the asymptotic behavior of the 

sequence { }kx  generated by the following algorithm: 

Algorithm 1 (Fixed point optimization algorithm) 

Step 0. Choose ,1 Cx ∈  { } ( )∞⊂λ ,0k  and { } [ )1,0⊂αk  arbitrarily. Set 

.1:=k  

Step 1. Given ,kx  compute 1+kx  as follows: 

( )

( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

α−+α=

=
⎭⎬
⎫

⎩⎨
⎧ ∈−+λ=

+ .1

,

,:2
1,minarg

1 k
k

k
k

k

kk

kk
k

k

zxx

yTz

Cyxyyxfy
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Step 2. Update ,1: += kk  and go to Step 1. 

Theorem 1. Assume that 

  (i) ( )CfSol ,  is nonempty. 

 (ii) There exists N∈0k  such that the set { ( ) ( )xxfTFixx k ,:: ∈=Ω  

}0,0 kk ≥∀≤  is nonempty. 

(iii) Sequences { }kα  and { }kλ  satisfy ,1suplim <α∞→ kk  ∑∞
=

τ−λ1
2

1

k k  

.∞<  

Then the sequences { }kx  and { }kz  generated by Algorithm 1 have following 

properties: 

(a) For every ,Ω∈x  xxk
k −∞→lim  exists. Two sequences { }kx  and 

{ }kz  are bounded. 

(b) 0lim =−∞→
kk

k zx  and ( ) .0lim =−∞→
kk

k xTx  

(c) If ( ),k
kk ozx λ=−  then { }kx  converges to ( )( ).,ˆ TFixfSolx ∈  

Proof. (a) Since 

( ) ,:2
1,minarg 2

⎭⎬
⎫

⎩⎨
⎧ ∈−+λ= Cyxyyxfy kk

k
k  

we have 

( ) ( ) ( ),2
1,0 2 k

C
kk

k yxxf ⎟
⎠
⎞⎜

⎝
⎛ ⋅δ+−⋅+⋅λ∂∈  

where Cδ  is the index function onto C. There exist ( ) ( )kk yxfw ⋅∂∈ ,  and 

( )k
C yNv ∈  such that 

.0 vxyw kk
k +−+λ=  
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We obtain 

Cxyxv k ∈∀≤− ,0,  

and hence 

.,0, Cxyxwyx k
k

kk ∈∀≤−λ−−  

From ( ) ( ),, kk yxfw ⋅∂∈  it follows that 

( ( ) ( )) k
k

kkk
k yxwyxfxxf −λ≥−λ ,,,  

.,, Cxyxyx kkk ∈∀−−≥  

This implies that 

( ( ) ( )) .,,,, 2 Cxxyyxfxxfxxxy kkkkk
k

kkk ∈∀−−−λ≤−−  (2) 

Applying (2) with ,: kxx =  we have 

 ( ) ( ) .,,2 kk
k

kk
k

kk yxfyxfyx λ≤λ−≤−  (3) 

On the other hand, from τ-Hölder continuity of function f, it follows that 
there exist 0>Q  and ( ]1,0∈τ  such that 

( ) ( ) ( ) ( ) ( ) τ−≤−= kkkkkkkkkk xxyxQxxfyxfyxf ,,,,,  

.τ−= kk yxQ  (4) 

Combining (3) and (4), we have 

( ) τ−λ≤− 2
1

k
kk Qyx  

and 

( ) ( ) ., 2
2
τ−λ≤λ k

kk
k Qyxf  
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Since ∑∞
=

τ− ∞<λ1
2

1

,k k  it implies that 0lim =−∞→
kk

k yx  and 

( )∑∞
= ∞<λ1 .,k

kk
k yxf  For all ( ),TFixx ⊂Ω∈  we have 

( ) 221 1 xzxaxx k
k

k
k

k −α−+=−+  

( ) ( ) 22 1 xyTxx k
k

k
k −α−+−α≤  

( ) 22 1 xyxx k
k

k
k −α−+−α≤  

( ) ( 22 1 kk
k

k
k xyxx −α−+−α≤  

)xxxyxx kkkk −−+−+ ,22  

( ) ( 22 1 kk
k

k xyxx −α−+−≤  

( ( ( ) ( )) ))2,,2 kkkkk
k xyyxfxxf −−−λ+  

( ) 22 1 kk
k

k xyxx −α−−−=  

( ) ( ( ) ( ))kkk
kk yxfxxf ,,12 −α−λ+  

( ) .,22 kk
k

k yxfxx λ+−≤  

Since ( )∑∞
= ∞<λ1 ,,k

kk
k yxf  by Lemma 1, we have xxk

k −∞→lim  

exists for all .Ω∈x  This implies sequence { }kx  is bounded. As T is firmly 

nonexpansive, it follows that { }kz  is also bounded. 

(b) By definition of firmly nonexpansive function, for all ( ),TFixx ∈  we 

have 

( ) ( ) .,22 xzxyxTyTxz kkkk −−≤−=−  
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Applying ( ( ) ),2
1, 222 bababa −−+=  ,, Cba ∈∀  we have 

( ).2
1 2222 kkkkk zyxzxyxz −−−+−≤−  

Hence, 

2xzk −  

22 kkk zyxy −−−≤  

( )xxxyxxxy kkkkkk −−+−+−= ,222  

( )kkkkkkkk zxxyzxxy −−+−+−− ,222  

( ).,,222 TFixxxzxyzxxx kkkkkk ∈∀−−+−−−=  (5) 

Then we have 

21 xxk −+  

( ) 22 1 xzxx k
k

k
k −α−+−α≤  

( ) ( 222 1 kkk
k

k
k zxxxxx −−−α−+−α≤  

)xzxy kkk −−+ ,2  

( ) ( ).,21 22 xzxyzxxx kkkkk
k

k −−+−−α−−−=  (6) 

This implies that 

( ) 21 kk
k zx −α−  

( ) .,12212 xzxyxxxx kkk
k

kk −−α−+−−−≤ +  

Let .Ω∈x  From ,0→− kk yx  1suplim <α∞→ kk  and existence 

of ,lim xxk
k −∞→  it implies that .0→− kk zx  Next, we have 
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( ) ( ) ( ) .kkkkkk xyxTyTxTz −≤−=−  

Since ,0→− kk xy  we obtain that ( ) .0→− kk xTz  From 

( ) ( ) ,kkkkkk xTzzxxTx −+−≤−  

it implies that ( ) .0→− kk xTx  

(c) The boundedness of { }kx  guarantees the existence of a subsequence 

{ }k
ix  of { }kx  such that .ˆlim xx ik

i =∞→  From ( )ii kk
i xTx −= ∞→lim0  

( ) ,ˆˆ xTx −=  it implies that ( ).ˆ TFixx ∈  

Next, we shall prove that ( )( ).,ˆ TFixfSolx ∈  It follows from (5) and (2) 

that for all ( ),TFixx ∈  

kkkkkkkk xzxyzxxxxz −−+−−−≤− ,2222  

xxxy kkk −−+ ,2  

kkkkk xzxyxx −−+−≤ ,22  

( ( ( ) ( )) )2,,2 kkkkk
k xyyxfxxf −−−λ+  

kkkkk xzxyxx −−+−≤ ,22  

( ( ) ( )).,,2 kkk
k yxfxxf −λ+  

Hence, 

kkkkkk xzxyxzxx −−+−−−≤ ,20 22  

( ( ) ( ))kkk
k yxfxxf ,,2 −λ+  

( ) ( ) kkkkkkkk xzxyzxxzxx −−+−−+−≤ ,22  

( ( ) ( )).,,2 kkk
k yxfxxf −λ+  
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Since ,0>λk  ,1≥∀k  we have 

( )
k

kkkk

k

kk
kk xzxyzxxzxx

λ
−−

+
λ
−

−+−≤
,20  

( ( ) ( )).,,2 kkk yxfxxf −+  

Let .: ∞→= ikk  From assumption ( ),k
kk ozx λ=−  the boundedness 

of { }kx  and { }kz  and ( ) ,0, →kk yxf  we have 

( ) ( ).,,ˆ0 TFixxxxf ∈∀≤  

Hence, ( )( ) ( ).,ˆ TFixTFixfSolx ⊂∈  

From (6), we have 

221 xxxx kk −≤−+  

( ) ( )xzxyzx kkkkk
k −−+−−α−+ ,21 2  

kkk xyKxx −+−≤ 2  

( ) ,,2 kk
k

k yxfKxx λ+−≤  

where { } .1:2sup: ∞<≥−= kxzK k  Since ( )∑∞
= ∞<λ1 ,,k

kk
k yxf  

applying Lemma 1, we obtain that the limit xxk
k −∞→lim  exists 

( ).TFixx ∈∀  It implies that 

.0ˆlimˆlim =−=−
∞→∞→

xxxx ik
i

k
k

 

That is, ( )( ).,ˆ TFixfSolxxk ∈→  ~ 

Remark 1. When we choose ( ) ( ) ,,, xyxFyxf −=  where →CF :  

C is a continuous operator, we have the fixed point optimization algorithm 
for the variational inequality problem over the fixed point set (1), which is 
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proposed in [18]. However, not as in [18], the convergence of the algorithm 
is obtained without the condition: 

( )( ) { ( ) ( ) }.,0,::, 0kkxFxxTFixxTFixFVI kk ≥∀≥−∈=Ω⊂  

Remark 2. The condition ( )k
kk ozx λ=−  is satisfied when we 

choose suitable parameters kλ  (see Example 1). Analogously to [18], the 

numerical results in Example 1 show that the condition ( )k
kk ozx λ=−  

is not satisfied with a fast diminishing constant sequence such as β=λ
k

k
1  

( ).2>β  Hence, we will use a slowly diminishing constant sequence such as 

( ).2,1,1 ∈β=λ βk
k  

4. Numerical Examples 

In this section, we present some examples to illustrate the proposed 
algorithm. Some comparisons are also reported. All the programming is 
implemented in MATLAB R2010b running on a PC with Intel®Core2TM 
Quad Processor Q9400 2.66Ghz 4GB RAM. 

Example 1. We apply our Algorithm 1 to solve an equilibrium problem 
arising from the Cournot-Nash equilibrium model considered in [28]. Let 

,7R=C  ( ) ,,, xycByAxyxf −++=  where 

,

4210312
1310231
3231020
0134211
3222313

2420341
0243213

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−−

−−
−

=A  
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−−−
−

−
−−

=

9
10
6
8

9
7
5

,

4100123
0412120
2130131
1225101

3101402
0112132
2112103

cB  

and mapping 77: RR →T  defined by 

( ) ( ),xPrxT D=  

where DPr  is the metric projection onto 

{ ( ) }.10,0,0,0,0,0,1:7 ≤−∈= xxD R  

We note that f is not pseudomonotone and T is firmly nonexpansive 
mapping. Matrix B is positive definite, hence function ( )⋅,xf  is convex for 

all .7R∈x  Choose ( ) ( )1,0,,1,0,2,1,0,2,11 ∈αα=α= kx  and ,1
β=λ

k
k  

.1>β  To check if the condition ( )k
kk oyx λ=−  is satisfied, we shall 

investigate the asymptotic behavior of the sequence .
k

kk
k zxu

λ
−

=  It is 

seen from Figure 1 and Figure 2 that when 21:=α  and ,5.1,2.1,1.1=β  

( ) N∈k
ku  converges to 0 and when ,3.2,0.2=β  the sequence { } N∈k

ku  does 

not converge to 0. Moreover, since 1≤kx  and ,1≤ky  we have 

( ) kkkkkk xycByAxyxf −++= ,,  

( ) .1kk xycBA −++≤  
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Figure 1. The condition ( )k
kk ozx λ=−  is satisfied when 21:=α  and 

.5.1,2.1,1.1=β  

 

Figure 2. The condition ( )k
kk ozx λ=−  is not satisfied when 21:=α  

and .3.2,0.2=β  

Choose ,1
1.1k

k =λ  .2
1=αk  From above argument, it implies that all 

conditions of Theorem 1 are satisfied. Applying Algorithm 1 for problem 
( )( ),, TFixfEP  we have the result in Table 1. We use stopping criteria: 

ε≤−+ kk xx 1  with .10 4−=ε  
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Example 2. In this example, we will compare the performance of 
extragradient algorithm (ExtraGrad) in [29] and our Algorithm 1. Consider 
the equilibrium problem ( )DfEP ,  with f is given as in [1] 

( ) ( ) ,,,,: xyxyAxyxff nnn −α−μ++χ+=→× RRR  

where 

( ) ( ) ....,,,...,,,

0

0
0

0

0000
TTA αα=αμμ=μ

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅χχ
⋅⋅⋅⋅
χχχ
χχχ
χχχ

=

"
"
"
"
"

 

Table 1. Sequence { } N∈k
kx  converges to ( ,4909.0,2444.0,8530.0 −−=∗x  

) ( )( )TFixfSol ,2801.0,2882.0,1133.0,7094.0 ∈−−−  

Iter. kx1  kx2  kx3  kx4  kx5  kx6  kx7  kk xx −+1  

1=k  1 2 0 1 2 0 1 1.6880 

2=k  0.8860 0.9624 0.2404 0.8279 0.9488 –0.0731 0.2504 0.5444 

3=k  0.9951 0.5601 0.1580 0.8728 0.6141 –0.0855 0.2100 0.7217 

4=k  1.1698 0.1519 –0.1328 0.7895 0.1756 –0.1399 0.0175 0.2554 

5=k  1.2806 0.0116 –0.1271 0.8228 0.0109 –0.1813 –0.0397 0.1850 

6=k  1.1363 0.0755 –0.0874 0.8984 –0.0311 –0.1673 –0.0317 0.2001 

7=k  1.2673 –0.0334 –0.1687 0.8811 –0.0436 –0.1228 0.0127 0.3933 

8=k  1.5777 –0.0054 –0.1185 0.6517 –0.0601 –0.1143 0.0581 0.2490 

9=k  1.4517 0.1127 –0.0914 0.7416 –0.1805 –0.1616 –0.0233 0.1762 

"          

294=k  0.8530 –0.2444 –0.4909 0.7094 –0.1133 –0.2882 –0.2801 9.9444.10-5 

The feasible set is 

{ ( ) }.11...,,1,1,100, ≤−∈= Tn xxD R  
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In Algorithm 1, choose nC R=  and .CPrT =  Then two problems 

( )DfEP ,  and ( )( )TFixfEP ,  coincide. In both algorithms, we use the 

same starting points ,0x  the stopping criteria ,3,10 51 =χ<− −+kk xx  

2,3 00 =α=μ  and .30=n  In algorithm ExtraGrad, choose 01.0=λ  and 

in Algorithm 1, .
1.1
1

kk =λ  The results are tabulated in Table 2. We can see 

that, in this example, the CPU time of Algorithm 1 is less than of ExtraGrad 
algorithm even though the ExtraGrad algorithm requires fewer iterations. 
This happens because there are two constrained convex programs need to         
be solved at each iteration in the ExtraGrad algorithm instead of one 
unconstrained convex program as in Algorithm 1. 

Table 2. Comparison of algorithms in Example 2 with different starting 
points 

 ( )Tx 1...,,1,10 =  ( )Tnx ...,,2,10 =  ( )T2...,,2,2  

 CPU times 
(s) 

Iterations 
CPU times 

(s) 
Iterations 

CPU times 
(s) 

Iterations 

ExtraGrad 25.8302 30 16.1573 20 14.9098 18 

Algorithm 1 1.6714 100 0.7871 50 0.3878 26 

Example 3. We will apply Algorithm 1 to the power-control problem for 
code-division multiple-access (CDMA) systems. We use the model, which 
was introduced in [15, 18]. Consider a network with n users. Let =:I  

n...,,2,1  be the set of users and ( )Tnppp ...,,,: 21=p  be the transmit 

power of users. Let [ ],,: maxmin
kkk PPC =  where 0minmax ≥> PP  and put 

∏
∈

=
Ik

kCC .:  

The signal-to-interference-plus-noise ratio (SINR) of kth user can be 
expressed by a function of p as following: R→γ Ck :  for all 
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( ) ( ) ,1,...,,,:
22

2
21

∑ ≠
+σ

=γ∈=

kj jj

kk
k

T
n

hpN

hpCkpp pp  

where R∈kh  is the channel gain for the kth user, 02 >σ  is the noise power 

and 0>N  is processing gain. 

Suppose that the utility of kth user is a function of p: 

( ) ( )( ),pp kkk gRM
LU γ=  

where L and M are the number of information bits and the total number of 
bits in a packet, respectively, kR  stands for the transmission rate for the kth 

user, and ( ) ( )Meg γ−−=γ 1:  is the approximate packet success rate (PSR). 

Let 

∩
Ik

kDD
∈

= ,:  where { ( ) }( ),:: IkD kk
n

k ∈δ≥γ∈= pp R  

where ( )Ikk ∈>δ 0  is the required SINR for the kth user in the network. 

Let 

 ( ) ( ( ) ( ))∑
∈

−=
Ik

kkkk qUUf ,, ˆppqp  (7) 

for all ,, C∈qp  where ( ) ( )Tnkkkkk ppqpppq ...,,,,...,,,:, 1121ˆ +−=p  

.C∈  We have to choose the transmit power C∈∗p  in order to maximize 

the utility of users. Moreover, each user must achieve the required SINR. 

That is, find ( )., DCfSol ∩∈∗p  

However, the set DC ∩  can be empty, for example, when the noise 2σ  
is large or one of the users is too far from base station. In order to avoid this 
drawback, consider the generalized convex feasible set [51], ,ΦC  defined by 

{ ( ) ( )},minˆ:ˆ: ppp
p

Φ=Φ∈=
∈

Φ
C

CC  
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where 

( ) ( ) ( ) ( ) ( )∑ ∈
∈∈∈=Φ

Ik k
n

kk IkwDdw 1,0,,2
1: 2 Rppp  

with ∑ ∈ =Ik kw 1  and ( ) { }( ).,:min:, n
kk IkDDd R∈∈∈−= pqqpp  

When ,∅≠DC ∩  we have .DCC ∩=Φ  So ΦC  is a generalization of 

.DC ∩  Since ΦC  is the set of all minimizers of Φ over C, it cannot           

be expressed explicitly. Hence, we cannot solve ( )ΦCfEP ,  directly. We 

define the mapping :: nnN RR →  

 ( ) ( ) ( ),: n

Ik
DkC kPrwPrN R∈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

∈

ppp  (8) 

where CPr  is the metric projection onto C. Then N is nonexpansive and 

( ) .Φ= CNFix  Let ( ) ( ).2
1

2
1 ppp NT +=  It can be seen that mapping T is 

firmly nonexpansive and ( ) ( ) .Φ== CNFixTFix  We will apply Algorithm 

1 for problem ( )( )., TFixfEP  

As in [18], we assume that ,100=L  ,100=M  second,bits104=kR  

( ),Ik ∈  100=N  and 142 1010 −×=σ  watts. Suppose that, for all ,Ik ∈  

1.0min =kP  watts and 1max =kP  watts. The initial transmit power of all 

users is 0.1 watts and ( ),,3.0: 2 Ik
d

h
k

k ∈=  where kd  is the distance from the 

kth user to the base station. Suppose ,m310:1 =d  ,m460:2 =d  m,570:3 =d  

m,660:4 =d  m,740:5 =d  m,810:6 =d  m,880:7 =d  m,940:8 =d  =:9d  

m000,1  and also ( ).9
1 Ikwk ∈=  The required SINR for the kth user is 

1=δk  ( ).Ik ∈  Note that in this case, ∅=DC ∩  because .9 ∅=DC ∩  
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It is obvious that function f is Lipschitz continuous on CC ×  and we can 

choose 
( )

.
50
1

1.1+
=λ

k
k  The condition ∑∞

=
τ− ∞<λ1

2
1

k k  is satisfied. We 

use .2
1,10

1=αk  To check if convergence condition ( )n
nn ozx λ=−  is 

satisfied, we consider the behavior of the sequence, { } ,1≥kku  defined by 

.:
k

kk
k

zxu
λ
−

=  

 

Figure 3. The condition ( )k
kk ozx λ=−  is satisfied. 

It is seen from Figure 3 that .0lim =∞→ kk u  That means the condition 

( )n
nn ozx λ=−  is satisfied. Choose 

( )
,

50
1

1.1+
=λ

k
k  .10

1=αk  

Applying Algorithm 1 for problem ( )( ),, TFixfEP  we have the result in 

Figure 4. We use stopping criteria: ε≤−+ kk zx 1  with .10 4−=ε  
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Figure 4. The transmit power of 1st user, 5th user and 9th user. 

From Figure 4, we can see that the transmit power of the 1st user is low 
and the transmit power of the 9th user is high; in other words, transmitted 
powers are high when users are far from the base station. The algorithm stops 

after 175 iterations. The sequence { }kx  converges to the solution ∗x  of 

( )( ),, TFixfEP  

( ,5801.0,4008.0,2472.0,1243.0,1000.0,1309.0=∗x  

).0000.1,0000.1,8101.0  

5. Conclusion 

In this paper, we have proposed the fixed point optimization algorithm 
for the equilibrium problem over fixed point set of firmly nonexpansive.     
The proposed algorithm does not require the monotonicity of bifunction. 
However, some convergence conditions are needed. The proposed problem 
can be applied for the equilibrium problem over set C, where C does not 
necessarily have explicit form. Finally, we have applied the algorithm to the 
power control problem for CDMA network and have presented the numerical 
examples for the transmit power. Numerical results have shown that with 
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suitable choosing of parameters, the convergence conditions are satisfied and 
the proposed algorithm succeeds in approximating a solution of the proposed 
equilibrium problem. 
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