JP Journal of Fixed Point Theory and Applications © 2015 Pushpa Publishing House, Allahabad, India Published Online: December 2015 http://dx.doi.org/10.17654/JPFPTADec2015_117_128

Volume 10, Number 3, 2015, Pages 117-128

STRONG CONVERGENCE OF AN M-STEP PICARD-LIKE PROCESS TO A COMMON FIXED POINT OF A FINITE FAMILY OF LIPSCHITZIAN

HEMICONTRACTIVE MAPS

ISSN: 0973-4228

Chika Moore, Agatha Chizoba Nnubia and Akabuike Nkiruka M

Department of Mathematics
Nnamdi Azikiwe University
P. M. B. 5025
Awka, Anambra State
Nigeria
e-mail: drchikamoore@yahoo.com

e-mail: drchikamoore@yahoo.com obijiakuagatha@ymail.com mariankiru@yahoo.com

Abstract

Let *K* be a closed convex nonempty subset of a Hilbert space *H* and let the set of the common fixed points of a finite family of Lipschitzian hemicontractive maps on *K* be nonempty. Sufficient conditions for the strong convergence of the sequence of successive approximations generated by an M-step Picard-like process to a common fixed point of the family are proved.

Received: September 10, 2015; Accepted: November 2, 2015

2010 Mathematics Subject Classification: 47H10, 47J25.

Keywords and phrases: Hilbert space, common fixed point, finite family, hemicontraction,

Picard process, strong convergence.

Communicated by Sunny Chauhan

1. Introduction

Let H be a Hilbert space and let K be a nonempty subset of H. K is said to be (sequentially) compact if every closed bounded sequence in K has a subsequence that converges in K. K is said to be boundedly compact if every bounded subset of K is compact. In finite dimensional spaces, closed subsets are boundedly compact. Given a subset S of K, we shall denote by co(S) and ccl(S) the convex hull and the closed convex hull of S, respectively. If K is boundedly compact convex and S is bounded, then co(S) and hence ccl(S) are compact convex subsets of K.

A map $T: K \to E$ is said to be *semi-compact* if for any bounded sequence $\{x_n\} \subset K$ such that $\|x_n - Tx_n\| \to 0$ as $n \to \infty$, there exists a subsequence $\{x_n\} \subset \{x_n\}$ such that x_{n_j} converges strongly to some $x^* \in K$ as $j \to \infty$. The map T is said to be *demi-compact* at $z \in E$ if for any bounded sequence $\{x_n\} \subset K$ such that $\|x_n - Tx_n\| \to z$ as $n \to \infty$, there exist a subsequence $\{x_{n_j}\} \subset \{x_n\}$ and a point $p \in K$ such that x_{n_j} converges strongly to p as $j \to \infty$. (Observe that if T is additionally continuous, then p - Tp = z.) A nonlinear map $T: K \to E$ is said to be *completely continuous* if it maps bounded sets into relatively compact sets. T is said to be *Lipschitzian* if $\exists L \geq 0$ such that

$$||Tx - Ty|| \le L||x - y||, \quad \forall x, y \in K. \tag{1}$$

If L = 1, then T is called *nonexpansive* and if L < 1, then the mapping T is called a *contraction*. The mapping T with domain D(T) and the range R(T) in H is called *pseudocontractive* if $\forall x, y \in D(T)$,

$$||Tx - Ty||^2 \le ||x - y||^2 + ||(I - T)x - (I - T)y||^2.$$
 (2)

If (2) holds for all $x \in D(T)$ and $y \in F(T)$ (fixed point set of T), then T is said to be *hemicontractive*.

The class of pseudocontractive maps has been extensively studied (see, e.g., [1-6] and the references therein). It is clear that the important class of nonexpansive mappings is a subclass of the class of pseudocontractive maps.

In [4], Ishikawa introduced a new iteration method and proved that it converges strongly to a fixed point of a Lipschitz pseudocontractive map defined on a compact convex subset of a Hilbert space. In fact, he proved the following result.

Theorem 1 (Ishikawa [4]). Let K be a compact convex nonempty subset of a Hilbert space and let $T: K \to K$ be a Lipschitz pseudocontractive map. Let $\{\alpha_n\}$, $\{\beta_n\}$ be real sequences satisfying the following conditions:

- 1. $0 < \alpha_n \le \beta_n < 1$.
- $2. \lim_{n\to\infty} \beta_n = 0.$
- 3. $\sum \alpha_n \beta_n = \infty$.

Then starting with an arbitrary $x_0 \in K$, the sequence $\{x_n\}$ of successive approximations defined by

$$x_{n+1} = \alpha_n T[\beta_n T x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n; \quad n \ge 0,$$
 (3)

converges strongly to a fixed point of T.

This result has been generalized in several ways by many authors, see, e.g., Qihou [5] who proved a convergence theorem in the case where *T* is a Lipschitz hemicontraction. Chidume and Moore [1] who proved the case where *T* is a continuous hemicontraction and for iteration process with errors, Ghosh and Debnath [3] who proved the convergence of a Picard-like process to a fixed point of a quasi-nonexpansive map. Recently, Moore and Nnubia [6] proved a convergence theorem for a Picard-like process to a point in the common fixed point set of a finite family of Lipschitzian hemicontractions.

Our purpose in this paper is to construct an M-step Picard-like iteration process which converges strongly to a common fixed point of a finite family

120 Chika Moore, Agatha Chizoba Nnubia and Akabuike Nkiruka M of Lipschitz hemicontractive self maps of a closed convex nonempty subset of a Hilbert space.

We need the following lemma in this work:

Lemma 1.1 [4]. For any x, y, z in a Hilbert space H and a real number $\lambda \in [0, 1]$,

$$\|\lambda x + (1-\lambda)y - z\|^2 = \lambda \|x - z\|^2 + (1-\lambda)\|y - z\|^2 - \lambda(1-\lambda)\|x - y\|^2.$$
 (4)

Lemma 1.2. Let K be a closed convex nonempty subset of a Banach space E and let $T_i: K \to K$, where $i \in I = \{1, 2, ..., m\}$ be a finite family of continuous nonlinear maps in K such that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and let $\{x_n\}_{n\geq 1}$ be a sequence in K satisfying

1.
$$\lim_{n\to\infty} \|x_n - T_i x_n\| = 0, \forall i \in I,$$

2.
$$\exists n_* \in \mathbb{N}$$
 such that $\|x_{n+1} - x^*\| \le (1 + \tau_n) \|x_n - x^*\| + \nu_n, \forall n \ge n_*,$
where $\sum_{n\ge 0} \nu_n < \infty$ and $\sum_{n\ge 0} \tau_n < \infty$. Then

- 1. $\lim_{n\to\infty} ||x_n x^*||$ exists and $\{x_n\}$ is bounded.
- 2. $\{x_n\}$ converges strongly to a common fixed point of T_i 's if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.
- 3. $\{x_n\}$ converges strongly to a common fixed point of T_i 's if one of the T_i 's satisfies any of the following conditions:
 - (a) condition B,
 - (b) semi-compact,
 - (c) demi-compact at $0 \in K$,
 - (d) completely continuous.
- 4. $\{x_n\}$ converges strongly to a point of F if any of the following conditions holds:

- (a) K is compact.
- (b) K is boundedly compact.

2. Main Result

2.1. Strong convergence theorem for finite family of Lipschitzian hemicontractive maps

We define the following auxiliary maps: α , $\beta \in (0, 1)$ constants:

$$S_{i\beta} = (1 - \beta)I + \beta T_i; \quad i \in \{1, 2, ..., N\},$$
 (5)

$$T_{i\alpha\beta} = (1 - \alpha)I + \alpha T_i S_{i\beta}. \tag{6}$$

Theorem 2.1. Let H be a real Hilbert space and K be a nonempty closed convex subset of H and let $\{T_i\}_{i=1}^N$ be a finite family of Lipschitzian (with constant $L_i > 0$) hemicontractive maps from K into itself such that $F = \bigcap_{i=1}^N F(T_i)$ is not empty. Starting with an arbitrary $x_0 \in K$, define the iterative sequence $\{x_n\}$ by

$$y_{n,0} = x_n,$$

 $y_{n,i} = T_{i\alpha\beta}y_{n,i-1},$
 $y_{n,m} = x_{n+1},$ (7)

for
$$\beta = \frac{\sqrt{1 + (1 - c)L^2} - 1}{L^2}$$
, where $1 - 2\beta - \beta^2 L^2 = c$; $L = Max\{L_i : i = 1 - 2\beta - \beta^2 L^2\}$

1, ..., N < ∞ and for any $\alpha \in (0, \beta)$. Then

1.
$$\lim_{n\to\infty} ||x_n - x^*||$$
 exists for $x^* \in F$.

2.
$$\forall i \in \{1, 2, ..., N\}, \lim_{n \to \infty} ||x_n - T_i x_n|| = 0.$$

122 Chika Moore, Agatha Chizoba Nnubia and Akabuike Nkiruka M

Proof. Let
$$x^* \in \bigcap_{i=1}^N F(T_i)$$
 and $z_{n,i} = S_{i\beta}y_{n,i-1}$, $\forall i$,

 $\|z_{n,i} - x^*\|^2 = \|S_{i\beta}y_{n,i-1} - x^*\|^2 = \|(1-\beta)y_{n,i-1} + \beta T_iy_{n,i-1} - x^*\|^2$
 $= (1-\beta)\|y_{n,i-1} - x^*\|^2 + \beta\|T_iy_{n,i-1} - x^*\|^2$
 $-\beta(1-\beta)\|T_iy_{n,i-1} - y_{n,i-1}\|^2$
 $\leq (1-\beta)\|y_{n,i-1} - x^*\|^2 + \beta(\|y_{n,i-1} - x^*\|^2)$
 $+ \|y_{n,i-1} - T_iY_{n,i-1}\|^2) - \beta(1-\beta)\|T_iy_{n,i-1} - y_{n,i-1}\|^2$
 $= \|y_{n,i-1} - x^*\|^2 + \beta^2\|y_{n,i-1} - T_iy_{n,i-1}\|^2$,

 $\|y_{n,i} - x^*\|^2 = \|T_{i\alpha\beta}y_{n,i-1} - x^*\|^2 = \|(1-\alpha)y_{n,i-1} + \alpha T_iz_{n,i} - x^*\|^2$
 $= (1-\alpha)\|y_{n,i-1} - x^*\|^2 + \alpha\|T_iz_{n,i} - x^*\|^2$
 $= (1-\alpha)\|T_iz_{n,i} - y_{n,i-1}\|^2$
 $\leq (1-\alpha)\|y_{n,i-1} - x^*\|^2 + \alpha(\|z_{n,i} - x^*\|^2 + \|z_{n,i} - T_iz_{n,i}\|^2)$
 $-\alpha(1-\alpha)\|T_iz_{n,i} - y_{n,i-1}\|^2$
 $\leq (1-\alpha)\|y_{n,i-1} - x^*\|^2 + \alpha\|y_{n,i-1} - x^*\|^2$
 $+ \alpha\beta^2\|y_{n,i-1} - T_iy_{n,i-1}\|^2$
 $+ \alpha\|z_{n,i} - T_iz_{n,i}\|^2 - \alpha(1-\alpha)\|T_iz_{n,i} - y_{n,i-1}\|^2$,

 $\|z_{n,i} - T_iz_{n,i}\|^2 - \alpha(1-\alpha)\|T_iz_{n,i} - y_{n,i-1}\|^2$,

 $\|z_{n,i} - T_iz_{n,i}\|^2 - \beta(1-\beta)\|T_iy_{n,i-1} - T_iz_{n,i}\|^2$
 $-\beta(1-\beta)\|T_iy_{n,i-1} - y_{n,i-1}\|^2$.

 $\leq (1-\beta)\|y_{n,i-1} - T_iz_{n,i}\|^2$

So.

$$\| y_{n,i} - x^* \|^2 \le \| y_{n,i-1} - x^* \|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \| y_{n,i-1} - T_i y_{n,i-1} \|^2 - \alpha (\beta - \alpha) \| y_{n,i-1} - T_i z_{n,i} \|^2.$$

Thus,

$$\| y_{n,1} - x^* \|^2 \le \| x_n - x^* \|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \| x_n - T_1 x_n \|^2$$

$$- \alpha (\beta - \alpha) \| x_n - T_1 z_{n,1} \|^2,$$

$$\| y_{n,2} - x^* \|^2$$

$$\le \| y_{n,1} - x^* \|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \| y_{n,1} - T_2 y_{n,1} \|^2$$

$$- \alpha (\beta - \alpha) \| y_{n,1} - T_2 z_{n,2} \|^2$$

$$\le \| x_n - x^* \|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) (\| x_n - T_1 x_n \|^2 + \| y_{n,1} - T_2 y_{n,1} \|^2)$$

$$- \alpha (\beta - \alpha) (\| x_n - T_1 z_{n,1} \|^2 + \| y_{n,1} - T_2 z_{n,2} \|^2).$$

Hence, $\forall i \in I$, we have

$$\| y_{n,i} - x^* \|^2 \le \| x_n - x^* \|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \sum_{j=1}^{i} \| y_{n,j-1} - T_j y_{n,j-1} \|^2$$
$$- \alpha (\beta - \alpha) \sum_{j=1}^{i} \| y_{n,j-1} - T_j z_{n,j} \|^2.$$

Therefore,

$$\| x_{n+1} - x^* \|^2$$

$$\leq \| x_n - x^* \|^2 - \alpha \beta (1 - 2\beta - \beta^2 L^2) \sum_{j=1}^m \| y_{n, j-1} - T_j y_{n, j-1} \|^2$$

$$- \alpha (\beta - \alpha) \sum_{j=1}^m \| y_{n, j-1} - T_j z_{n, j} \|^2.$$

124 Chika Moore, Agatha Chizoba Nnubia and Akabuike Nkiruka M

So,
$$\lim_{n\to\infty} \|x_n - x^*\|$$
 exists and

$$\lim_{n\to\infty} \parallel y_{n,\;j-1} - T_j y_{n,\;j-1} \parallel = 0 = \lim_{n\to\infty} \parallel y_{n,\;j-1} - T_j z_{n,\;j} \parallel, \quad \forall j\in I.$$

Now,

$$\| x_{n} - T_{j}x_{n} \| \leq \| x_{n} - y_{n, j-1} \| + \| y_{n, j-1} - T_{j}y_{n, j-1} \|$$

$$+ \| T_{j}y_{n, j-1} - T_{j}x_{n} \|$$

$$\leq (1 + L) \| x_{n} - y_{n, j-1} \| + \| y_{n, j-1} - T_{j}y_{n, j-1} \|,$$

$$\| x_{n} - y_{n, j} \| = \| (1 - \alpha)(x_{n} - y_{n, j-1}) \| + \alpha \| (T_{j}z_{n, j} - x_{n}) \|$$

$$\leq (1 - \alpha) \| y_{n, j-1} - x_{n} \| + \alpha \| x_{n} - T_{j}z_{n, j} \|$$

$$\leq \| y_{n, j-1} - x_{n} \| + \alpha \| y_{n, j-1} - T_{j}z_{n, j} \|$$

$$\leq \| y_{n, j-2} - x_{n} \|$$

$$+ \alpha(\| y_{n, j-2} - T_{j-1}z_{n, j-1} \| + \| y_{n, j-1} - T_{j}z_{n, j} \|)$$

$$\vdots$$

$$\leq \| y_{n, 0} - x_{n} \| + \alpha \sum_{i=1}^{j} (\| y_{n, i-1} - T_{i}z_{n, i} \|)$$

$$= \alpha \sum_{i=1}^{j} (\| y_{n, i-1} - T_{i}z_{n, i} \|)$$

Hence, $\lim_{n\to\infty} \|x_n - T_i x_n\| = 0$, $\forall i \in I$, thus, completing the proof.

Theorem 2.2. Let K, H, T_i 's, F, $\{x_n\}$ be as in Theorem 2.1. Then $\{x_n\}$ converges strongly to a point of F if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Proof. The proof follows easily from Theorem 2.1 and Lemma 1.2 part 2.

Theorem 2.3. Let K, H, T_i 's, F, $\{x_n\}$ be as in Theorem 2.1. Then $\{x_n\}$ converges strongly to a common fixed point of T_i 's if one of the T_i 's satisfies any of the following conditions:

- 1. condition B,
- 2. semi-compact,
- 3. demi-compact at $0 \in K$,
- 4. completely continuous.

Proof. The proof follows easily from Theorem 2.1 and Lemma 1.2 part 3.

Theorem 2.4. Let K, H, T_i 's, F, $\{x_n\}$ be as in Theorem 2.1. Then $\{x_n\}$ converges strongly to a common fixed point of T_i 's, $\{x_n\}$ converges strongly to a point of F if any of the following conditions hold:

- 1. K is compact.
- 2. K is boundedly compact.

Proof. The proof follows easily from Theorem 2.1 and Lemma 1.2 part 4.

2.2. Strong convergence theorem for finite family of quasi-accretive operators

T is hemicontractive if and only if A = I - T is quasi-accretive, so, we define the following auxiliary maps:

$$G_{i\beta} = I - \beta A_i; \quad i \in \{1, ..., m\},$$
 (8)

$$A_{i\alpha\beta} = I - \alpha\beta A_i - \alpha A_i G_{i\beta}. \tag{9}$$

Theorem 2.5. Let H be a real Hilbert space and let $A_i: H \to H$; $i \in \{1, 2, ..., m\}$ be a finite family of L_i -Lipschitzian quasi-accretive maps such that the simultaneous nonlinear equations $A_i x = 0$; $i \in \{1, 2, ..., m\}$ have a solution $x^* \in H$. Starting with an arbitrary $x_0 \in K$, define the

126 Chika Moore, Agatha Chizoba Nnubia and Akabuike Nkiruka M iterative sequence $\{x_n\}$ by

$$y_{n,0} = x_n,$$

 $y_{n,i} = A_{i\alpha\beta}y_{n,i-1},$
 $y_{n,m} = x_{n+1},$ (10)

for
$$\beta = \frac{\sqrt{1 + (1 - c)L^2} - 1}{L^2}$$
; $L = Max\{L_i : i = 1, ..., m\} < \infty$ for some $c \in (0, 1)$, $\alpha \in (0, \beta)$; then

1.
$$\lim_{n\to\infty} \|x_n - x^*\|$$
 exists $\forall x^* \in Z = \bigcap_{i=1}^m Z(A_i)$, where $Z(A) := \{w \in H \mid Aw = 0\}$ (the zero set of A),

2.
$$\lim_{n\to\infty} || A_i x_n || = 0; \forall i \in \{1, 2, ..., N\}.$$

Proof. Let $T_i = I - A_i$. Then T_i is a Lipschitzian hemicontraction. Further,

$$\begin{split} S_{i\beta} &= (1-\beta)I + \beta T_i = I - \beta(I-T_i) = I - \beta A_i = G_{i\beta}, \\ T_{i\alpha\beta} &= (1-\alpha)I + \alpha T_i S_{i\beta} = I - \alpha(I-G_{i\beta}) - \alpha A_i G_{i\beta} \\ &= I - \alpha \beta A_i - \alpha A_i G_{i\beta} = A_{i\alpha\beta}. \end{split}$$

Thus, Theorem 2.1 applies and we have the stated results.

As a result of Lemma 1.2, we have the following strong convergence results.

Theorem 2.6. Let K, H, A_i 's, Z, $\{x_n\}$ be as in Theorem 2.5. Then $\{x_n\}$ converges strongly to a point of Z if and only if $\liminf_{n\to\infty} d(x_n, Z) = 0$.

Theorem 2.7. Let K, H, A_i 's, Z, $\{x_n\}$ be as in Theorem 2.5. Then $\{x_n\}$ converges strongly to a common fixed point of A_i 's if one of the A_i 's satisfies any of the following conditions:

- 1. condition B,
- 2. semi-compact,
- 3. demi-compact at $0 \in K$,
- 4. completely continuous.

Theorem 2.8. Let K, H, A_i 's, Z, $\{x_n\}$ be as in Theorem 2.5. Then $\{x_n\}$ converges strongly to a common fixed point of A_i 's, $\{x_n\}$ converges strongly to a point of Z if any of the following conditions holds:

- 1. K is compact.
- 2. *K* is boundedly compact.

Our iterative process generalizes some of the existing ones, our result is subsequent to the result by the same authors in [6] and compliments that our theorems improve, generalize and extend several known results and our method of proof is of independent interest.

References

- [1] C. E. Chidume and Chika Moore, Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127(4) (1999), 1163-1170.
- [2] C. E. Chidume and S. A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129(8) (2001), 2359-2363.
- [3] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207(1) (1997), 96-103.
- [4] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.

- 128 Chika Moore, Agatha Chizoba Nnubia and Akabuike Nkiruka M
- [5] Li Qihou, The convergence theorems of the sequence of Ishikawa iteration for hemicontractive mappings, J. Math. Anal. Appl. 148 (1990), 55-62.
- [6] Chika Moore and A. C. Nnubia, Strong convergence of a modified Picard process to a common fixed point of a finite family of Lipschitzian hemicontractive maps, J. Nigerian Math. Soc. (JNMS) 31 (2012), 177-183.
- [7] J. Schu, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), 107-115.