JP Journal of Algebra, Number Theory and Applications

ON THE DIOPHANTINE EQUATION $4 q^{x}+7^{y}=z^{2 m}$

Somchit Chotchaisthit
Department of Mathematics
Faculty of Science
Khon Kaen University
Khon Kaen 40002, Thailand
e-mail: somchit@kku.ac.th

Abstract

Let q be a prime number and m be a non-negative integer. In this paper, we show that all non-negative integer solutions of the Diophantine equation $4 q^{x}+7^{y}=z^{2 m}$ are the following: $$
(q, x, y, z)= \begin{cases}(2,1,0,3) \text { and }(2,3,2,9) ; & \text { if } m=1 \\ (2,3,2,3) ; & \text { if } m=2\end{cases}
$$

1. Introduction

Solving Diophantine equations of the form $2^{x}+p^{y}=z^{2}$, where p is prime, has been widely studied by many mathematicians. For example, Acu [1] proved in 2007 that $(x, y, z)=(3,0,3),(2,1,3)$ are the only two non-negative solutions for the case $p=5$ whereas it was shown in 2011 by Suvarnamani et al. [10] that there is no non-negative solution (x, y, z) when x is even, for the case $p=7,11$.

Received: July 21, 2015; Revised: August 24, 2015; Accepted: September 9, 2015
2010 Mathematics Subject Classification: 11D61.
Keywords and phrases: exponential Diophantine equation.
Communicated by Istvan Gaal

In 2012, the author [2] studied the Diophantine equations $4^{x}+p^{y}=z^{2}$, where p is prime and Sroysang [5-7] studied the Diophantine equations $8^{x}+19^{y}=z^{2}, 31^{x}+32^{y}=z^{2}$ and $32^{x}+49^{y}=z^{2}$.

In 2013, Sroysang [4, 8] studied the Diophantine equations $7^{x}+8^{y}=z^{2}$ and $23^{x}+32^{y}=z^{2}$.

Later, in 2014, Sroysang [9] studied the Diophantine equations $8^{x}+13^{y}$ $=z^{2}$.

Inspired by all references, our aim is to find all possible non-negative solutions to the Diophantine equation $4 q^{x}+7^{y}=z^{2 m}$, where q is prime and m, x, y, z are non-negative integers.

2. Main Results

In this study, we use the statement on Catalan's conjecture, that the only solution in integers $a>1, b>1, x>1, y>1$ of the equation $a^{x}-b^{y}=1$ is $(a, b, x, y)=(3,2,2,3)$. (Consult [3] for more details.)

Throughout this paper, q denotes a prime number. First, we give the following lemmas which will be used in the subsequent study.

Lemma 1. The Diophantine equation $q^{x}-7^{y}=1$ has only two nonnegative integer solutions, namely, $(q, x, y)=(2,1,0)$ and $(q, x, y)=$ $(2,3,1)$.

Proof. By Catalan's conjecture, $q^{x}-7^{y}=1$ has no solution only when $x>1$ and $y>1$. It suffices to consider only the case $x \leq 1$ or case $y \leq 1$. Thus, we consider the following:

Case $x=0$. We have $1-7^{y}=1$. So $7^{y}=0$, which is impossible.

Case $x=1$. We have $q=1+7^{y}$. This implies that q is even. Since q is prime, $q=2$. It follows that $y=0$. In this case, we have $(q, x, y)=$ $(2,1,0)$.

Case $y=0$. We have $q^{x}=2$. So $q=2$ and $x=1$.

Case $y=1$. We have $q^{x}=8$. So $q=2$ and $x=3$. Thus, $(q, x, y)=$ $(2,3,1)$.

Finally, one can easily check that $(q, x, y)=(2,1,0)$ and (q, x, y) $=(2,3,1)$ are solutions of the Diophantine equation $q^{x}-7^{y}=1$. This finishes the proof.

Lemma 2. The Diophantine equation $z^{2}-7^{y}=1$ has no non-negative integer solution.

Proof. The Diophantine equation $z^{2}-7^{y}=1$ can be rewritten as

$$
7^{y}=z^{2}-1=(z+1)(z-1) .
$$

There exist α, β such that $7^{\alpha}=z+1, \quad 7^{\beta}=z-1, \quad \alpha>\beta$ and $\alpha+\beta=y$. Therefore,

$$
7^{\beta}\left(7^{\alpha-\beta}-1\right)=7^{\alpha}-7^{\beta}=(z+1)-(z-1)=2
$$

This implies that $\beta=0$ and $7^{\alpha}-1=2$. Therefore, $7^{\alpha}=3$ which is impossible.

Thus, the Diophantine equation $z^{2}-7^{y}=1$ has no non-negative integer solution. This finishes the proof.

Now we consider the Diophantine equation $4 q^{x}+7^{y}=z^{2}$.

Theorem 3. The Diophantine equation

$$
\begin{equation*}
4 q^{x}+7^{y}=z^{2} \tag{1}
\end{equation*}
$$

has only two non-negative integer solutions, namely, $(q, x, y, z)=$ $(2,1,0,3)$ and $(q, x, y, z)=(2,3,2,9)$.

Proof. Note that z is an odd integer. Thus, $z^{2} \equiv 1(\bmod 4)$. It follows that

$$
3^{y} \equiv 4 q^{x}+7^{y}=z^{2} \equiv 1(\bmod 4)
$$

This implies that y is even. Let $y=2 k$ for some $k \geq 0$. Since z is odd, $z+7^{k}$ and $z-7^{k}$ are even. Thus, equation (1) can be rewritten as

$$
q^{x}=\frac{z^{2}-7^{2 k}}{4}=\left(\frac{z+7^{k}}{2}\right)\left(\frac{z-7^{k}}{2}\right)
$$

Then there are non-negative integers α, β such that $q^{\alpha}=\frac{z+7^{k}}{2}, q^{\beta}=$ $\frac{z-7^{k}}{2}, \alpha>\beta$ and $\alpha+\beta=x$. Therefore,

$$
\begin{equation*}
q^{\beta}\left(q^{\alpha-\beta}-1\right)=q^{\alpha}-q^{\beta}=\frac{z+7^{k}}{2}-\frac{z-7^{k}}{2}=7^{k} \tag{2}
\end{equation*}
$$

If $k=0$, then $q^{\beta}\left(q^{\alpha-\beta}-1\right)=1$. This implies that $\beta=0$ and $q^{\alpha}-1=1$. That is, $q=2$ and $\alpha=1$. In this case, we have $(q, x, y, z)=(2,1,0,3)$.

Next, we consider the case $k>0$.
If $\beta>0$, then $q \mid 7^{k}$. Since q is prime, $q=7$. Equation (2) can be rewritten as

$$
7^{\beta}\left(7^{\alpha-\beta}-1\right)=7^{k}
$$

This implies that $k=\beta$ and $7^{\alpha-\beta}-1=1$. Therefore, $7^{\alpha-\beta}=2$ which is impossible. Thus, $\beta=0$. Equation (2) can be rewritten as

$$
q^{\alpha}-1=7^{k}
$$

By Lemma 1 and $k>0$, we have $(q, \alpha, k)=(2,3,1)$. Thus, (q, x, y, z) $=(2,3,2,9)$.

It is easy to check that $(q, x, y, z)=(2,1,0,3)$ and $(q, x, y, z)=$ $(2,3,2,9)$ are the solutions of $4 q^{x}+7^{y}=z^{2}$. This finishes the proof.

Using Theorem 3, the following corollaries are easy to verify.
Corollary 4. The Diophantine equation $4 q^{x}+7^{y}=z^{4}$ has only one non-negative integer solution, namely, $(q, x, y, z)=(2,3,2,3)$.

Corollary 5. Let $m \geq 3$. The Diophantine equation $4 q^{x}+7^{y}=z^{2 m}$ has no non-negative integer solution.

It is clear that the Diophantine equation $4 q^{x}+7^{y}=1$ has no nonnegative integer solution. Thus, we can conclude the following theorem.

Theorem 6. Let m be a non-negative integer. All non-negative integer solutions of the Diophantine equation $4 q^{x}+7^{y}=z^{2 m}$ are following:

$$
(q, x, y, z)= \begin{cases}(2,1,0,3) \text { and }(2,3,2,9) ; & \text { if } m=1 \\ (2,3,2,3) ; & \text { if } m=2\end{cases}
$$

Using Theorem 6, it is easy to show:
Example 7 (Theorem 3.1 [4]). The Diophantine equation $7^{x}+8^{y}=z^{2}$ has only one non-negative integer solution, namely, $(x, y, z)=(0,1,3)$.

Example 8 (Theorem 3.1 [7]). The Diophantine equation $32^{x}+49^{y}$ $=z^{2}$ has only one non-negative integer solution, namely, $(x, y, z)=(1,1,9)$.

Example 9 (Theorem 2.1 [10]). The Diophantine equation $4^{x}+7^{y}=z^{2}$ has no non-negative integer solution.

Proof. By Lemma 2, we know that the Diophantine equation $4^{x}+7^{y}$ $=z^{2}$ has no non-negative integer solution when $x=0$. For $x \geq 1$, the Diophantine equation $4^{x}+7^{y}=z^{2}$ can be rewritten as $4\left(2^{2 x-2}\right)+7^{y}=z^{2}$. Since $x \geq 1,2 x-2 \geq 0$. By Theorem 3, we have $(2 x-2, y, z)=(1,0,3)$ or $(2 x-2, y, z)=(3,2,9)$. Since x is an integer, $2 x-2=1$ and $2 x-2$ $=3$ are impossible. Thus, the Diophantine equation $4^{x}+7^{y}=z^{2}$ has no non-negative integer solution.

The following statement is a consequence of Theorem 3.
Example 10. The Diophantine equation

$$
\begin{equation*}
196 q^{x}+7^{y}=z^{2} \tag{3}
\end{equation*}
$$

has only two non-negative integer solutions, namely, $(q, x, y, z)=$ $(2,1,2,21)$ and $(q, x, y, z)=(2,3,4,63)$.

Proof. We know that $z \geq 3$ is an odd integer. Thus, $z+1$ and $z-1$ are even integers. So $\operatorname{gcd}\left(\frac{z+1}{2}, \frac{z-1}{2}\right)=1$. We consider equation (3) into three cases:

Case 1. $y=0$. Equation (3) can be rewritten as

$$
\begin{align*}
& 196 q^{x}=z^{2}-1=(z+1)(z-1), \tag{4}\\
& 49 q^{x}=\left(\frac{z+1}{2}\right)\left(\frac{z-1}{2}\right) . \tag{5}
\end{align*}
$$

Since $\operatorname{gcd}\left(\frac{z-1}{2}, \frac{z+1}{2}\right)=1$ and 7 is prime, $49 \left\lvert\, \frac{z+1}{2}\right.$ or $49 \left\lvert\, \frac{z-1}{2}\right.$ but not both.

Case $49 \left\lvert\, \frac{z+1}{2}\right.$. Equation (5) can be rewritten as

$$
q^{x}=\left(\frac{z+1}{98}\right)\left(\frac{z-1}{2}\right) .
$$

Then there are non-negative integers α, β such that $q^{\alpha}=\frac{z+1}{98}, q^{\beta}=\frac{z-1}{2}$ and $\alpha+\beta=x$. Since $z \geq 3$, it is easy to check that $\alpha<\beta$. One can see that

$$
q^{\alpha}\left(q^{\beta-\alpha}-49\right)=q^{\beta}-49 q^{\alpha}=\frac{z-1}{2}-\frac{z+1}{2}=-1 .
$$

This implies that $\alpha=0$ and $q^{\beta}-49=-1$. Therefore, $q^{\beta}=48$ which is impossible.

Case $49 \left\lvert\, \frac{z-1}{2}\right.$. Equation (5) can be rewritten as

$$
q^{x}=\left(\frac{z+1}{2}\right)\left(\frac{z-1}{98}\right)
$$

Then there are non-negative integers α, β such that $q^{\alpha}=\frac{z+1}{2}, q^{\beta}=\frac{z-1}{98}$ and $\alpha+\beta=x$. It is easy to check that $\alpha>\beta$. One can see that

$$
q^{\beta}\left(q^{\alpha-\beta}-49\right)=q^{\alpha}-49 q^{\beta}=\frac{z+1}{2}-\frac{z-1}{2}=1 .
$$

This implies that $\beta=0$ and $q^{\alpha}-49=1$. Therefore, $q^{\alpha}=50$ which is impossible. In this case, the Diophantine equation (3) has no non-negative integer solution.

Case 2. $y=1$. Then the Diophantine equation (3) can be rewritten as $28 q^{x}+1=7 k^{2}$, where $z=7 k$ for some $k \geq 1$. This implies that $7 \mid 1$. This is a contradiction.

Case 3. $y>1$. Then the Diophantine equation (3) can be rewritten as $4 q^{x}+7^{y-2}=k^{2}$, where $z=7 k$ for some $k \geq 1$. By Theorem 3, we have $(q, x, y-2, k)=(2,1,0,3)$ and $(q, x, y-2, k)=(2,3,2,9)$ are only two non-negative integer solutions of the Diophantine equation $4 q^{x}+7^{y-2}$ $=k^{2}$. Thus, $(q, x, y, z)=(2,1,2,21)$ and $(q, x, y, z)=(2,3,4,63)$.

It is easy to verity that $(q, x, y, z)=(2,1,2,21)$ and $(q, x, y, z)=$ $(2,3,4,63)$ satisfy the equation $196 q^{x}+7^{y}=z^{2}$. This completes the proof.

Using Example 10, the following example is easy to verify.
Example 11. Let $m \geq 2$ be an integer. Then the Diophantine equation $196 q^{x}+7^{y}=z^{2 m}$ has no non-negative integer solution.

Example 12. The Diophantine equation $4 q^{2 x}+q^{2} 7^{y}=z^{2}$ has no nonnegative integer solution.

Proof. We consider the Diophantine equation $4 q^{2 x}+q^{2} 7^{y}=z^{2}$ into two cases:

Case 1. $x=0$. Suppose q is odd. This implies that z is odd. So $q^{2} \equiv$ $1(\bmod 4)$ and $z^{2} \equiv 1(\bmod 4)$. Thus,

$$
3^{y} \equiv 4+q^{2} 7^{y}=z^{2} \equiv 1(\bmod 4) .
$$

This implies that y is even. So let $y=2 k$ for some $k \geq 0$. So

$$
4=z^{2}-q^{2} 7^{2 k}=\left(z+q 7^{k}\right)\left(z-q 7^{k}\right)
$$

Since $z+q 7^{k}>z-q 7^{k}>0$, we have $z+q 7^{k}=4$ and $z-q 7^{k}=1$. It follows that $z=\frac{5}{2}$. This contradicts the fact that z is a non-negative integer.

Thus, q is even. Since q is prime, $q=2$. Therefore, $4 q^{2 x}+q^{2} 7^{y}=z^{2}$ can be rewritten as $4+4\left(7^{y}\right)=z^{2}$ or $1+7^{y}=t^{2}$, where $z=2 t$ for some $t \geq 1$. By Lemma 2, the equation $1+7^{y}=t^{2}$ has no non-negative integer solution. This implies that the Diophantine equation $4 q^{2 x}+q^{2} 7^{y}=z^{2}$ has no non-negative integer solution.

Case 2. $x>0$. The Diophantine equation $4 q^{2 x}+q^{2} 7^{y}=z^{2}$ can be rewritten as $4 q^{2 x-2}+7^{y}=s^{2}$, where $z=s q$ for some $s \geq 1$. By Theorem 3 , we have $(q, 2 x-2, y, s)=(2,1,0,3)$ or $(q, 2 x-2, y, s)=(2,3,2,9)$. We know that $2 x-2=1$ and $2 x-2=3$ are impossible. Thus, the Diophantine equation $4 q^{2 x}+q^{2} 7^{y}=z^{2}$ has no non-negative integer solution.

Using Example 12, the following example is easy to verify.
Example 13. Let m be a non-negative integer. The Diophantine equation $4 q^{2 x}+q^{2} 7^{y}=z^{2 m}$ has no non-negative integer solution.

3. Open Problems

Note that solving the Diophantine equation $4 q^{x}+p^{y}=z^{2}$, where q, p are prime is still an open problem. The non-negative integer solutions of $4 q^{x}+17^{y}=z^{2}$ are not known, either.

Acknowledgement

This work is supported by Faculty of Science, Khon Kaen University, Thailand under Incubation Researcher Project.

References

[1] D. Acu, On a Diophantine equation $2^{x}+5^{y}=z^{2}$, Gen. Math. 15 (2007), 145-148.
[2] S. Chotchaisthit, On the Diophantine equation $4^{x}+p^{y}=z^{2}$, where p is a prime number, Amer. J. Math. Sci. 1 (2012), 191-193.
[3] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 27 (2004), 167-195.
[4] B. Sroysang, On the Diophantine equation $7^{x}+8^{y}=z^{2}$, Int. J. Pure Appl. Math. 84 (2013), 111-114.
[5] B. Sroysang, More on the Diophantine equation $8^{x}+19^{y}=z^{2}$, Int. J. Pure Appl. Math. 81 (2012), 601-604.
[6] B. Sroysang, On the Diophantine equation $31^{x}+32^{y}=z^{2}$, Int. J. Pure Appl. Math. 81 (2012), 609-612.
[7] B. Sroysang, On the Diophantine equation $32^{x}+49^{y}=z^{2}$, Journal of Mathematical Sciences: Advances and Applications 16 (2012), 9-12.
[8] B. Sroysang, On the Diophantine equation $23^{x}+32^{y}=z^{2}$, Int. J. Pure Appl. Math. 84 (2013), 231-234.
[9] B. Sroysang, On the Diophantine equation $8^{x}+13^{y}=z^{2}$, Int. J. Pure Appl. Math. 90 (2014), 69-72.
[10] A. Suvarnamani, A. Singta and S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Sci. Technol. RMUTT J. 1 (2011), 25-28.

