## JP Journal of Algebra, Number Theory and Applications



Volume 38, Number 1, 2016, Pages 19-28

# **ON THE DIOPHANTINE EQUATION** $4q^x + 7^y = z^{2m}$

ISSN: 0972-5555

## **Somehit Chotchaisthit**

Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: somchit@kku.ac.th

#### **Abstract**

Let q be a prime number and m be a non-negative integer. In this paper, we show that all non-negative integer solutions of the Diophantine equation  $4q^x + 7^y = z^{2m}$  are the following:

$$(q, x, y, z) = \begin{cases} (2, 1, 0, 3) \text{ and } (2, 3, 2, 9); & \text{if } m = 1, \\ (2, 3, 2, 3); & \text{if } m = 2. \end{cases}$$

#### 1. Introduction

Solving Diophantine equations of the form  $2^x + p^y = z^2$ , where p is prime, has been widely studied by many mathematicians. For example, Acu [1] proved in 2007 that (x, y, z) = (3, 0, 3), (2, 1, 3) are the only two non-negative solutions for the case p = 5 whereas it was shown in 2011 by Suvarnamani et al. [10] that there is no non-negative solution (x, y, z) when x is even, for the case p = 7, 11.

Received: July 21, 2015; Revised: August 24, 2015; Accepted: September 9, 2015

2010 Mathematics Subject Classification: 11D61.

Keywords and phrases: exponential Diophantine equation.

Communicated by Istvan Gaal

In 2012, the author [2] studied the Diophantine equations  $4^x + p^y = z^2$ , where p is prime and Sroysang [5-7] studied the Diophantine equations  $8^x + 19^y = z^2$ ,  $31^x + 32^y = z^2$  and  $32^x + 49^y = z^2$ .

In 2013, Sroysang [4, 8] studied the Diophantine equations  $7^x + 8^y = z^2$  and  $23^x + 32^y = z^2$ .

Later, in 2014, Sroysang [9] studied the Diophantine equations  $8^x + 13^y = z^2$ .

Inspired by all references, our aim is to find all possible non-negative solutions to the Diophantine equation  $4q^x + 7^y = z^{2m}$ , where q is prime and m, x, y, z are non-negative integers.

### 2. Main Results

In this study, we use the statement on Catalan's conjecture, that the only solution in integers a > 1, b > 1, x > 1, y > 1 of the equation  $a^x - b^y = 1$  is (a, b, x, y) = (3, 2, 2, 3). (Consult [3] for more details.)

Throughout this paper, q denotes a prime number. First, we give the following lemmas which will be used in the subsequent study.

**Lemma 1.** The Diophantine equation  $q^x - 7^y = 1$  has only two nonnegative integer solutions, namely, (q, x, y) = (2, 1, 0) and (q, x, y) = (2, 3, 1).

**Proof.** By Catalan's conjecture,  $q^x - 7^y = 1$  has no solution only when x > 1 and y > 1. It suffices to consider only the case  $x \le 1$  or case  $y \le 1$ . Thus, we consider the following:

Case x = 0. We have  $1 - 7^y = 1$ . So  $7^y = 0$ , which is impossible.

Case x = 1. We have  $q = 1 + 7^y$ . This implies that q is even. Since q is prime, q = 2. It follows that y = 0. In this case, we have (q, x, y) = (2, 1, 0).

Case y = 0. We have  $q^x = 2$ . So q = 2 and x = 1.

Case y = 1. We have  $q^x = 8$ . So q = 2 and x = 3. Thus, (q, x, y) = (2, 3, 1).

Finally, one can easily check that (q, x, y) = (2, 1, 0) and (q, x, y) = (2, 3, 1) are solutions of the Diophantine equation  $q^x - 7^y = 1$ . This finishes the proof.

**Lemma 2.** The Diophantine equation  $z^2 - 7^y = 1$  has no non-negative integer solution.

**Proof.** The Diophantine equation  $z^2 - 7^y = 1$  can be rewritten as

$$7^y = z^2 - 1 = (z+1)(z-1).$$

There exist  $\alpha$ ,  $\beta$  such that  $7^{\alpha} = z + 1$ ,  $7^{\beta} = z - 1$ ,  $\alpha > \beta$  and  $\alpha + \beta = y$ . Therefore,

$$7^{\beta}(7^{\alpha-\beta}-1)=7^{\alpha}-7^{\beta}=(z+1)-(z-1)=2.$$

This implies that  $\beta=0$  and  $7^{\alpha}-1=2$ . Therefore,  $7^{\alpha}=3$  which is impossible.

Thus, the Diophantine equation  $z^2 - 7^y = 1$  has no non-negative integer solution. This finishes the proof.

Now we consider the Diophantine equation  $4q^x + 7^y = z^2$ .

**Theorem 3.** The Diophantine equation

$$4q^x + 7^y = z^2 \tag{1}$$

has only two non-negative integer solutions, namely, (q, x, y, z) = (2, 1, 0, 3) and (q, x, y, z) = (2, 3, 2, 9).

**Proof.** Note that z is an odd integer. Thus,  $z^2 \equiv 1 \pmod{4}$ . It follows that

$$3^y \equiv 4q^x + 7^y = z^2 \equiv 1 \pmod{4}$$
.

This implies that y is even. Let y = 2k for some  $k \ge 0$ . Since z is odd,  $z + 7^k$  and  $z - 7^k$  are even. Thus, equation (1) can be rewritten as

$$q^{x} = \frac{z^{2} - 7^{2k}}{4} = \left(\frac{z + 7^{k}}{2}\right) \left(\frac{z - 7^{k}}{2}\right).$$

Then there are non-negative integers  $\alpha$ ,  $\beta$  such that  $q^{\alpha} = \frac{z + 7^k}{2}$ ,  $q^{\beta} = \frac{z - 7^k}{2}$ ,  $\alpha > \beta$  and  $\alpha + \beta = x$ . Therefore,

$$q^{\beta}(q^{\alpha-\beta}-1) = q^{\alpha} - q^{\beta} = \frac{z+7^k}{2} - \frac{z-7^k}{2} = 7^k.$$
 (2)

If k = 0, then  $q^{\beta}(q^{\alpha-\beta} - 1) = 1$ . This implies that  $\beta = 0$  and  $q^{\alpha} - 1 = 1$ . That is, q = 2 and  $\alpha = 1$ . In this case, we have (q, x, y, z) = (2, 1, 0, 3).

Next, we consider the case k > 0.

If  $\beta > 0$ , then  $q \mid 7^k$ . Since q is prime, q = 7. Equation (2) can be rewritten as

$$7^{\beta}(7^{\alpha-\beta}-1)=7^k.$$

This implies that  $k = \beta$  and  $7^{\alpha-\beta} - 1 = 1$ . Therefore,  $7^{\alpha-\beta} = 2$  which is impossible. Thus,  $\beta = 0$ . Equation (2) can be rewritten as

$$q^{\alpha} - 1 = 7^k.$$

By Lemma 1 and k > 0, we have  $(q, \alpha, k) = (2, 3, 1)$ . Thus, (q, x, y, z) = (2, 3, 2, 9).

It is easy to check that (q, x, y, z) = (2, 1, 0, 3) and (q, x, y, z) = (2, 3, 2, 9) are the solutions of  $4q^x + 7^y = z^2$ . This finishes the proof.  $\Box$ 

Using Theorem 3, the following corollaries are easy to verify.

**Corollary 4.** The Diophantine equation  $4q^x + 7^y = z^4$  has only one non-negative integer solution, namely, (q, x, y, z) = (2, 3, 2, 3).

**Corollary 5.** Let  $m \ge 3$ . The Diophantine equation  $4q^x + 7^y = z^{2m}$  has no non-negative integer solution.

It is clear that the Diophantine equation  $4q^x + 7^y = 1$  has no non-negative integer solution. Thus, we can conclude the following theorem.

**Theorem 6.** Let m be a non-negative integer. All non-negative integer solutions of the Diophantine equation  $4q^x + 7^y = z^{2m}$  are following:

$$(q, x, y, z) = \begin{cases} (2, 1, 0, 3) \ and \ (2, 3, 2, 9); & if \ m = 1, \\ (2, 3, 2, 3); & if \ m = 2. \end{cases}$$

Using Theorem 6, it is easy to show:

**Example 7** (Theorem 3.1 [4]). The Diophantine equation  $7^x + 8^y = z^2$  has only one non-negative integer solution, namely, (x, y, z) = (0, 1, 3).

**Example 8** (Theorem 3.1 [7]). The Diophantine equation  $32^x + 49^y = z^2$  has only one non-negative integer solution, namely, (x, y, z) = (1, 1, 9).

**Example 9** (Theorem 2.1 [10]). The Diophantine equation  $4^x + 7^y = z^2$  has no non-negative integer solution.

**Proof.** By Lemma 2, we know that the Diophantine equation  $4^x + 7^y = z^2$  has no non-negative integer solution when x = 0. For  $x \ge 1$ , the Diophantine equation  $4^x + 7^y = z^2$  can be rewritten as  $4(2^{2x-2}) + 7^y = z^2$ . Since  $x \ge 1$ ,  $2x - 2 \ge 0$ . By Theorem 3, we have (2x - 2, y, z) = (1, 0, 3) or (2x - 2, y, z) = (3, 2, 9). Since x is an integer, 2x - 2 = 1 and 2x - 2 = 3 are impossible. Thus, the Diophantine equation  $4^x + 7^y = z^2$  has no non-negative integer solution.

The following statement is a consequence of Theorem 3.

# Example 10. The Diophantine equation

$$196q^x + 7^y = z^2 (3)$$

has only two non-negative integer solutions, namely, (q, x, y, z) = (2, 1, 2, 21) and (q, x, y, z) = (2, 3, 4, 63).

**Proof.** We know that  $z \ge 3$  is an odd integer. Thus, z+1 and z-1 are even integers. So  $\gcd\left(\frac{z+1}{2}, \frac{z-1}{2}\right) = 1$ . We consider equation (3) into three cases:

Case 1. y = 0. Equation (3) can be rewritten as

$$196q^{x} = z^{2} - 1 = (z+1)(z-1), \tag{4}$$

$$49q^x = \left(\frac{z+1}{2}\right)\left(\frac{z-1}{2}\right). \tag{5}$$

Since  $gcd\left(\frac{z-1}{2}, \frac{z+1}{2}\right) = 1$  and 7 is prime,  $49\left|\frac{z+1}{2}\right|$  or  $49\left|\frac{z-1}{2}\right|$  but not both.

Case 49  $\frac{z+1}{2}$ . Equation (5) can be rewritten as

$$q^x = \left(\frac{z+1}{98}\right) \left(\frac{z-1}{2}\right).$$

Then there are non-negative integers  $\alpha$ ,  $\beta$  such that  $q^{\alpha} = \frac{z+1}{98}$ ,  $q^{\beta} = \frac{z-1}{2}$  and  $\alpha + \beta = x$ . Since  $z \ge 3$ , it is easy to check that  $\alpha < \beta$ . One can see that

$$q^{\alpha}(q^{\beta-\alpha}-49)=q^{\beta}-49q^{\alpha}=\frac{z-1}{2}-\frac{z+1}{2}=-1.$$

This implies that  $\alpha = 0$  and  $q^{\beta} - 49 = -1$ . Therefore,  $q^{\beta} = 48$  which is impossible.

Case 49  $\left| \frac{z-1}{2} \right|$ . Equation (5) can be rewritten as

$$q^x = \left(\frac{z+1}{2}\right) \left(\frac{z-1}{98}\right).$$

Then there are non-negative integers  $\alpha$ ,  $\beta$  such that  $q^{\alpha} = \frac{z+1}{2}$ ,  $q^{\beta} = \frac{z-1}{98}$  and  $\alpha + \beta = x$ . It is easy to check that  $\alpha > \beta$ . One can see that

$$q^{\beta}(q^{\alpha-\beta}-49)=q^{\alpha}-49q^{\beta}=\frac{z+1}{2}-\frac{z-1}{2}=1.$$

This implies that  $\beta = 0$  and  $q^{\alpha} - 49 = 1$ . Therefore,  $q^{\alpha} = 50$  which is impossible. In this case, the Diophantine equation (3) has no non-negative integer solution.

Case 2. y = 1. Then the Diophantine equation (3) can be rewritten as  $28q^x + 1 = 7k^2$ , where z = 7k for some  $k \ge 1$ . This implies that 7|1. This is a contradiction.

Case 3. y > 1. Then the Diophantine equation (3) can be rewritten as  $4q^x + 7^{y-2} = k^2$ , where z = 7k for some  $k \ge 1$ . By Theorem 3, we have (q, x, y - 2, k) = (2, 1, 0, 3) and (q, x, y - 2, k) = (2, 3, 2, 9) are only two non-negative integer solutions of the Diophantine equation  $4q^x + 7^{y-2} = k^2$ . Thus, (q, x, y, z) = (2, 1, 2, 21) and (q, x, y, z) = (2, 3, 4, 63).

It is easy to verity that (q, x, y, z) = (2, 1, 2, 21) and (q, x, y, z) = (2, 3, 4, 63) satisfy the equation  $196q^x + 7^y = z^2$ . This completes the proof.

Using Example 10, the following example is easy to verify.

**Example 11.** Let  $m \ge 2$  be an integer. Then the Diophantine equation  $196q^x + 7^y = z^{2m}$  has no non-negative integer solution.

**Example 12.** The Diophantine equation  $4q^{2x} + q^27^y = z^2$  has no nonnegative integer solution.

**Proof.** We consider the Diophantine equation  $4q^{2x} + q^27^y = z^2$  into two cases:

Case 1. x = 0. Suppose q is odd. This implies that z is odd. So  $q^2 \equiv 1 \pmod{4}$  and  $z^2 \equiv 1 \pmod{4}$ . Thus,

$$3^y \equiv 4 + q^2 7^y = z^2 \equiv 1 \pmod{4}$$
.

This implies that y is even. So let y = 2k for some  $k \ge 0$ . So

$$4 = z^{2} - q^{2}7^{2k} = (z + q7^{k})(z - q7^{k}).$$

Since  $z + q7^k > z - q7^k > 0$ , we have  $z + q7^k = 4$  and  $z - q7^k = 1$ . It follows that  $z = \frac{5}{2}$ . This contradicts the fact that z is a non-negative integer.

Thus, q is even. Since q is prime, q=2. Therefore,  $4q^{2x}+q^27^y=z^2$  can be rewritten as  $4+4(7^y)=z^2$  or  $1+7^y=t^2$ , where z=2t for some  $t\geq 1$ . By Lemma 2, the equation  $1+7^y=t^2$  has no non-negative integer solution. This implies that the Diophantine equation  $4q^{2x}+q^27^y=z^2$  has no non-negative integer solution.

Case 2. x > 0. The Diophantine equation  $4q^{2x} + q^27^y = z^2$  can be rewritten as  $4q^{2x-2} + 7^y = s^2$ , where z = sq for some  $s \ge 1$ . By Theorem 3, we have (q, 2x - 2, y, s) = (2, 1, 0, 3) or (q, 2x - 2, y, s) = (2, 3, 2, 9). We know that 2x - 2 = 1 and 2x - 2 = 3 are impossible. Thus, the Diophantine equation  $4q^{2x} + q^27^y = z^2$  has no non-negative integer solution.

Using Example 12, the following example is easy to verify.

**Example 13.** Let m be a non-negative integer. The Diophantine equation  $4q^{2x} + q^27^y = z^{2m}$  has no non-negative integer solution.

## 3. Open Problems

Note that solving the Diophantine equation  $4q^x + p^y = z^2$ , where q, p are prime is still an open problem. The non-negative integer solutions of  $4q^x + 17^y = z^2$  are not known, either.

#### Acknowledgement

This work is supported by Faculty of Science, Khon Kaen University, Thailand under Incubation Researcher Project.

#### References

- [1] D. Acu, On a Diophantine equation  $2^x + 5^y = z^2$ , Gen. Math. 15 (2007), 145-148.
- [2] S. Chotchaisthit, On the Diophantine equation  $4^x + p^y = z^2$ , where p is a prime number, Amer. J. Math. Sci. 1 (2012), 191-193.
- [3] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 27 (2004), 167-195.
- [4] B. Sroysang, On the Diophantine equation  $7^x + 8^y = z^2$ , Int. J. Pure Appl. Math. 84 (2013), 111-114.
- [5] B. Sroysang, More on the Diophantine equation  $8^x + 19^y = z^2$ , Int. J. Pure Appl. Math. 81 (2012), 601-604.
- [6] B. Sroysang, On the Diophantine equation  $31^x + 32^y = z^2$ , Int. J. Pure Appl. Math. 81 (2012), 609-612.
- [7] B. Sroysang, On the Diophantine equation  $32^x + 49^y = z^2$ , Journal of Mathematical Sciences: Advances and Applications 16 (2012), 9-12.
- [8] B. Sroysang, On the Diophantine equation  $23^x + 32^y = z^2$ , Int. J. Pure Appl. Math. 84 (2013), 231-234.
- [9] B. Sroysang, On the Diophantine equation  $8^x + 13^y = z^2$ , Int. J. Pure Appl. Math. 90 (2014), 69-72.
- [10] A. Suvarnamani, A. Singta and S. Chotchaisthit, On two Diophantine equations  $4^x + 7^y = z^2$  and  $4^x + 11^y = z^2$ , Sci. Technol. RMUTT J. 1 (2011), 25-28.