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Abstract
Let M be a module over a commutative ring R with non-zero identity.
In this paper, for a pair of ideals (a, I) of R, we introduce the
inverse limit of local homology 3™'(M) as follows: §'(M) =
Ii__mneNHi'(M/a”M) for all i>0. Also, we study some of its
properties and analyze their structure, the vanishing, non-vanishing

and Artinianness of &“"(M). Moreover, there are some exact

sequences concerning the inverse limit of local homology, among
them a variant of Mayer-Vietoris sequence.

1. Introduction

Throughout this paper, assume that R is a commutative ring with non-
zero identity, 1 and a are ideals of R and M is an R-module. In [6], we have

Received: June 14, 2015; Revised: July 28, 2015; Accepted: August 20, 2015

2010 Mathematics Subject Classification: 13D45, 16E30, 13J99.

Keywords and phrases: inverse limit; local homology; local cohomology; vanishing of inverse
limit of local homology, linearly compact module.

Work partially supported by CNPg-Brazil - Grant 245872/2012-4 and FAPESP-Brazil - Grant
2012/20304-1.

Communicated by K. K. Azad



2 V. H. Jorge Pérez and C. H. Tognon
that Grothendieck introduced the definition of local cohomology module as
the module H,i(M)zli_mteNExtiR(R/lt, M) that is called the ith local
cohomology module of M with respect to I. In [4], Cuong and Nam defined
the local homology modules Hi' (M) with respect to | by

H{ (M) = lim Tor} (R/1Y, M).
teN

This definition is dual to Grothendieck’s definition of local cohomology
modules and coincides with the definition of Greenlees and May [8] for an
Artinian R-module M. For basic results about local homology, we refer the
reader to [4, 5] and [21]; for local cohomology, see [3].

In this paper, we introduce the inverse limit of local homology denoted
by 3" ! (M) = Ii‘_mneNHiI (M/a"M). This definition is an attempt to
introduce something similar the formal local conomology defined in [18] and
[9].

The organization of the paper is as follows. In the next section, we study
some basic and main properties and show that under certain conditions, the
inverse limit of local homology is reduced to local homology module with

respect to an ideal. Also, we obtain some long exact sequences, for example a
Mayer-Vietoris sequence.

In Section 3, we provide some conditions for that inverse limit of local
homology become an Artinian R-module. Section 4 is devoted to study the
vanishing and non-vanishing of a such module.

2. Some Properties and Exact Sequences

Definition 2.1 [4, Definition 3.1]. Let M be an R-module. The ith local
homology module H;' (M) of M with respect to I is defined by

H (M) = lim, _ Tor{(R/1Y, M),
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Now, consider the family of local homology modules

{HiI (M/a"M)}, - Forevery n e N, there is a natural homomorphism
G,k * Hi (M/a"M) > H{ (M/a*M),
forany 0 <k <n.

Thus, we have two families of R-modules {H; (M/a"M Mnen, and of
R-homomorphisms {¢,  : H; (M/a"M) - H; (M/akM)|k <n, k,neN}.

These families form an inverse system. Their inverse limit that is given

by Ii_mneNHiI (M/a"M) is called the inverse limit of local homology, and
will be denoted by F'(M).

Now, let M be an R-module and let N be a submodule of M. For m e M,
we define a subset of M :m+ N ={m+n|n e N}. A subset of M is said

to be a coset of N if there exists m e M such that it is equal to m+ N
[14, Definition 5]. Moreover, x € m + N if and only if there exists n such
that ne N and x = m+n.

Consider that the ring R is Noetherian and has a topological structure.
Let us recall the concept of linearly compact modules by terminology of
Macdonald [11, Definition 3.1]. Let M be a topological R-module. A nucleus
of M is a neighbourhood of the zero element of M, and a nuclear base of M is
a base for the nuclei of M. M is Hausdorff if and only if the intersection of
all the nuclei of M is 0. It is said to be linearly topologized if M has a
nuclear base > consisting of submodules. A Hausdorff linearly topologized
R-module M is said to be linearly compact if M has the following property: if
§ is a family of closed cosets (i.e., cosets of closed submodules) in M which
has the finite intersection property, then the cosets in § have a non-empty
intersection. It should be noted that an Artinian R-module is linearly compact
with the discrete topology [7, Theorem 2.1]. A Hausdorff linearly
topologized R-module M is called semidiscrete if every submodule of M is
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closed. For an R-module M and a submodule N < M, we define the set
(N:pm a)={me M|am < N}. Observe that (N :\; a) is a submodule of
M and that N < (N :y a). For an R-module M, the a-torsion of M is
defined by

(M) =, ©0:m a")={meM][a"m =0, for some integer n > 1}.
Observe that T,;(M ) is a submodule of M.

Moreover, for a local ring (R, m) and Noetherian, we define the Matlis
dual module D(M)=Homg(M, E) of M, where E = E(R/m) is the

injective envelope of the residue field R/m.

Remark 2.2. The set of powers a" of ideal a forms a base of open of
the zero element of R. The topology defined in R is called a -adic topology.

Similarly, given an R-module M, the set a"M is a base of open of the zero
element of M defining the a-adic topology of M. The R-module M is said to
be complete with respect to the a-adic topology if A,(M)= M, where we

use Ag(M)=lim . M/a"M todenote the a-adic completion of M.

Proposition 2.3. Suppose that R is a Noetherian ring. Let M be a
linearly compact R-module. Then, for all i > 0, we have that

&0 (M) = H (lim M/a"M).
neN

Proof. By definition, we have Si“"(M)z !i_mneN!i_mteNToriR(R/lt,

M/a"M). As inverse limits commute (see [17, Theorem 2.26]), since that

{M/a“M}neN is an inverse system of linearly compact modules (see
[11, Properties 3.14, 3.3 and 3.5]), by [5, Lemma 2.7], we have that

| . R t n | n
50 (M) = lim TorR(R/1%, lim M/a"M) = H{ (lim M/a"M). O
teN neN neN
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Remark 2.4. Note that if M is complete with respect to the a-adic
topology, then §'(M) = H{ (M).

Proposition 2.5. Let M be an R-module. Then, for all i > 0, the inverse

limit of local homology ;" ! (M) is I-separated, i.e., ﬂs>0 153 : (M) =0.

Proof. Note that for any inverse system of R-modules {M¢ }; _,, we have

Ilim M < lim IM;.
teN teN

Thus,

(155" (M) = lim(1° lim H{ (M/a"M)) < lim lim 1°H{ (M/a"M).

>0 seN neN seNneN

As, by [17, Theorem 2.26], inverse limits commute, we have that

()1°5™" (M) < lim lim lim 1°Tor® (R/1", M/a"M) = 0,
s>0 neNteN seN

since 13Tor}(R/I1Y, M/a™M) =0, forall s >t. O

Proposition 2.6. Suppose that (R, m) is a Noetherian local ring. Let M
be an Artinian R-module. Then, for all i > 0, we have that

N ~ i
D(3i" (M) = H{(D(A4(M))).
Proof. Since M is an Artinian R-module, the family {M/a"M}_y isan
inverse system of Artinian R-modules and thus, we have that

5 (M) = lim H{ (M/a"M) = H{ (lim M/a"M) = H] (A, (M)
neN neN

by Proposition 2.3. Now, by [10, Properties 27.2 and 27.3], we have that
Ay(M) is an Artinian R-module. Therefore, by [2, Corollary 2.3(ii)], we

have the isomorphism
D(H{ (A;(M))) = H}(D(A4(M))), forall i >0,

as required. O
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Remark 2.7. Let M be a linearly compact R-module, with R Noetherian
ring. Then

M H G M) =F (M), ifi=0j20and
(i) H{ ' (M) =0, if i >0, j>0.
This is a consequence of [5, Lemma 3.9]. Indeed, we have that

(i) HI 35" (M) = lim, _(H (H](M/a"M)) =0, if i > 0 and

(i) HY @' (M) = lim, _(H (H}(M/a"M)) = 55 (M), if i =0

by [5, Lemma 3.9].

Proposition 2.8. Let M be a linearly compact R-module, with R
Noetherian ring. Then for all j > 0,

@) &a’I(HJ!(M ) = !iLnneN(Hjl'(M)@@R R/a™), if i = 0;
(i) 3 ' (Hl(M) =0, ifi>o0.

Proof. By [5, Lemma 2.6], we have that {TorJ (R/1Y, M)} form an

inverse system of linearly compact R-modules. Note that
SANGHUD)

= lim,,_Hi (Hj(M)/a"H [ (M)

= lim  _ N(IlmteNTor,R(R/l H i (M)®R R/a™))

I

; R to; R
lim _lim _ Tor™ (R/I%, lim _ Tor'(R/1°, M) ®g R/a")

Now, by [5, Lemma 2.7], we have that

TorJ (R/1°, M) ®g R/a" = | SeN(TorJ (R/1°, M) ®g R/a")



Inverse Limit of Local Homology 7
and so, it follows that ;" ! (H } (M)) is equal to

. - R t R
lim_ _lim,_Tor" (R/I, lim__ (Tor[*(R/1°, M) ®g R/a")).

—neN
Thus, by [5, Lemma 2.3(iii)] and [5, Lemma 2.7], we have that
3> (H } (M)) is isomorphic to
limy, _p lim, g limg_ TorR (R/1, TorR(R/15, M) ®g R/a").
Since, by [17, Theorem 2.26], inverse limits commute, we have that
N . .
§(Hj(M) = lim, _lim_ H{ (Tor['(R/1°, M) ® R/a").
Now, by [5, Lemma 3.2(i)], we have that
H{ (TorR(R/1°, M) ® R/a")
= limy  Hi(X(k), TorR(R/1°, M) ®g R/a"),
where X = (Xq, ..., X;) is a generator system of | and X(k) = (x{‘, x'r‘).
Since X(k)TorJ—R(R/IS, M) =0, forall k > s, we get
(i) lim, _Hi(X(k), TorR(R/1%, M) ®g R/a™) = Tor}(R/1°, M)
®g R/a", if i = 0; and

(i) lim, _Hi(X(k), TorR(R/1°, M) ®g R/a") = 0, if i > 0.

Therefore, 3" (H|(M)) = lim,_lim,_TorR(R/1%, M)®g R/a", if i =0
and j >0, and &“"(HJ'-(M)) =0, if i >0 and j>0. Thus, we conclude
the proof. O

Remark 2.9. Note that for i =0 and j = 0 in Proposition 2.8, we have

that 35" (HE(M) =S (M). Indeed, 35" (HEM)=33" (A, (M) and
thus,
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Sot (A (M) =lim._ HY (A (M)/a"A [ (M)

= lim, A (A (M) ®g R/a")

—neN

. . t
lim, _lim; A1 (M) ®g R/a" ®g R/l

ne

. . . k t n
= lim,  fim,_,,lim, M ®g R/1* © RI' @5 R/a
H n
= lim,_ lim_, M/I'M ®g R/a
o
i, A (M/a™M) = 5 (M),

as required.

Proposition 2.10. Let M be a linearly compact R-module, where R is a
Noetherian ring and has a topological structure. Then, for all i > 0, the

inverse limit of local homology F;™ ! (M) is a linearly compact R-module.
Proof. Since, by [11, Properties 3.14, 3.3 and 3.5], for each positive
integer n, we have that M/a"M is a linearly compact R-module it follows,
by [5, Proposition 3.3], that Hi' (M/a"M) is a linearly compact R-module.
Therefore, the family {HiI (M/a"M)}, _ form an inverse system of linearly
compact R-modules with continuous homomorphisms. Thus, we have, by [5,
Lemma 2.3(iv)], that ;" I(M) = IlmneNHiI (M/a"M) is a linearly compact
R-module, as required. O

Theorem 2.11. Let R be a Noetherian ring and let 0 > M' > M —
M"” — 0 be a short exact sequence of linearly compact R-modules, and

suppose that M' N a"M is equivalent to the a-adic topology on M. Thus,
we have a long exact sequence of inverse limits of local homology

o FM) = FEM) - F (M) o Fg (M)

—>38"(M)—>35‘"(M”)—>0.
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Proof. By hypothesis, we may assume that M" is a submodule of M and
the short exact sequence 0 > M" - M — M" — 0 induces

0> M/(M' Na"M)—> M/a"M > M"/a"M" - 0
which is a short exact sequence of inverse systems of linearly compact

modules, by [11, Properties 3.14, 3.3 and 3.5]. By the supposition that

M’'Na"™ is equivalent to the a-adic topology on M’ we have that

the previous short exact sequence it gives us a short exact sequence, by
[5, Lemma 2.4],

0— limM/a"M’" - limM/a"M — lim M"/a"M"” — 0.
neN neN neN

By [5, Lemma 2.3(iv)], the previous sequence is a short exact sequence of
linearly compact modules. With this exact sequence, we have a long exact
sequence of local homology modules, by [5, Corollary 3.7]. Now, from

Proposition 2.3 or [5, Proposition 3.4], we obtain the result. O

Remark 2.12. Let R be a Noetherian ring and let M be a finitely
generated R-module. In this case, we have that the R-module %i“"(M) is
zero forall i > 0. Indeed, as R is Noetherian and M is finitely generated, then
Hi'(M/a”M) =0, forall i >0, and for all n >1, by [4, Remark 3.2(ii)].
Thus, we get that ;" ! (M) = !i_mneNHiI (M/a"M) =0, forall i > 0.

Corollary 2.13. Let R be a Noetherian ringandlet 0 > M' > M —

M”" — 0 be a short exact sequence of finitely generated and linearly
compact R-modules. Then we have an exact sequence

055 M) > 5 (M) - 55 ' (M) 0.

Proof. By hypothesis, we may assume that M’ is a submodule of M and
as M is a finitely generated R-module, by Artin-Rees Lemma [13, Theorem
8.5], we have M'Na"M is equivalent to the a-adic topology on M.

Therefore, by Theorem 2.11 and Remark 2.12, we obtain the result. O
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Here we want to introduce a variant of the Mayer-Vietoris sequence for
inverse limit of local homology.

Theorem 2.14. Let (R, m) be a Noetherian local ring and let a, b be
two ideals of R. Let M be a linearly compact R-module, and suppose that the
(a N b)-adic filtration on M is equivalent to the filtration {(a" Nb6")M}__y.

Thus, there is the long exact sequence of inverse limits of local homology
BTN Siaﬂb,m(M) N Sia’m(M)('B Sib’m(M) N Si(a,b),m(M) N

forall i > 0.

Proof. Let n € N be a natural. Then there is the following natural exact
sequence

0> M/(a"MNB"™) > M/a"M ®M/6"M - M/(@", 6" )M -0

which is a short exact sequence of linearly compact modules by [11,
Properties 3.14, 3.3 and 3.5]. By the hypothesis, the (a () b)-adic filtration

on M is equivalent to the filtration {(a" Nb6")M},_y, and noting that the

(a, b) -adic filtration is equivalent to the filtration {(a", b")M}, _y it follows
that the previous exact sequence it gives us a short exact sequence of inverse
systems of linearly compact modules, and by [5, Lemma 2.4], we have a
short exact sequence of inverse limits

0> limM/(@aNb)™'™ — lim(M/a"M & M/6"M)
neN neN

— lim M/(a, 5)"M — 0.
neN
By [5, Lemma 2.3(iv)], the previous sequence is a short exact sequence of
linearly compact modules. With this exact sequence, we have a long exact
sequence of local homology modules, by [5, Corollary 3.7]. Now, from

Proposition 2.3 or [5, Proposition 3.4], we obtain the result. O
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Corollary 2.15. Let (R, m) be a Noetherian local ring and let M be a

finitely generated and linearly compact R-module. Thus, we have an exact
sequence

0 ™M) 5 M) @ FE M) > F ™M) > 0.

Proof. As M is a finitely generated R-module, we have that (a N b) -adic

filtration on M is equivalent to the filtration given by {(a" Nb6")M}, _y, by

Artin-Rees Lemma [13, Theorem 8.5]. Therefore, by Theorem 2.14 and
Remark 2.12, it follows the result. O

Proposition 2.16. Let M be a linearly compact R-module with R be a
Noetherian ring and suppose that 1'M N a"M is equivalent to the a -adic

topology on I'M. Then we have that
. N ~ oo .
(1 Sia (ﬂt>0 '™ j =0, ifi=0;

(ii) &“"(ﬂbo 1'™M ) =3*'(™m), ifi>o.

Proof. From the short exact sequence of linearly compact R-modules
0 1'M 5> M - M/I'M -0,

for all t > 0 we derive by [5, Lemma 2.4] and by [5, Lemma 2.3(iv)] a short
exact sequence of linearly compact R-modules

t
o—>ﬂt>0| M—>M - A(M)-> 0.

Hence, by Theorem 2.11, we get a long exact sequence

e ER (A (M) - gi“"(ﬂbo 1t j S M) 5 3 (A (M)

_>31“"(A,(|v|))_>331'(ﬂt>0|t|v|)->33"(M)—>3§"(A,(M))—>0.

So, the statement it follows from Proposition 2.8 and Remark 2.9. O
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Remark 2.17. If M is I-separated, it means that ﬂt>OItM =0, then
M) ' (M) =55 (A (M));
(i) 3'(M) =0, ifi > 0.

3. Some Results of Artinianness

Here we want to discuss about Artinianness of inverse limit of local
homology.

Proposition 3.1. Let R be an Artinian ring and let M be an Artinian
R-module. Then we have that

3 (M) = TorRRAT, lim, _M/a"™™),
for some integer r > 1.

Proof. Since R is an Artinian ring, there is a positive integer r such that

It =17, forall t > r. As
§ (M) = lim, lim, _ Torf (R/I', M/a"M),

it follows that F' (M) = lim, _TorX(R/I", M/a"M ). As we have that the

family {M/a"M},_y is an inverse system of Artinian R-modules and R/1"

is a finitely generated R-module, by [4, Lemma 4.3], we have that

; R ~ R . i

lim _Tor" (RA1", M/a"M) = Tor(R/I", lim _ M/a"M), forall i > 0.
Therefore, ' (M) = TorR(R/I", lim . M/a"M), for some integer

r > 1, as required. O

Corollary 3.2. Let R be an Artinian ring and let M be an Artinian
R-module. If M is complete with respect to the a-adic topology, then

S : (M) is an Artinian R-module, for all i > 0.
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Proof. In fact, by Proposition 3.1, we have that
5" (M) = TorR (R, lim, _ M/a"M),
for some integer r > 1. Since Ii_mnENM/a”M = M, we have that
(M) = TorR(R/IT, M), forall i >0,

As R/I" is a finitely generated R-module and M is an Artinian R-module, it
follows that ToriR(R/I ", M) is an Artinian R-module, by [16, Proposition

2.13] and [15, Proposition 2.5(i)]. Therefore, &“"(M) is an Artinian

R-module for all i > 0, as required. O

Theorem 3.3. Let (R, m) be a Noetherian local ring and let M be
an Artinian R-module. Then, for a positive integer s >1, the following
statements are equivalent:

(i) §™(M) is an Artinian R-module, for all i < s;
(i) m < Rad(Anng (Fi" ™(M))), forall i <s.

Proof. (i) = (ii) Suppose that i < s. Since F"™ (M) is Artinian for all
i <s, we have that there exists a positive integer n such that mtsia’ (M) =
m"g (M), for all t=n. Thus, m"g> ™ (M) =) _,m'&" ™" (M) =0,

since g™ (M) is m -separated. Therefore,
m c Rad(Anng (§"™(M))), forall i<s.

(i) = (i) Since M is an Artinian R-module, we have that {M/a"M}, _y
is an inverse system of Artinian R-modules. Therefore, A,(M ) is an Artinian

R-module, by [11, Properties 2.4, 3.6 and 3.3] and [10, Properties 27.2 and
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27.3]. By Proposition 2.3, it follows that " ™(M) = H{"(A,(M)), for
all i >0. By the implication (ii) = (i) of [2, Theorem 3.4], we have
that H;"(A,(M)) is an Artinian R-module for all i <s. This finishes the
proof. O

Remark 3.4. We note that the implication (i) implies (ii) in the proof of
Theorem 3.3 we need not assume that M is an Artinian R-module.

4. Vanishing and Non-vanishing Results

Recall that a module M is simple if it is non-zero and does not admit a
proper non-zero submodule. Simplicity of a module M is equivalent to say
that Rm = M, for every m non-zero in M. The Soc (M) the socle of M is the
sum of all simple submodules of M, i.e., the submodule

Soc(M ) = Z{N |N is simple submodule of M}.

We recall also that a module M is said to be semisimple if it satisfies any of
the equivalent conditions:

(i) It is a sum of simple submodules.
(i) It is a direct sum of simple submodules.

So the socle of M is the largest submodule of M generated by simple
modules, or equivalently, it is the largest semisimple submodule of M.

Proposition 4.1. Let R be a Noetherian ring and let M be a semidiscrete
and linearly compact R-module, and suppose that Soc(M/aM ) = 0. Then we

have 3*'(M) =0, forall i > 0.

Proof. We have that Soc(M/a"M) < Soc(M/aM) = 0, for all n > 1.
By [5, Lemma 4.2], we have Hi' (M/a"M) =0, for all n>1 and for all
i > 0. Therefore, &“"(M) = Ii_mneNHiI (M/a"M) =0, for all i>0, as
required. O
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Lemma 4.2. Let M be a semidiscrete linearly compact R-module, where

the ring R is Noetherian. Then, IM = M (moda"M), for all n>1, if and

only if §y° (M) =o0.

Proof. Suppose that IM = M (moda"M), for all n > 1; by [4, Corollary
2.5], we have that the I-adic completion A;(M/a"M) of M/a"M is null,
forall n > 1. On the other hand,

Aj(M/a"M) = lim,_ (R/1' ®g M/a"M) = lim,_ Tor& (R/I, M/a"M).
Therefore, H{(M/a"M) =0, forall n >1. Thus, 3y 'M)=o.

Now, suppose that IM = M (moda"M ), for some n>1. Thus, by
[4, Corollary 2.5], we have that H(')(M/a”M) # 0. Then the short exact

sequence
05 a"™/a"MM 5 M/a"M > M/a"M >0

induces an epimorphism A, (M/a""IM) = A,(M/a"M) — 0, of non-zero

R-modules for all n e N. Hence, the inverse limit lim__ A;(M/a"M) is
—neN

not zero, according to [18, Remark 4.6]. It follows that Sg’ ' (M)=0, as

required. O

A sequence of elements xq, ..., X, in R is said to be an M-coregular

sequence [16, Definition 3.1] if (0:p (X, ..., X)) # {0} and moreover we

%
have that (0 (X, - Xi—1)) 5 (0:m (Xq, -y Xj_1)) is surjective, for all

i =1 .., r. We denote by width, (M) the supremum of the lengths of all

maximal M-coregular sequences in the ideal I. If such sequences do not exist,
then we write width,; (M) = . We remember that a sequence of elements

X{, . Xg In 1 is a maximal M-coregular sequence if for all x4 €I, the
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sequence X, ..., Xs, Xs41 1S not M-coregular. We have by [5, Remark 4.6(i)]
and [5, Lemma 4.7] that width, (M) < o0, when M is a semidiscrete linearly

compact R-module.

Theorem 4.3. Let R be a Noetherian ring and let M be a linearly
compact, semidiscrete R-module and (0:z_(m)!) # 0. Then, all A,(M)-

coregular sequences maximal at | have the same length. Moreover,
width| (A4 (M) = inf{i| 3" (M) = 0}.
Proof. By Proposition 2.3, we have that ;" ! (M)= Hi' (lim, M/a"M)
= Hi' (Aq(M)). Now, by the [5, Theorem 4.11], it follows that
width| (Ay(M)) = inf{i|H{ (A,(M)) = 0}
and so it follows the result. O

Corollary 4.4. Let (R, m) be a Noetherian local ring and let M be a

semidiscrete linearly compact R-module. Thus, we have that:
(i) If M is complete and (0 ‘A (M) 1) = 0, then
width| (A, (M)) = inf{i|H! (M) = 0}.
(iiif a=0and (0: 1)=0, then
width, (M) = inf{i|H;' (M) = 0}.

Proof. (i) Indeed, as we have A,,(M) = M it follows, by Theorem 4.3,

that we have
width| (M) = width; (A, (M)) = inf{i|H (M) = 0},
as required.

(ii) It is clear. O
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Remark 4.5. Note that if the ideal a = 0 in Theorem 4.3, then we return

to the usual result for the width, (M) which is given by [5, Theorem 4.11].

Proposition 4.6. Let (R, m) be a Noetherian local ring and let M be a
non-zero semidiscrete linearly compact R-module. We have that if g™ (M)

=0, for all i>0, then mA,(M)=A,(M)(moda"A,(M)), for all

n=>1.

Proof. Suppose that ;" ™(M) =0, for all i >0. By Remark 2.9, we

have that 33" ™ (M) = 35" " (A, (M)). Thus, by Lemma 4.2, we obtain that

mAm(M ) = Am(M )(mOd anAm(M ))v

forall n >1, as required.
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