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Abstract 

Let M be a module over a commutative ring R with non-zero identity. 
In this paper, for a pair of ideals ( )I,a  of R, we introduce the              

inverse limit of local homology ( )MI
i

,aF  as follows: ( ) =MI
i

,aF  

( )MMH nI
in aN∈lim  for all .0≥i  Also, we study some of its 

properties and analyze their structure, the vanishing, non-vanishing 

and Artinianness of ( )., MI
i
aF  Moreover, there are some exact 

sequences concerning the inverse limit of local homology, among 
them a variant of Mayer-Vietoris sequence. 

1. Introduction 

Throughout this paper, assume that R is a commutative ring with non-
zero identity, I and a  are ideals of R and M is an R-module. In [6], we have 
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that Grothendieck introduced the definition of local cohomology module as 

the module ( ) ( )MIRMH ti
Rt

i
I ,Extlim N∈=  that is called the ith local 

cohomology module of M with respect to I. In [4], Cuong and Nam defined 

the local homology modules ( )MH I
i  with respect to I by 

( ) ( ).,Torlim MIRMH tR
i

t

I
i

N∈
=  

This definition is dual to Grothendieck’s definition of local cohomology 
modules and coincides with the definition of Greenlees and May [8] for an 
Artinian R-module M. For basic results about local homology, we refer the 
reader to [4, 5] and [21]; for local cohomology, see [3]. 

In this paper, we introduce the inverse limit of local homology denoted 

by ( ) ( ).lim, MMHM nI
in

I
i aFa N∈=  This definition is an attempt to 

introduce something similar the formal local cohomology defined in [18] and 
[9]. 

The organization of the paper is as follows. In the next section, we study 
some basic and main properties and show that under certain conditions, the 
inverse limit of local homology is reduced to local homology module with 
respect to an ideal. Also, we obtain some long exact sequences, for example a 
Mayer-Vietoris sequence. 

In Section 3, we provide some conditions for that inverse limit of local 
homology become an Artinian R-module. Section 4 is devoted to study the 
vanishing and non-vanishing of a such module. 

2. Some Properties and Exact Sequences 

Definition 2.1 [4, Definition 3.1]. Let M be an R-module. The ith local 

homology module ( )MH I
i  of M with respect to I is defined by 

( ) ( ).,Torlim MIRMH tR
it

I
i N∈=  
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Now, consider the family of local homology modules 

{ ( )} .N∈n
nI

i MMH a  For every ,N∈n  there is a natural homomorphism 

( ) ( ),:, MMHMMH kI
i

nI
ikn aa →φ  

for any .0 nk ≤<  

Thus, we have two families of R-modules { ( )} ,N∈n
nI

i MMH a  and of 

R-homomorphisms { ( ) ( ) }.,,:, N∈≤|→φ nknkMMHMMH kI
i

nI
ikn aa  

These families form an inverse system. Their inverse limit that is given 

by ( )MMH nI
in aN∈lim  is called the inverse limit of local homology, and 

will be denoted by ( )., MI
i
aF  

Now, let M be an R-module and let N be a submodule of M. For ,Mm ∈  

we define a subset of { }.: NnnmNmM ∈|+=+  A subset of M is said              

to be a coset of N if there exists Mm ∈  such that it is equal to Nm +                                        

[14, Definition 5]. Moreover, Nmx +∈  if and only if there exists n such 
that Nn ∈  and .nmx +=  

Consider that the ring R is Noetherian and has a topological structure.  
Let us recall the concept of linearly compact modules by terminology of 
Macdonald [11, Definition 3.1]. Let M be a topological R-module. A nucleus 
of M is a neighbourhood of the zero element of M, and a nuclear base of M is 
a base for the nuclei of M. M is Hausdorff if and only if the intersection of    
all the nuclei of M is 0. It is said to be linearly topologized if M has a     
nuclear base ∑ consisting of submodules. A Hausdorff linearly topologized 
R-module M is said to be linearly compact if M has the following property: if 
F  is a family of closed cosets (i.e., cosets of closed submodules) in M which 
has the finite intersection property, then the cosets in F  have a non-empty 
intersection. It should be noted that an Artinian R-module is linearly compact 
with the discrete topology [7, Theorem 2.1]. A Hausdorff linearly 
topologized R-module M is called semidiscrete if every submodule of M is 
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closed. For an R-module M and a submodule ,MN ⊆  we define the set 

( ) { }.: NmMmN M ⊆|∈= aa  Observe that ( )aMN :  is a submodule of 

M and that ( ).: aMNN ⊆  For an R-module M, the a -torsion of M is 

defined by 

( ) ( ) { }U N∈ ≥=|∈==Γ n
nn

M nmMmM .1integersomefor,0:0: aaa  

Observe that ( )MaΓ  is a submodule of M. 

Moreover, for a local ring ( )m,R  and Noetherian, we define the Matlis 

dual module ( ) ( )EMMD R ,Hom=  of M, where ( )mREE =  is the 

injective envelope of the residue field m.R  

Remark 2.2. The set of powers na  of ideal a  forms a base of open of 
the zero element of R. The topology defined in R is called a -adic topology. 

Similarly, given an R-module M, the set Mna  is a base of open of the zero 
element of M defining the a -adic topology of M. The R-module M is said to 
be complete with respect to the a -adic topology if ( ) ,~ MM =Λa  where we 

use ( ) MMM n
n aa N∈=Λ lim  to denote the a -adic completion of M. 

Proposition 2.3. Suppose that R is a Noetherian ring. Let M be a 
linearly compact R-module. Then, for all ,0≥i  we have that 

( ) ( ).lim, MMHM n

n

I
i

I
i aFa

N∈
=  

Proof. By definition, we have ( ) ( ,Torlimlim, tR
itn

I
i IRM NN ∈∈=aF  

).MM na  As inverse limits commute (see [17, Theorem 2.26]), since that 

{ } N∈n
nMM a  is an inverse system of linearly compact modules (see                    

[11, Properties 3.14, 3.3 and 3.5]), by [5, Lemma 2.7], we have that 

( ) ( ) ( ).limlim,Torlim, MMHMMIRM n

n

I
i

n

n

tR
i

t

I
i aaFa

NNN ∈∈∈
==   
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Remark 2.4. Note that if M is complete with respect to the a -adic 

topology, then ( ) ( )., MHM I
i

I
i =aF  

Proposition 2.5. Let M be an R-module. Then, for all ,0≥i  the inverse 

limit of local homology ( )MI
i

,aF  is I-separated, i.e., ( )I 0
, .0> =s
I

i
s MI aF  

Proof. Note that for any inverse system of R-modules { } ,N∈ttM  we have 

.limlim t
t

t
t

IMMI
NN ∈∈

⊆  

Thus, 

( ) ( ( )) ( )I
0

, .limlimlimlim~
> ∈∈∈∈

⊆=
s

nI
i

s

ns

nI
i

n

s

s

I
i

s MMHIMMHIMI aaFa

NNNN
 

As, by [17, Theorem 2.26], inverse limits commute, we have that 

( ) ( )I
0

, ,0,Torlimlimlim
> ∈∈∈

=⊆
s

ntR
i

s

stn

I
i

s MMIRIMI aFa

NNN
 

since ( ) ,0,Tor =MMIRI ntR
i

s a  for all .ts ≥   

Proposition 2.6. Suppose that ( )m,R  is a Noetherian local ring. Let M 

be an Artinian R-module. Then, for all ,0≥i  we have that 

( ( )) ( )( )( ).~, MDHMD i
I

I
i a
aF Λ=  

Proof. Since M is an Artinian R-module, the family { } N∈n
nMM a  is an 

inverse system of Artinian R-modules and thus, we have that 

( ) ( ) ( ) ( )( )MHMMHMMHM I
i

n

n

I
i

nI
i

n

I
i a
a aaF Λ===

∈∈ NN
limlim:,  

by Proposition 2.3. Now, by [10, Properties 27.2 and 27.3], we have that 
( )MaΛ  is an Artinian R-module. Therefore, by [2, Corollary 2.3(ii)], we 

have the isomorphism 

( ( )( )) ( )( )( ),~ MDHMHD i
I

I
i aa Λ=Λ  for all ,0≥i  

as required.  
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Remark 2.7. Let M be a linearly compact R-module, with R Noetherian 
ring. Then 

 (i) ( ( )) ( ),~ ,, MMH I
j

I
j

I
i

aa FF =  if 0,0 ≥= ji  and 

(ii) ( ( )) ,0~, =MH I
j

I
i
aF  if .0,0 ≥> ji  

This is a consequence of [5, Lemma 3.9]. Indeed, we have that 

 (i) ( ( )) ( ( )) ,0~lim~, == ∈ MMHHMH nI
j

I
in

I
j

I
i aFa N  if 0>i  and 

(ii) ( ( )) ( ( )) ( ),~lim~ ,, MMMHHMH I
j

nI
j

I
in

I
j

I
i

aa FaF == ∈N  if 0=i  

by [5, Lemma 3.9]. 

Proposition 2.8. Let M be a linearly compact R-module, with R 
Noetherian ring. Then for all ,0≥j  

 (i) ( ( )) ( ( ) ),lim~, n
R

I
jn

I
j

I
i RMHMH aFa ⊗= ∈N  if ;0=i  

(ii) ( ( )) ,0~, =MH I
j

I
i
aF  if .0>i  

Proof. By [5, Lemma 2.6], we have that { ( )} N∈t
tR

j MIR ,Tor  form an 

inverse system of linearly compact R-modules. Note that 

( ( ))MH I
j

I
i

,aF  

( ( ) ( ))MHMHH I
j

nI
j

I
in aN∈= lim~  

( ( ( ) ))n
R

I
j

tR
itn RMHIR a⊗= ∈∈ ,Torlimlim~

NN  

( ( ) ).,Torlim,Torlimlim~ n
R

sR
js

tR
itn RMIRIR a⊗= ∈∈∈ NNN  

Now, by [5, Lemma 2.7], we have that 

( ) ( ( ) )n
R

sR
js

n
R

sR
js RMIRRMIR aa ⊗=⊗ ∈∈ ,Torlim~,Torlim NN  
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and so, it follows that ( ( ))MH I
j

I
i

,aF  is equal to 

( ( ( ) )).,Torlim,Torlimlim n
R

sR
js

tR
itn RMIRIR a⊗∈∈∈ NNN  

Thus, by [5, Lemma 2.3(iii)] and [5, Lemma 2.7], we have that 

( ( ))MH I
j

I
i

,aF  is isomorphic to 

( ( ) ).,Tor,Torlimlimlim n
R

sR
j

tR
istn RMIRIR a⊗∈∈∈ NNN  

Since, by [17, Theorem 2.26], inverse limits commute, we have that 

( ( )) ( ( ) ).,Torlimlim, n
R

sR
j

I
isn

I
j

I
i RMIRHMH aFa ⊗= ∈∈ NN  

Now, by [5, Lemma 3.2(i)], we have that 

( ( ) )n
R

sR
j

I
i RMIRH a⊗,Tor  

( ( ) ( ) ),,Tor,lim~ n
R

sR
jik RMIRkxH a⊗= ∈N  

where ( )rxxx ...,,1=  is a generator system of I and ( ) ( )....,,1
k
r

k xxkx =  

Since ( ) ( ) ,0,Tor =MIRkx sR
j  for all ,sk ≥  we get 

 (i) ( ( ) ( ) ) ( )MIRRMIRkxH sR
j

n
R

sR
jik ,Tor~,Tor,lim =⊗∈ aN  

,n
R R a⊗  if ;0=i  and 

(ii) ( ( ) ( ) ) ,0~,Tor,lim =⊗∈
n

R
sR

jik RMIRkxH aN  if .0>i  

Therefore, ( ( )) ( ) ,,Torlimlim~, n
R

sR
jsn

I
j

I
i RMIRMH aFa ⊗= ∈∈ NN  if 0=i  

and ,0≥j  and ( ( )) ,0~, =MH I
j

I
i
aF  if 0>i  and .0≥j  Thus, we conclude 

the proof.  

Remark 2.9. Note that for 0=i  and 0=j  in Proposition 2.8, we have 

that ( ( )) ( ).~ ,
00

,
0 MMH III aa FF =  Indeed, ( ( )) ( )( )MMH I

III Λ= ,
00

,
0

~ aa FF  and 

thus, 
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( )( ) ( ( ) ( ))MMHM I
n

I
I

nI
I ΛΛ=Λ ∈ aFa 0

,
0 lim N  

( ( ) )n
RIIn RM a⊗ΛΛ= ∈Nlim  

( ) t
R

n
RItn IRRM ⊗⊗Λ= ∈∈ aNN limlim  

n
R

t
R

k
Rktn RIRIRM a⊗⊗⊗= ∈∈∈ NNN limlimlim  

n
R

t
tn RMIM a⊗= ∈∈ NN limlim  

( ) ( ),lim ,
0 MMM In

In
aFa =Λ= ∈N  

as required. 

Proposition 2.10. Let M be a linearly compact R-module, where R is a 
Noetherian ring and has a topological structure. Then, for all ,0≥i  the 

inverse limit of local homology ( )MI
i

,aF  is a linearly compact R-module. 

Proof. Since, by [11, Properties 3.14, 3.3 and 3.5], for each positive 

integer n, we have that MM na  is a linearly compact R-module it follows, 

by [5, Proposition 3.3], that ( )MMH nI
i a  is a linearly compact R-module. 

Therefore, the family { ( )} N∈n
nI

i MMH a  form an inverse system of linearly 

compact R-modules with continuous homomorphisms. Thus, we have, by [5, 

Lemma 2.3(iv)], that ( ) ( )MMHM nI
in

I
i aFa N∈= lim,  is a linearly compact 

R-module, as required.  

Theorem 2.11. Let R be a Noetherian ring and let →→′→ MM0  

0→′′M  be a short exact sequence of linearly compact R-modules, and 

suppose that MM naI′  is equivalent to the a -adic topology on .M ′  Thus, 
we have a long exact sequence of inverse limits of local homology 

( ) ( ) ( ) ( )MMMM II
i

I
i

I
i ′→→′′→→′→ ,

0
,,, aaaa FFFF LL  

( ) ( ) .0,
0

,
0 →′′→→ MM II aa FF  
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Proof. By hypothesis, we may assume that M ′  is a submodule of M and 
the short exact sequence 00 →′′→→′→ MMM  induces 

( ) 00 →′′′′→→′′→ MMMMMMM nnn aaaI  

which is a short exact sequence of inverse systems of linearly compact 
modules, by [11, Properties 3.14, 3.3 and 3.5]. By the supposition that 

MM naI′  is equivalent to the a -adic topology on M ′  we have that                         
the previous short exact sequence it gives us a short exact sequence, by                  
[5, Lemma 2.4], 

.0limlimlim0 →′′′′→→′′→
∈∈∈

MMMMMM n

n

n

n

n

n
aaa

NNN
 

By [5, Lemma 2.3(iv)], the previous sequence is a short exact sequence of 
linearly compact modules. With this exact sequence, we have a long exact 
sequence of local homology modules, by [5, Corollary 3.7]. Now, from 
Proposition 2.3 or [5, Proposition 3.4], we obtain the result.  

Remark 2.12. Let R be a Noetherian ring and let M be a finitely 

generated R-module. In this case, we have that the R-module ( )MI
i

,aF  is 

zero for all .0>i  Indeed, as R is Noetherian and M is finitely generated, then 

( ) ,0=MMH nI
i a  for all ,0>i  and for all ,1≥n  by [4, Remark 3.2(ii)]. 

Thus, we get that ( ) ( ) ,0lim:, == ∈ MMHM nI
in

I
i aFa N  for all .0>i  

Corollary 2.13. Let R be a Noetherian ring and let →→′→ MM0  

0→′′M  be a short exact sequence of finitely generated and linearly 
compact R-modules. Then we have an exact sequence 

( ) ( ) ( ) .00 ,
0

,
0

,
0 →′′→→′→ MMM III aaa FFF  

Proof. By hypothesis, we may assume that M ′  is a submodule of M and 
as M is a finitely generated R-module, by Artin-Rees Lemma [13, Theorem 

8.5], we have MM naI′  is equivalent to the a -adic topology on .M ′  

Therefore, by Theorem 2.11 and Remark 2.12, we obtain the result.  
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Here we want to introduce a variant of the Mayer-Vietoris sequence for 
inverse limit of local homology. 

Theorem 2.14. Let ( )m,R  be a Noetherian local ring and let ba,  be 

two ideals of R. Let M be a linearly compact R-module, and suppose that the 

( )ba I -adic filtration on M is equivalent to the filtration {( ) } .N∈n
nn Mba I  

Thus, there is the long exact sequence of inverse limits of local homology 

( ) ( ) ( ) ( ) ( ) LL I →→⊕→→ MMMM iiii
mbambmamba FFFF ,,,,,  

for all .0≥i  

Proof. Let N∈n  be a natural. Then there is the following natural exact 
sequence 

( ) ( ) 0,0 →→⊕→→ MMMMMMMMM nnnnnn bababa I  

which is a short exact sequence of linearly compact modules by [11, 
Properties 3.14, 3.3 and 3.5]. By the hypothesis, the ( )ba I -adic filtration 

on M is equivalent to the filtration {( ) } ,N∈n
nn Mba I  and noting that the 

( )ba, -adic filtration is equivalent to the filtration {( ) } N∈n
nn Mba ,  it follows 

that the previous exact sequence it gives us a short exact sequence of inverse 
systems of linearly compact modules, and by [5, Lemma 2.4], we have a 
short exact sequence of inverse limits 

( ) ( )MMMMMM nn

n

n

n
baba ⊕→→

∈∈ NN
limlim0 I  

( ) .0,lim →→
∈

MM n

n
ba

N
 

By [5, Lemma 2.3(iv)], the previous sequence is a short exact sequence of 
linearly compact modules. With this exact sequence, we have a long exact 
sequence of local homology modules, by [5, Corollary 3.7]. Now, from 

Proposition 2.3 or [5, Proposition 3.4], we obtain the result.  
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Corollary 2.15. Let ( )m,R  be a Noetherian local ring and let M be a 

finitely generated and linearly compact R-module. Thus, we have an exact 
sequence 

( ) ( ) ( ) ( ) ( ) .00 ,,
0

,
0

,
0

,
0 →→⊕→→ MMMM mbambmamba FFFF I  

Proof. As M is a finitely generated R-module, we have that ( )ba I -adic 

filtration on M is equivalent to the filtration given by {( ) } ,N∈n
nn Mba I  by 

Artin-Rees Lemma [13, Theorem 8.5]. Therefore, by Theorem 2.14 and 
Remark 2.12, it follows the result.  

Proposition 2.16. Let M be a linearly compact R-module with R be a 

Noetherian ring and suppose that MMI nt aI  is equivalent to the a -adic 

topology on .MI t  Then we have that 

 (i) ,0~
0

, =⎟
⎠
⎞

⎜
⎝
⎛

>It
tI

i MIaF  if ;0=i  

(ii) ( ),~ ,
0

, MMI I
it

tI
i

aa FF =⎟
⎠
⎞

⎜
⎝
⎛

>I  if .0>i  

Proof. From the short exact sequence of linearly compact R-modules 

,00 →→→→ MIMMMI tt  

for all 0>t  we derive by [5, Lemma 2.4] and by [5, Lemma 2.3(iv)] a short 
exact sequence of linearly compact R-modules 

( )I 0
.00

>
→Λ→→→

t I
t MMMI  

Hence, by Theorem 2.11, we get a long exact sequence 

( )( ) ( ) ( )( ) →Λ→→⎟
⎠
⎞

⎜
⎝
⎛→Λ→ >+ MMMIM I

I
i

I
it

tI
iI

I
i

,,
0

,,
1

aaaa FFFF IL  

( )( ) ( ) ( )( ) .0,
0

,
00

,
0

,
1 →Λ→→⎟

⎠
⎞

⎜
⎝
⎛→Λ→ > MMMIM I

II
t

tI
I

I aaaa FFFF IL  

So, the statement it follows from Proposition 2.8 and Remark 2.9.  
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Remark 2.17. If M is I-separated, it means that I 0 ,0> =t
t MI  then 

 (i) ( ) ( )( );~ ,
0

,
0 MM I

II Λ= aa FF  

(ii) ( ) ,0, =MI
i
aF  if .0>i  

3. Some Results of Artinianness 

Here we want to discuss about Artinianness of inverse limit of local 
homology. 

Proposition 3.1. Let R be an Artinian ring and let M be an Artinian 
R-module. Then we have that 

( ) ( ),lim,Tor~, MMIRM n
n

rR
i

I
i aFa N∈=  

for some integer .1≥r  

Proof. Since R is an Artinian ring, there is a positive integer r such that 

,rt II =  for all .rt ≥  As 

( ) ( ),,Torlimlim, MMIRM ntR
itn

I
i aFa NN ∈∈=  

it follows that ( ) ( ).,Torlim, MMIRM nrR
in

I
i aFa N∈=  As we have that the 

family { } N∈n
nMM a  is an inverse system of Artinian R-modules and rIR  

is a finitely generated R-module, by [4, Lemma 4.3], we have that  

( ) ( ),lim,Tor~,Torlim MMIRMMIR n
n

rR
i

nrR
in aa NN ∈∈ =  for all .0≥i  

Therefore, ( ) ( ),lim,Tor~, MMIRM n
n

rR
i

I
i aFa N∈=  for some integer 

,1≥r  as required.  

Corollary 3.2. Let R be an Artinian ring and let M be an Artinian 
R-module. If M is complete with respect to the a -adic topology, then 

( )MI
i

,aF  is an Artinian R-module, for all .0≥i  
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Proof. In fact, by Proposition 3.1, we have that 

( ) ( ),lim,Tor~, MMIRM n
n

rR
i

I
i aFa N∈=  

for some integer .1≥r  Since ,~lim MMM n
n =∈ aN  we have that 

( ) ( ),,Tor~, MIRM rR
i

I
i =aF   for all .0≥i  

As rIR  is a finitely generated R-module and M is an Artinian R-module, it 

follows that ( )MIR rR
i ,Tor  is an Artinian R-module, by [16, Proposition 

2.13] and [15, Proposition 2.5(i)]. Therefore, ( )MI
i

,aF  is an Artinian 

R-module for all ,0≥i  as required.  

Theorem 3.3. Let ( )m,R  be a Noetherian local ring and let M be                

an Artinian R-module. Then, for a positive integer ,1≥s  the following 
statements are equivalent: 

 (i) ( )Mi
maF ,  is an Artinian R-module, for all ;si <  

(ii) ( ( ( ))),AnnRad , MiR
maFm ⊆  for all .si <  

Proof. (i) ⇒ (ii) Suppose that .si <  Since ( )Mi
maF ,  is Artinian for all 

,si <  we have that there exists a positive integer n such that ( ) =Mi
t maFm ,  

( ),, Mi
n maFm  for all .nt ≥  Thus, ( ) ( )I 0

,, ,0> == t i
t

i
n MM mama FmFm  

since ( )Mi
maF ,  is m -separated. Therefore, 

( ( ( ))),AnnRad , MiR
maFm ⊆   for all .si <  

(ii) ⇒ (i) Since M is an Artinian R-module, we have that { } N∈n
nMM a  

is an inverse system of Artinian R-modules. Therefore, ( )MaΛ  is an Artinian 

R-module, by [11, Properties 2.4, 3.6 and 3.3] and [10, Properties 27.2 and 



V. H. Jorge Pérez and C. H. Tognon 14 

27.3]. By Proposition 2.3, it follows that ( ) ( )( ),, MHM ii a
mmaF Λ=  for                  

all .0≥i  By the implication (ii) ⇒ (i) of [2, Theorem 3.4], we have                     

that ( )( )MHi a
m Λ  is an Artinian R-module for all .si <  This finishes the 

proof.  

Remark 3.4. We note that the implication (i) implies (ii) in the proof of 
Theorem 3.3 we need not assume that M is an Artinian R-module. 

4. Vanishing and Non-vanishing Results 

Recall that a module M is simple if it is non-zero and does not admit a 
proper non-zero submodule. Simplicity of a module M is equivalent to say 
that ,MRm =  for every m non-zero in M. The Soc (M) the socle of M is the 
sum of all simple submodules of M, i.e., the submodule 

( ) { }∑ |= .ofsubmodulesimpleisSoc MNNM  

We recall also that a module M is said to be semisimple if it satisfies any of 
the equivalent conditions: 

 (i) It is a sum of simple submodules. 

(ii) It is a direct sum of simple submodules. 

So the socle of M is the largest submodule of M generated by simple 
modules, or equivalently, it is the largest semisimple submodule of M. 

Proposition 4.1. Let R be a Noetherian ring and let M be a semidiscrete 
and linearly compact R-module, and suppose that ( ) .0Soc =MM a  Then we 

have ( ) ,0, =MI
i
aF  for all .0>i  

Proof. We have that ( ) ( ) ,0SocSoc =⊆ MMMM n aa  for all .1≥n            

By [5, Lemma 4.2], we have ( ) ,0=MMH nI
i a  for all 1≥n  and for all 

.0>i  Therefore, ( ) ( ) ,0lim, == ∈ MMHM nI
in

I
i aFa N  for all ,0>i  as 

required.  
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Lemma 4.2. Let M be a semidiscrete linearly compact R-module, where 

the ring R is Noetherian. Then, ( ),mod MMIM na=  for all ,1≥n  if and 

only if ( ) .0,
0 =MIaF  

Proof. Suppose that ( ),mod MMIM na=  for all ;1≥n  by [4, Corollary 

2.5], we have that the I-adic completion ( )MM n
I aΛ  of MM na  is null, 

for all .1≥n  On the other hand, 

( ) ( ) ( ).,Torlimlim 0 MMIRMMIRMM ntR
t

n
R

t
t

n
I aaa NN ∈∈ =⊗=Λ  

Therefore, ( ) ,00 =MMH nI a  for all .1≥n  Thus, ( ) .0,
0 =MIaF  

Now, suppose that ( ),mod MMIM na≠  for some .1≥n  Thus, by                      

[4, Corollary 2.5], we have that ( ) .00 ≠MMH nI a  Then the short exact 

sequence 

00 11 →→→→ ++ MMMMMM nnnn aaaa  

induces an epimorphism ( ) ( ) ,01 →Λ→Λ + MMMM n
I

n
I aa  of non-zero 

R-modules for all .N∈n  Hence, the inverse limit ( )MM n
In aΛ∈Nlim  is 

not zero, according to [18, Remark 4.6]. It follows that ( ) ,0,
0 ≠MIaF  as 

required.  

A sequence of elements rxx ...,,1  in R is said to be an M-coregular 

sequence [16, Definition 3.1] if ( )( ) { }0...,,:0 1 ≠rM xx  and moreover we 

have that ( )( ) ( )( )1111 ...,,:0...,,:0 −− → iM
x

iM xxxx
i

 is surjective, for all 

....,,1 ri =  We denote by ( )MIwidth  the supremum of the lengths of all 

maximal M-coregular sequences in the ideal I. If such sequences do not exist, 
then we write ( ) .width ∞=MI  We remember that a sequence of elements 

sxx ...,,1  in I is a maximal M-coregular sequence if for all ,1 Ixs ∈+  the 
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sequence 11 ,...,, +ss xxx  is not M-coregular. We have by [5, Remark 4.6(i)] 

and [5, Lemma 4.7] that ( ) ,width ∞<MI  when M is a semidiscrete linearly 

compact R-module. 

Theorem 4.3. Let R be a Noetherian ring and let M be a linearly 
compact, semidiscrete R-module and ( ( ) ) .0:0 ≠Λ IMa  Then, all ( )MaΛ -

coregular sequences maximal at I have the same length. Moreover, 

( )( ) { ( ) }.0infwidth , ≠|=Λ MiM I
iI
a

a F  

Proof. By Proposition 2.3, we have that ( ) ( )MMHM n
n

I
i

I
i aFa N∈= lim,  

( )( ).MH I
i aΛ=  Now, by the [5, Theorem 4.11], it follows that 

( )( ) { ( )( ) }0infwidth ≠Λ|=Λ MHiM I
iI aa  

and so it follows the result.  

Corollary 4.4. Let ( )m,R  be a Noetherian local ring and let M be a 

semidiscrete linearly compact R-module. Thus, we have that: 

 (i) If M is complete and ( ( ) ) ,0:0 ≠Λ IMm
 then 

( )( ) { ( ) }.0infwidth ≠|=Λ MHiM I
iI m  

(ii) If 0=a  and ( ) ,0:0 ≠IM  then 

( ) { ( ) }.0infwidth ≠|= MHiM I
iI  

Proof. (i) Indeed, as we have ( ) MM =Λ ~
m  it follows, by Theorem 4.3, 

that we have 

( ) ( )( ) { ( ) },0infwidthwidth ≠|=Λ= MHiMM I
iII m  

as required. 

(ii) It is clear.  
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Remark 4.5. Note that if the ideal 0=a  in Theorem 4.3, then we return 

to the usual result for the ( )MIwidth  which is given by [5, Theorem 4.11]. 

Proposition 4.6. Let ( )m,R  be a Noetherian local ring and let M be a 

non-zero semidiscrete linearly compact R-module. We have that if ( )Mi
maF ,  

,0=  for all ,0≥i  then ( ) ( )MM mmm Λ=Λ ( ( )),mod Mn
ma Λ  for all 

.1≥n  

Proof. Suppose that ( ) ,0, =Mi
maF  for all .0≥i  By Remark 2.9, we 

have that ( ) ( )( ).,
0

,
0 MM m

mama FF Λ=  Thus, by Lemma 4.2, we obtain that 

( ) ( ) ( ( )),mod MMM n
mmm am ΛΛ=Λ  

for all ,1≥n  as required. 

Acknowledgment 

The authors are deeply grateful to the referee for carefully reading the 
manuscript and the helpful suggestions. 

References 

 [1] L. Alonso Tarrío, A. Jeremías López and J. Lipman, Local homology and 
cohomology of schemes, Annales Scientifiques École Normale Supérieure 4(30) 
(1997), 1-39. 

 [2] M. H. Bijan-Zadeh and K. Moslehi, A generalization of local homology functors, 
Romanian Journal of Mathematics and Computer Science 2 (2012), 62-72. 

 [3] M. P. Brodmann and R. Y. Sharp, Local Cohomology - An Algebraic Introduction 
with Geometric Applications, Cambridge University Press, 1998. 

 [4] N. T. Cuong and T. T. Nam, The I-adic completion and local homology for 
artinian modules, Math. Proc. Cambridge Philos. Soc. 131 (2001), 61-72. 

 [5] N. T. Cuong and T. T. Nam, A local homology theory for linearly compact 
modules, J. Algebra 319 (2008), 4712-4737. 



V. H. Jorge Pérez and C. H. Tognon 18 

 [6] J. Dieudonné and A. Grothendieck, Eléments de Géométrie Algébrique-I, 
Publications Mathématiques Institut Hautes Études Scientifiques 4 (1960), 5-228. 

 [7] S. M. Fakhruddin, Linearly compact modules over Noetherian rings, J. Algebra 24 
(1973), 544-550. 

 [8] J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local 
homology, J. Algebra 149 (1992), 438-453. 

 [9] V. H. Jorge Pérez and T. H. Freitas, On formal local cohomology with respect to a 
pair of ideals, Journal of Commutative Algebra (2015), Accepted. 

 [10] S. Lefschetz, Algebraic topology, Colloquium Lectures American Mathematical 
Society, 1942. 

 [11] I. G. Macdonald, Duality Over Complete Local Rings, Pergamon Press, Vol. 1, 
1962, pp. 213-235. 

 [12] E. Matlis, The koszul complex and duality, Comm. Algebra 1 (1974), 87-144. 

 [13] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced 
Mathematics, Vol. 8, Cambridge University Press, 1986. 

 [14] M. Muzalewski and W. Skaba, Submodules and cosets of submodules in left 
module over associative ring, Formalized Mathematics 2(2) (1991), 283-287. 

 [15] T. T. Nam, Generalized local homology for artinian modules, Algebra Colloq. 19 
(2012), 1205-1212. 

 [16] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976), 
573-587. 

 [17] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New 
York, 1979. 

 [18] P. Schenzel, On formal local cohomology and connectedness, J. Algebra 315 
(2007), 894-923. 

 [19] A.-M. Simon, Adic-completion and some dual homological results, Publications 
Mathematical 36 (1992), 965-979. 

 [20] A.-M. Simon, Some homological properties of complete modules, Mathematical 
Proceedings Cambridge Philosophical Society 2(108) (1990), 231-246. 

 [21] Z. Tang, Local homology theory for artinian modules, Comm. Algebra 22 (1994), 
1675-1684. 


