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Abstract

We examine the linear stability to axisymmetric disturbances in weakly
rarefied flows (‘slip regime’) in microchannels. A semi-analytical solution
of the Orr-Sommerfeld equation shows that pulsatile flow is linearly
stable in the slip regime although a sudden change in the stability
properties of the flow occurs at a critical value of the Knudsen number

( ) ,82 σσ−=crKn  where σ is the accommodation coefficient. Flow

structures corresponding to the largest energy growth are toroidal vortex
tubes that are transported diffusively and convectively by the mean flow.
Transient energy growth is found to decrease for Knudsen numbers

crKnKn <  due to the diminished wall vorticity induced by the slip

conditions. Thus the Orr-Sommerfeld operator for slip flow is less non-
normal compared to continuum-based no-slip flows.

1. Introduction

The study of pulsatile tube flow, first considered in the context of
arterial hemodynamics in the mid-1950s [5], has found renewed
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significance in its application to MEMS microfluidic engineering
applications. A feature common to many of the devices described in the
microfluidics literature that incorporate ‘chip-level’ pumping is that the
flow is pulsatile in nature [4], [10]. On the micro- and nano-scale the
surface roughness of the channel walls can have greater impact on the
flow behavior in contrast to their macro-scale counterparts; this is
especially true for the case of rarefied (or ‘slip’) flows [7]. In addition to
the potential generation of flow disturbances, the surface roughness also
influences the velocity boundary condition for rarefied flows through
tangential momentum accommodation coefficient σ [1].

Linear stability analyses of continuum-regime steady [2] and
pulsatile flows [3], [11] show that all of the eigenmodes are damped,
although an initial energy growth of the flow perturbation can occur due
to the non-normality of the Orr-Sommerfeld operator [8], [9]. Transient
growth is important if transition to turbulence is thought as emanating
from ‘by-pass transition’ mechanisms [9]. In the following we extend the
previous studies on pulsatile flow stability to the case of weakly rarefied
flows (‘slip regime’) defined by Knudsen numbers .3.0≤

2. Orr-Sommerfeld Equation for a Weakly Rarefied

Pulsatile Flow

We consider as an undisturbed state the fully-developed, pulsatile
flow in a pipe of circular cross section of radius R driven by an imposed
periodic pressure gradient .zP ∂∂  The fully-developed streamwise

velocity ( )trW ,  satisfies the following initial boundary value problem

( )[ ],exp,1
0 tiKK
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where µ is the dynamic viscosity, ρ is the density and ω is the frequency
of the oscillating pressure gradient. For a weakly rarefied flow (or ‘slip
regime’), the velocity boundary condition is modeled as a first-order slip
condition [6]

,2

Rr
Rr r

WW
=

= ∂
∂λ

σ
σ−=| (2)

where λ is the gas mean free path and σ is the tangential momentum
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coefficient (TMAC). The first-order slip condition (2) is valid provided the
Knudsen number of the flow 3.02 ≤λ≡ RKn  [6]. The value of σ is

restricted to the range of [ ]1,0  whose lower and upper limits correspond

to ‘pure-slip’ and ‘no-slip,’ respectively. The precise value of σ depends
upon the fluid and the surface properties of the channel walls. Recent
experiments by Arkilic et al. [1] using nitrogen, argon and carbon-dioxide
and polished, single-crystal silicon walls have suggested a range of

.85.075.0 −=σ

The analytical solution of (1) subject to the boundary condition (2),
when properly non-dimensionalized, is found as

( ) ( ),exp, 10 StitWWtrW += (3)

( ) ,241 2
0 Kn
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where the velocity scale is based on the steady Poiseuille flow component

( ),42
0 µ= RK  the length scale is the tube diameter, and the time scale is

the oscillation period. The quantities Re and St are the Reynolds number

and Strouhal numbers, respectively,

U
RRU ω=

µ
ρ

= 2StRe (6)

and are related to the Womersley number, .ReStWo =  The latter is

generally interpreted as the ratio of oscillatory inertia to viscous forces.

We define a cylindrical coordinate system with z-axis along the

streamwise direction and impose an axisymmetric velocity perturbation
to the basic flow. Introducing a Stokes stream function of the form

( ) ( ) ,,,, zietrtzr αψ=Ψ  with α the streamwise wavenumber, radial and
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streamwise velocity components of the perturbation are given by

( ) zizi e
rrrr

wei
r

tr
zr

u αα
∂
ψ∂=

∂
Ψ∂

=α
ψ

−=
∂
Ψ∂

−= 11,
,1 (7)

and the condition of incompressibility is automatically satisfied.
Substitution of the basic flow (3)-(5) and the perturbation velocity (7) into
the general Navier-Stokes equations yields, after neglecting nonlinear

terms, the following Orr-Sommerfeld equation for the stream function ψ
in dimensionless form [3]

( ) ,213 ψ=ψ+ψ−α+ψα−ψ − LLLL ReWWiWit (8)

where L  is defined by .2122 α−∂∂−∂∂= − rrrL  The boundedness of the

flow at the centerline and the slip condition at the wall of the pipe
provide the boundary conditions:

,0,1,1 +→∞<
∂
ψ∂ψ r
rrr

(9)

.1,1221,0 =





 ψ








σ
σ−=ψ=ψ r

dr
d

rdr
d

dr
d

r
Kn (10)

3. Galerkin Projection Method

We solve the Orr-Sommerfeld equation (8) by seeking an

approximation stream function ( )tr,ψ̂  as

( ) ( ) ( )∑
=

φ=ψ
N

k
kk rtatr

1

,,ˆ (11)

where ( ){ }N
nk ta 1=  are time-dependent coefficients to be determined and

the basis ( ){ }∞=φ 1nn r  is the set of eigenfunctions of the long-wave limit

( )0→α  of the Orr-Sommerfeld equation (8). These basis functions

satisfy the eigenvalue problem [3]

nnn φλ−=φ LL ~~2 Re (12)

subject to the boundary conditions (9)-(10). Here, ( )rrrr ∂∂∂∂= −1~L  is a

reduced operator and the eigenvalues are given by ,2 Renn χ=λ  where
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nχ  are the roots of the eigenvalue relation

( ) ( ) ,2,02 12 σ
σ−==χχ−χ sJsJ Kn (13)

and where ( )rJ1  and ( )rJ2  are the Bessel functions of first kind of order

1 and 2, respectively. One readily finds the solution for nφ  as

( )

( )
( )

( )
.

2421
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KnKn ss
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rr
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nn

n

n

n
χ−−χ









χ
χ

−
=φ (14)

By means of a Galerkin projection, Eq. (8) yields the following system of
periodic ordinary differential equations:

( )[ ] .exp aHKaM Stit
dt
d += (15)

Here, ( )ta  is an ( )1×N  column vector whose n-th component is ( )tan

and the entries of the ( )NN ×  constant matrices M, K, H are defined as

follows:

( ) ( ) ,,~,,, 00
32

kjkjjkkjjkjk WiWi φφα−φφα=φφα−δ= LKM

( ) ( ),,~,~, 111
3

kjkjkjjk WWiWi φφ−φφα−φφα= LLH

where jkδ  is the Kronecker delta and ∫=
1

0
.,

r
drfggf  The energy of

the velocity field associated to the approximation stream function ψ̂  is

expressed as

( ) ( ) ( )∫ ∗=









ψα+

∂
ψ∂=ψ

1
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,
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ˆ
2
1,ˆ tt

r
dr

r
t MaaE (16)

where ∗a  denotes the Hermitian conjugate.

4. Stability and Space-time Evolution of

an Optimal Perturbation

The time evolution of ( ),ta  for any t, depends on the fundamental
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matrix ( )tG  which satisfies the system (15) with initial conditions

( ) ,0 IG =  where I is the NN ×  identity matrix. The solution for ( )ta  can

be written as

( ) ( ) ( ),0aGa tt = (17)

where the vector ( )0a  defines the initial conditions. Following the

arguments in [3] we compute the set of eigenvalues { }N
kk 1=µ  of the matrix

( ),TG  where StT π= 2  is the dimensionless period of oscillations. The

resulting solution is stable if all of the (complex) characteristic exponents

Tkk µ=γ ln  are such that ( ) .0<γkRe  Note that the matrix ( )TG  is

non-normal. For the case of steady flow one has ( ) ( )KMG 1exp −−= tt  and

kγ  is one of the eigenvalues of .1KM−  The energy growth ( )tG  of the

initial perturbation defined by the vector ( )0a  is given by (see Eq. (16))

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

,
000

00
0,ˆ

,ˆ
,

aEa

aEa
c

∗

∗
=

ψ
ψ

=
tt

t
E
EG

where

( ) ( ) ( ).ttt MGGE ∗= (18)

The optimal initial condition opta  which gives the maximum growth

( )toptG  attained at time t satisfies the following eigenvalue problem:

( ) ( ) ( ) .0 optoptopt tt aEaE G= (19)

Note that ( ),toptG  as a function of t, can be regarded as the envelope of

the energy evolution of individual optimal initial conditions opta  giving

the maximum growth ( )toptG  at time t (see also [9]).

4.1. Numerical results

We consider a perturbation with wavenumber 1=α  and a strongly

pulsatile forcing of the basic flow characterized by the ratio .20 =ω KK

The characteristic exponents are plotted in Fig. 1 for a basic pulsatile flow

state described by ,1500=Re  38=Wo  and .1.0=Kn  For comparison
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purposes, the plot of the eigenvalues of the steady flow is also shown

( ).0=Wo  As one can see the negative characteristic exponents indicate

the stability of the flow. The eigenmodes having the highest damping in

Fig. 1 are spurious due to the numerical error in computing ( )TG  by the

Runge-Kutta method.

Shown in Fig. 2 for the case of the steady Poiseuille flow ( ,3500=Re

),0,1 ==σ Wo  is the least stable eigenvalue as a function of the

Knudsen number Kn for two different values of the streamwise

wavenumber ( ).3.0,01.0=α  A jump discontinuity occurs at 81~−Kn

implying a non-smooth behavior of the spectral properties of the Orr-

Sommerfeld operator. Depending upon the values of both α and Kn the

slip flow can be more or less stable than the no-slip flow counterpart (see

Fig. 2). Note that this critical value of Kn is independent of wavenumber;

moreover, and it can be predicted analytically from the eigenvalue

relation (13). The function ( ) ( ) ( )χχ−χ=χ 12 2 JsJF Kn  is even and admits

the following Maclaurin series expansion for ,1<<χ

( ) ( ).3
4
1

!4
12

4
1

2
1 642 χ+χ





 +−+χ





 −=χ OssF KnKn

A non-trivial root

112
18120 −

−=χ
Kn
Kn
s
s

exists such that 10 <χ  only if ;81 s>Kn  for s81<Kn  all non-trivial

roots exceed unity. Thus, as Kn increases starting from zero (continuum,

no-slip), the least stable eigenvalue Re2
00 χ=λ  is greater than 1−Re

and varies continuously until a critical value scr 81=Kn  is reached. For

,81 s>Kn  0λ  suddenly becomes less than .1−Re  For the case of steady

flow with 3500=Re  the plots of ( )toptG  versus t are reported for

1.0,05.0,03.0,0=Kn  and 0.2 in Fig. 3. One finds the largest energy

growth maxG  decreases as Kn increases. If Kn is greater than the threshold

,crKn  then the energy growth maxG  suddenly increases as one can see
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from Fig. 3 for the case of .2.0=Kn  Thus the Orr-Sommerfeld operator

for slip flow is less non-normal than the case of no-slip flow ( )0=Kn  for

.crKnKn <  The diminished shear flow at the wall due to the slip condition

implies a reduction of the non-normal growth: the initial vorticity
generated at the wall has less intensity as compared to the no-slip flow
conditions and then the stretching of vortex tubes is less intense.

For the particular case of pulsatile flow ( 3500,1.0 == ReKn  and

)30=Wo  we computed the time evolution of the flow disturbance which

gives the largest energy growth (see Fig. 4). The stream function of the
initial flow perturbation is given in Fig. 4(a) whose flow structures are
toroidal vortex tubes. In time the mean shear stress tends to stretch
the vortex tubes (Fig. 4b), so that at time 7.9max == tt  (Fig. 4(c)) the

energy of the flow attains its largest growth ( ).4.1~max −G  Beyond this

time the vortex tubes tend to migrate closer to the centerline, where the
effectiveness of the shear stress is diminished and a decay in time occurs
due to viscous effects (Fig. 4(d)).

5. Conclusions

In this paper, we have examined the transport and energy growth of
axisymmetric disturbances in weakly rarefied flows. The flow is found to
be linearly stable under all conditions; however, depending upon the
values of the perturbation wavenumber α and Kn the slip flow can be
more or less stable than the no-slip flow counterpart. An abrupt change
in the stability properties is found to occur at the critical value of
the Knudsen number ( ) .82 σσ−=crKn  For typical accommodation

coefficients [1] this amounts to a Knudsen number of 33.017.0~ −−Kn

which lies within the assumed slip-regime of our model. The Orr-
Sommerfeld operator for slip flow is less non-normal if compared to
continuum-based no-slip flow because the transient energy growth
decreases as the Knudsen number increases. The optimal flow
disturbance giving the largest energy growth consists of toroidal vortex
tubes which are stretched and convected by the mean flow until viscous
effects become dominant and the structures diffusively decay.
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Figure 1. Plots of the characteristic exponents { }Nkk 1=γ  for ,1.0=Kn  ,1500=Re

,38=Wo  20 =ω KK  and wavenumber .1=α  For comparison purposes, the plot of

the eigenvalues of the steady Poiseuille flow ( )1.0=Kn  is also shown. A Galerkin

expansion consisting of 30=N  terms was used.

Figure 2. Least stable eigenvalue for the case of steady Poiseuille flow as a function of
the Knudsen number for different values of the streamwise wavenumber α and .1=σ
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Figure 3. Plots of ( )toptG  for different values of the Knudsen number for ,3500=Re

1=α  and 1=σ  (steady flow).

Figure 4. The evolution of the stream function of the optimal disturbance for

,3500=Re  1.0=Kn  and pulsatile flow conditions ( ).30=Wo  (a) 0=t  (b) 9.4=t

(c) 7.9=t  (d) .9.19=t

g


