
 

Advances and Applications in Fluid Mechanics 
© 2016 Pushpa Publishing House, Allahabad, India 
Published Online: December 2015 
http://dx.doi.org/10.17654/FM019010101 
Volume 19, Number 1, 2016, Pages 101-139                           ISSN: 0973-4686 

 

Received: July 10, 2015;  Accepted: July 28, 2015 
2010 Mathematics Subject Classification: 76F55, 76B15, 74J15. 
Keywords and phrases: wave generation, Air-Sea interactions, surface water waves, 
turbulence model. 

Communicated by K. K. Azad 

AN ASYMPTOTIC ANALYSIS FOR GENERATION OF 
UNSTEADY SURFACE WAVES ON DEEP 

WATER BY TURBULENCE 

S. G. Sajjadi 

Department of Mathematics 
Embry-Riddle Aeronautical University 
FL, U. S. A. 

Trinity College 
Cambridge, U. K. 

Abstract 

The detailed mathematical study of the recent paper by Sajjadi et al. 
[21] is presented. The mathematical development considered by them, 
for unsteady growing monochromatic waves is also extended to Stokes 
waves. The present contribution also demonstrates agreement with the 
pioneering work of Belcher and Hunt [1] which is valid in the limit of 

the complex part of the wave phase speed .0↓ic  It is further shown 

that the energy-transfer parameter and the surface shear stress for a 
Stokes wave revert to a monochromatic wave when the second 
harmonic is excluded. Furthermore, the present theory can be used to 
estimate the amount of energy transferred to each component of 
nonlinear surface waves on deep water from a turbulent shear flow 
blowing over it. Finally, it is demonstrated that in the presence of 
turbulent eddy viscosity, the Miles [13] critical-layer does not play an 
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important role. Thus, it is concluded that in the limit of zero growth 
rate, the effect of the wave growth arises from the elevated critical-
layer by finite turbulent diffusivity, so that the perturbed flow and the 
drag force are determined by the asymmetric and sheltering flow in the 
surface shear layer and its matched interaction with the upper region. 

1. Introduction 

It is well known that a surface wave traveling along a water surface can 
force a couple motion in the air and water, both propagating at the same 
speed, namely the eigenvalue ,rc  being the real part of the wave speed c. 

Hence, the surface wave could force an unstable shear mode in the air, which 
then grows and induces growth of the water wave. In a pioneering work, 
Miles [13] constructed a model for generation of waves by shear flows by 
assuming that the critical height is sufficiently high that the turbulent stresses 
could be neglected. Given this assumption, he argued that the airflow 
perturbations are described by Rayleigh equation 

( ) ( ) 02 =φ′′−φ−φ′′− UkcU  (1.1) 

for the non-dimensional perturbation stream function .φ  In (1.1), ( )zU  is the 

undisturbed velocity profile for the wind, blowing over the waves, and k is 
the wave number. Clearly, unless the wave amplitude varies with time, i.e., 

,0≠ic  equation (1.1) is singular at critical point .cz  By solving (1.1) above 

and below the air-water interface and by matching the vertical velocity and 
pressure at ,cz  Miles [13] calculated ic  in the limit as 0↓∗Uci  from the 

resulting eigenvalue relationship. 

Miles [13] showed 

( ) ,2
1

22 Uiscc w β+α+=  (1.2) 

where kgcw =  is the free surface wave speed, 1was ρρ=  and 

,1 κ= ∗UU  with ∗U  representing the wind friction velocity, aρ  and wρ  are 

air and water densities, respectively, and κ is the von Kármán’s constant. He 
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then deduced the growth of a monochromatic wave is given by the following 
expression: 

{ } { } ( ).2 1 cUscca β==ζ RI  (1.3) 

The very important aspect of (1.2) and (1.3) is that, for a steady wave (in 
which the wave amplitude a remains constant), c must have a non-zero 
imaginary part, i.e., such a wave will only grow if ,0≠ic  This is quite 

evident from equations (1.2) and (1.3). 

In his paper, Miles derived an integral expression for, what is commonly 
known as, the ‘energy-transfer parameter’ β, 

( ) ,2

⎭
⎬
⎫

⎩
⎨
⎧

η′′φ−=β ∫
∞

η �

I
c

dww  (1.4) 

where w is the dimensionless wind velocity profile and the suffix c indicating 
evaluation at the critical point ,cη=η  where the wind velocity equals the 

wave speed. However, in evaluation the integral in (1.4) and hence arriving 
at his ‘well known’ inviscid expression for β at ,cη=η  for 0=cw  and 

,0≠ic  

( ),2
ccc ww ′′′φπ−=β  (1.5) 

he states “The path of integration in (1.5) must be indented either over         
or under the singularity at ,cη=η  where ( ) ,0=ηcw  and on this choice 

depends on the sign of β…”. At the bottom of the same paragraph, he 
concludes that “... the path must be indented under the singularity*”. Note 
the asterisks attached to the word ‘singularity’ refer to a crucial footnote 
which holds the key to Miles’ [13] critical-layer theory. In this footnote, he 
states “*This assumes wcc =  is real. In the next approximation { } ,0>cI  so 

that the singularity lies slightly above the real axis ( ),0assuming <′′ cc ww  

and the path of integration in (1.4) passes under the singularity without the 
necessity of indentation”. 
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This important footnote is generally overlooked by many who refer to 
Miles’ [13] critical-layer mechanism. This footnote is very significant in that 
(a) has a physical consequence which contradicts the results in (1.2) and (1.3) 
which show clearly if ,0=ic  then 0=β  and hence waves cannot grow; and 

(b) has a mathematical consequence which indicates that equation (1.5) is 
valid if .0≠ic  

1.1. Physical mechanisms 

We now present two alternative physical arguments that not only their 
results agree with each other but proves rigorously that Miles [13] critical-
layer mechanism is valid only for slowly-growing waves which do not apply 
to growth of surface waves by strong or turbulent shear flows in open ocean. 

Belcher and Hunt [1] (referred to as BH therein) considered a fully 
developed boundary layer over a two-dimensional monochromatic wave of 
small steepness ak propagating with small wave speed c and calculated the 
perturbations in the asymptotic limit ( ) .0↓+≡ ∗ UcUU  In this limit, the 

critical height cz  lies within the inner surface layer, where the perturbation 

Reynolds shear stress varies slowly. Then, by considering the equation for 
the shear stress, they constructed solutions across the critical-layer and 
demonstrated that the shear stress perturbation plays an important role at the 
critical height which in turn implies Miles’ [13] inviscid theory is not the 
dominating mechanism for the wave growth in this parameter range. Note 
that the perturbations above the inner surface layer are not directly influenced 
by the critical height and the region below ,cz  where the flow reversal 

occurs (see Figure 1). In fact, this is very similar to the perturbations due to a 
static undulation, but with the difference that the effective roughness length, 
that determines the shape of the unperturbed velocity profile, is modified 
according to 

( ).exp0 ∗κ= Uczzc  

BH then used the solutions for the perturbations to the boundary layer and 
calculated the wave growth, which is determined, in the leading order of 
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perturbation, by the asymmetric pressure perturbation induced by the 
thickening of the perturbed boundary layer on the leeside of the wave crest. 
To the first order in ,U  BH discovered that there are new effects that 
contribute significantly to the rate of growth: (a) the asymmetries in both the 
normal and shear Reynolds shear stresses associated with the leeside 
thickening of the boundary layer, they termed the non-separated sheltering 
(cf. Jeffreys [8]); (b) asymmetrical perturbations which are induced by the 
varying surface velocity associated with the fluid motion in the wave; and (c) 
asymmetries induced by the variation in the surface roughness along the 
wave. The theoretical value, predicted by their theory, for the shear stress 
perturbation at the crest of the wave on the wave surface as well as on the top 
of the inner region is in good agreement with laboratory measurements. 
Hence, despite the restriction that ,1U  their theory describes a large 

portion of the experimental observations of the wave growth rate made at sea 
and in the laboratory. 

 

Figure 1. Schematic diagram for flow geometry and asymptotic multi-layer 
structure for analyzing turbulent shear flow over steady and unsteady 
monochromatic waves. Taken from Sajjadi et al. [21]. 

In a subsequent study, Belcher et al. [2] (hereafter will be referred to as 
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BHC) considered turbulent flow over growing waves, using triple-deck 
boundary layer theory originally developed by Lighthill [10] and Stewartson 
[22], to analyze the sheltering mechanism described above. They suggested 
that Miles’ [13] critical-layer theory generates growth of waves but this was 
not demonstrated in data. In this model, they assumed the atmospheric mean 
flow is neutrally stable and is logarithmic and the surface wave, moving in 
the positive x-direction, is monochromatic whose profile is given by 

{ ( )},ctxikaeRez −′=′  

where ir iccc +=  is a complex wave speed such that rc  is the phase              

speed and the wave amplitude, a, grows exponentially at the rate .ikc  They 

considered a frame of reference moving with the wave at a speed rc  so that 

the mean velocity profile can be expressed as 

( ) ( ) ,log 01 rczzUzU −=  

where ,1 κ= ∗UU  and that this wave speed vanishes at the critical height 

.cz  In this frame of reference, the surface wave is described by 

{ ( )}.ticxik iaeRez −=  

The boundary conditions imposed at the wave surface are that the wind 
velocity is equal to the surface velocity of the water flow, being 
approximated by the surface value of the orbital velocity of an irrotational 
wave on deep water. The other boundary condition is that perturbations in 
the basic flow vanish as .∞↑kz  

BHC modelled the turbulent shear stress in the inner region, adjacent                        
to the wave surface, using a mixing-length model, and in the region above 
this, the outer region, they invoked rapid-distortion theory to describe the 
turbulence. They showed that the depth of the inner region, ,il  may be 

obtained from the following implicit relation: 

( ) ,ln
2

0

2

∗κ−
κ= Uczk

ri
i l
l  
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where the variation of solution to this equation for il  as a function of ∗Ucr  

for 4
0 10−=kz  is shown in Figure 2. 

 

Figure 2. Variation with 1Ucr  of solutions for the normalized inner region 

height, ,ikl  and critical height, ,ckz  when .10 4
0

−=kz  For given ,1Ucr  an 

inner, local equilibrium region lies between 0=kz  and the smallest value of 
,ikl  and an outer, rapid-distortion, region lies above. Solid lines: ;ikl  dotted 

lines: .ckz  

They further assumed the perturbations to the airflow are governed by 
equation (1.7) where the turbulent stresses on the right-hand side are 
modelled by an eddy viscosity. The vertical component of the velocity 
perturbation ( )WUUU ,0,=≡ i  is expanded in the normal form 

( ) ( ) ( ),,ˆ,, tickxi iezktzx −= WW  

where the amplitude of the perturbation, ,ˆW  satisfies the inhomogeneous 
Rayleigh equation 

,
ˆˆˆ
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2

2

2
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2

2
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⎠
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⎛
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′′

+−
∂
∂

zzicU
i

icU
Uk

z
e

ii

W
W

W  (1.6) 

where eν  is an eddy viscosity. 
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BHC showed that in the middle layer, ,mi z ll  the advection term 

is negligible compared with the curvature term and thus (1.6) reduces to 

0~ˆˆ
2

2
W

W

iicU
U

z −
′′

−
∂
∂  (1.7) 

whose leading order solution may be expressed as 

( ){ }
( )[ ]

.~ˆ
2
⎭
⎬
⎫

⎩
⎨
⎧

−ζ
ζ+− ∫

i
i

icU
dBAiczUW  (1.8) 

In (1.8), A and B are constants which may be determined by matching the 
inner and upper layer solutions. Now, for slow waves, the critical-layer lies 
close to the surface in the inner region. Hence, the solution (1.8) is regular, 
since ( ) 0>zU  and does not vanish there. Therefore, the integrand (1.8) is 

regular throughout the middle layer. Note, the same argument applies to the 
moderate waves, but there are differences in its application. 

Suppose now for a range of intermediate waves, the critical-layer lies in 
the outer region. Thus, we can expect, for a particular range of ,∗Ucr  the 

critical-layer lies within .mi z ll  Neglecting the Reynolds stresses in 

the vicinity of the critical-layer, Wˆ  satisfies (1.7) with the solution given by 
(1.8). 

However, in this scenario, the critical-layer lies within the range of the 
integral in (1.8) and if ,0=ic  then there is a singularity in this integrand at 

the critical-layer, where ( ) .0=czU  This singularity may be resolved by 

inertial effects, i.e., inviscid processes that control its dynamics. 

If we now suppose the wave grows so that ,0>ic  then the integral (1.8) 

is regular at .czz =  If we further assume the wave grows slowly such that 

,2
cci UUc ′′′  where the suffix c indicates evaluation at ,czz =  then the 

integral in (1.8) can be evaluated approximately. To do this, ( )zU  is Taylor 
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expanded in the vicinity of the critical-layer, i.e., ( ) ,2
1~ 2

cc UUzU ′′ζ+′ζ  

where czz −=ζ  and thus the integral becomes 

( )[ ]∫ ∫
−

⎭⎬
⎫

⎩⎨
⎧ −′′ζ+′ζ

ζ
−ζ
ζ=

czz

icc
i icUU

d
icU

dI 2
2

2

2
1

~  

( )∫
−

⎭
⎬
⎫

⎩
⎨
⎧

−ξ
ξε+

−′ξ
ξ

′= ,211
22

2 iiU
d

Uc
cci

 (1.9) 

where ic cU ′ζ=ξ  and .12
cci UUc ′′′=ε  Note that, if ( )zU  has a 

logarithmic profile, then 1∗=ε Uci  which confirms that these are 

slowly-growing waves. In the limit of slow-growing waves, the factor in 
braces can be expanded for 1ε  to give 

( )
( )∫ ⎭

⎬
⎫

⎩
⎨
⎧

ε+
−ξ
ξε−

−′ξ
ξ

′
2

2

2 11~ OiiU
d

UcI
cci

 

( )
( ) ( ) .ln2

2
111 2

2 ⎥
⎦

⎤
⎢
⎣

⎡
ε+

⎭
⎬
⎫

⎩
⎨
⎧

−ξ+
−ξ

−
−ξ

ε+
−ξ′= Oii

i
iiUc ci

 (1.10) 

From (1.10), we can deduce that far from the critical height I is 
dominated by the logarithmic term and hence (1.10) reduces to 

( )iUcI
ci

−ξ′
ε ln~  as ±∞→ξ  

( ) ,1ln2
2 θ++ξ′

ε= iUc ci
 (1.11) 

where θ is given by 

( ).tan 1
cci zzUc −′−=ξ−=θ −  (1.12) 

For a logarithmic velocity profile ( )cc zzz −ε=θtan  and hence θ 

varies between 
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 0→θ  as ( ) ∞→− cczz l  and π→θ  as ( ) .∞→− cczz l  (1.13) 

The imaginary part of the integral for czz  is then 

{ } ( )cccci zzUUUcI −′′′=θ′ε H3~I  as ,±∞→ξ  (1.14) 

where ( )czz −H  is the Heaviside step function. The result given by (1.14) is 

remarkable since it is independent of ic  which means even for a slowly-

growing wave, it leads to an out of phase component of the motion that is 
independent of the growth rate. 

The significance of the term 3
cc UUi ′′′  in the solution for I is that it yields 

an out of phase contribution to the vertical velocity that ultimately leads to 
the same contribution to the wave growth from the critical-layer as found by 
Miles [13]. This result shows the solution found by Miles [13] is valid only 
when the waves grow sufficiently slowly such that 

∗′ UzUc cci ~  (1.15) 

and hence the effects of the critical-layer calculated by Miles [13] are valid 
only in the limit .0↓∗Uci  

BHC further argued that in the vicinity of the critical height, the 
turbulent shear stress perturbation, ,τΔ  can be modelled by an eddy viscosity 
model via 

,z
u

e ∂
Δ∂ν=τΔ  (1.16) 

where zUe ∗α=ν  is an eddy viscosity and κ=α 2  is a parameter which 

reduces (1.16) to the mixing-length model used in the inner region. Thus, 
there is a layer around the critical height whose thickness is rl  in which the 

stresses cannot be neglected. By balancing the shear stress term in (1.6) with 

the gradient term, ,ˆ 22 z∂∂ W  they then estimated 

( ) .~ 2
1

ccr kzz αl  
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Hence, they found that the thickness of the shear-stress-layer surrounding the 
critical height is much smaller than the critical-layer thickness, i.e., ,cr ll  

provided 

( ) .2
1

∗α Uckz ic  

The main conclusions arrived by BHC, which has motivated the present 
investigation, are summarized below. 

(a) From various studies and experimental data, it is well known that ic  

varies with governing parameters according to 

( ) ,β= ∗∗ ri cUsUc  

where 1s  is the ratio of the air density, ,aρ  to that of water density, ,wρ  

and β is the energy-transfer parameter for the wind wave interaction. Using 
this expression, the ratio of the thickness of an inertial critical-layer, cl  to 

the thickness of a stress-dominated critical-layer, ,rl  varies according to 

( ) ( ) .~ 3
1

βα ∗ rcrc cUskzll  

For growing waves in the ocean 8001~s  and ( )3025 −≈β O  then for 

intermediate waves when 1~ckz  and ( ),2515 −≈∗ OUcr  we see that 

( ).5001 3
1

α≈rc ll  We remark that for the mixing-length model 8.0=α  

and thus rc ll  is likely to be small for a fully developed turbulent flow. 

Hence, one is led to conclusion that in the intermediate regime, the critical-
layer is dominated by effects of Reynolds stress and, contrary to Miles’ [13] 
conclusion, there will not be any contribution from the critical-layer to the 
wave growth. We further remark that for those ocean waves that are rapidly-
growing in time such that ,1~∗Uci  the inertial effects are dominant in the 

critical-layer and thus the critical-layer mechanism (c.f. Miles [13]). This 
suggests that such ‘rapidly-growing’ waves might occur as a wave crest 
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moves through a wave group. This is currently being investigated by the 
present authors. 

(b) For slow waves, ,15≤∗Ucr  the critical height cz  lies within the 

lower part of the inner region and thus the reverse-flow region, situated 
below cz  and the inner layer itself plays no significant dynamical role. In 

such circumstances, asymmetry in the flow is generated by the frictional 
effect of the shear stress through the inner region, resulting to lower wind 
speeds on the downwind side of the wave and consequently leads to a 
sheltering in the lee of the wave crest. This asymmetry results to an out-of-
phase pressure perturbation which subsequently yields wave growth. We 
emphasize that in this case the airflow perturbations are similar to those over 
a stationary undulation, but in the range ,151 ≤≤ ∗Ucr  the flow is similar 

to that over a rough surface except now the surface roughness is now 
effectively ,cz  which increases the value of β. It is to be noted that small 

corrections to the velocity of ( )irkakcO l  due to the orbital motions at the 

wave surface reduce β. 

For fast waves, on the other hand, the critical-layer is far above the 
surface, ,1>ckz  and again there is no significant dynamical role for the 

wave growth. In this scenario, the air above the wave flows largely against 
the wave which induces a ‘negative’ asymmetry from sheltering. 
Furthermore, orbital motions at the water surface generate additional air  
flow perturbations that contribute comparable ‘negative’ asymmetries. This 
‘negative’ asymmetry causes an out-of-phase pressure perturbation which 
makes waves to decay. 

Finally, between the two regions discussed above, there is also an 
intermediate region in which 3015 ≤≤ ∗Ucr  and .~ lcz  In this region, 

numerical simulations show that as ∗Ucr  increases from slow to the fast 

region, the reverse-flow below the critical height becomes stronger and 
produces a ‘negative’ asymmetric displacement of streamlines upwind of the 
crest. However, above the critical height, the asymmetric displacement is 
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‘positive’ downwind of the crest, similar to that for slow waves. Moreover, 
the critical-layer mechanism also displaces streamlines downwind of the 
crest. Therefore, as ∗Ucr  increases across the intermediate region, the 

asymmetric component of the flow peaks to its maximum and then decreases 
to zero, with the wave growth following the same trends as that of the 
asymmetric component of the flow. 

2. Shear Stress Model for Unsteady Wave Growth 

In this section, we consider the perturbation Reynolds stresses in the flow 
of a turbulent wind over the surface wave 

( )[ ] ( ) ( ) ir icccaktxhctxkaz +=≡−= 1,,cos  (2.1) 

through an interpolation between inner, mixing-length approximation and an 
outer, rapid-distortion approximation. We will show that the wind-to-wave 
energy-transfer predicted by this model is substantially larger than that 
predicted by either Miles’ [13] quasi-laminar model (in which the 
perturbation Reynolds stresses are neglected) or Townsend’s viscoelastic 
model (Townsend [23]) and is in very good agreement with the model 
proposed by Belcher and Hunt [1]. Here we will point out, Townsend’s inner 
approximation differs from the conventional mixing-length approximation 
and yields a ratio of perturbation shear stress to perturbation shear that is 
negative for his choice of parameters. 

The equations of motion for a viscous incompressible fluid may be cast 
in Cartesian tensor form as 

,1
j

ij

j
i

j
i

x
p

x
uut

u
∂
∂

ρ
=

∂
∂

+
∂
∂  (2.2) 

,0=
∂
∂

i
i

x
u  (2.3) 

where ix  denotes the Cartesian coordinate, iu  is a velocity component, ijp  

is a component of a stress tensor and ρ is the fluid density. Decomposing the 
variables according to 
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,, ijijijijiiii ppPpuuUu ′′+′+=′′+′+=  (2.4) 

where ii uU ′+  and ijij pP ′+  represent a solution to (2.2), being functions of 

coordinates 1x  and 3x  and having mean values with respect to .2x  Note that 

iU  and ijP  represent the mean components and iu′  and ijp′  represent the 

turbulent fluctuations. In (2.4), iu ′′  and ijp ′′  represent a small perturbation 

with respect to the solution of (2.2)-(2.3). 

Substituting (2.4) in (2.2), neglecting second-order terms in the 
perturbation flow, and noting the fact that the unperturbed flow satisfies 
(2.2), we obtain 

( ) ( ) ,1
j

ij

j
ii

j
j
i

jj
i

x
p

x
uUux

uuUt
u

∂
′′∂

ρ
=

∂
′+∂′′+

∂
′′∂′++

∂
′′∂  (2.5) 

.0=
∂

′′∂
i
i

x
u  (2.6) 

Taking the mean values with respect to ,3x  the results can be expressed in 

the following forms: 

( ),1
ijij

jj
i

j
j
i

j
i rpxx

Uux
uUt

u ′′−′′
∂
∂

ρ
=

∂
∂′′+

∂
′′∂

+
∂
′′∂  (2.7) 

.0=
∂

′′∂
i
i

x
u  (2.8) 

Invoking the equations of continuity for both iu′  and ,iu ′′  the perturbation 

Reynolds stress may be written as 

( )ijjiij uuuur ′′′+′′′ρ=′′  (2.9) 

[ ( ) ( )]iijjji uuuuuu ′′−′′′+′′−′′′ρ=  (2.10) 

with (2.10) follows from (2.9) by virtue of .0=′iu  
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If we now set ,1 xx =  ,3 zx =  ( ),1 zUU =  ,032 == UU  ,1 uu =′′  

,3 wu =′′  ℘δ−=′′ ijijp  and ,jiij uur ′′ρ=′′  after taking the time average, we 

obtain the linearized, Reynolds-averaged equations governing u and w, the x 
(horizontal) and z (vertical) components of the mean perturbation velocity, 
and the kinematic perturbation pressure p  as 

,0=+ zx wu  (2.11) 

( ) ,zxxx wUucU τ+σ+℘−=′+−  (2.12) 

( ) ,xzxwcU τ+℘=−  (2.13) 

where the subscript x and z signify partial differentiation, ,dzdUU ≡′  

 ( ) ( ) ,,, 00
22

0
22 τ−′′−≡τσ−′−′−≡σ′−′+≡℘ wuwuwwp  (2.14) 

( ) ,0
2w′  0σ  and 0τ  are the unperturbed values of ,2w′  ( )22 wu ′−′−  and 

,wu ′′−  and σ is Townsend’s .nτ  

In this paper, we consider a turbulent shear flow blowing over the 
surface wave (2.1) whose mean velocity profile is given by 

( ) ( ) ( ),log 0
21

0 zzzU κτ=  (2.15) 

where 0τ  is the kinematic shear stress in the basic flow, κ is von Kármán’s 

constant, z is the elevation and c is the complex phase speed of the surface 
wave (2.1). 

2.1. Energy-transport equation 

As a first step toward a Reynolds stress closure, Townsend points out the 

transport equation for the turbulent kinetic energy 2
2
1 q  may be expressed in 

the form 

 ( ) ,2
1 2 ε′−+=⎟

⎠
⎞⎜

⎝
⎛∂− GDcU x q  (2.16) 
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where 

 ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛∂∂ρκτ= 221

0 2
1 qzz zD  (2.17) 

represents diffusion1 

( ) UwuUwuwwuuG xzzx ′τ−++′′′−′−′−= 22  (2.18) 

( ) τ′++τ+σ= Uwuu xzx 00  (2.19) 

represents generation (Launder et al. [9]), (2.19) follows (2.18) through 
(2.11), (2.14) and linearization, and ε′  represents dissipation (see below). 
Townsend neglects xw  in G, although this appears to be inconsistent with 

his subsequent rapid-distortion approximation (see below). 

Townsend’s approximation to the dissipation rate ε′  involves h, the 
surface displacement (2.1), but this may be eliminated through a 
transformation to wave-following coordinates, in which (Miles [14, equation 
(3.4)]) 

( ) ,,2
3

0
2

00 eeeeU −≡′τ=ε′ q  (2.20) 

and 2
0 q≡e  in the basic flow. Substituting (2.19) and (2.20) into (2.16), 

neglecting diffusion (see Miles [14, Section 3]), and multiplying the result by 
,2 1a  we obtain 

( ) ( ) ( )[ ] ,22 1011 ixnxz uawuaeaea AD ≡++τ=−τλ−λ+  (2.21) 

where 

  ( ) .,,, 000011 eaeaUacU nx σ=τ≡′≡λ∂−≡D  (2.22) 

The relaxation rate λ is a reciprocal measure of eddy life and dominates (is 
dominated by) D  in the inner (outer) domain. 

                                                           
1Townsend chooses 3.0=ρ  but states that ‘the value ... is not critical’. 
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2.2. Rapid-distortion approximation 

To determine the outer departure of eτ  and eσ  from their equilibrium 

values 1a  and ,na  Townsend posits the rapid-distortion approximations 

 xxz uAwAuAe
ea

ee 321
0

1
0
0 ~~ ++

⎭
⎬
⎫

⎩
⎨
⎧ −τ−

⎭
⎬
⎫

⎩
⎨
⎧

+
τ+τ

DD  (2.23) 

and 

 ,~~ 321
00

0
xxz

n uBwBuBe
ea

ee ++
⎭
⎬
⎫

⎩
⎨
⎧ −σ

−
⎭
⎬
⎫

⎩
⎨
⎧

+
σ+σ

DD  (2.24) 

where 3,2,1A  and 3,2,1B  are ‘the incremental rates of change for suddenly 

imposed additional distortions’. He then ‘interpolates’ between (2.23)-(2.24) 
and the inner domain, in which (by hypothesis) ea1→τ  and ,ean→σ  by 

replacing D  by :λ+D  

 ( ) ( ) ( ) 032101 AD ≡++=−τλ+ xxz uAwAuAeea  (2.25) 

and 

 ( ) ( ) ( ) .03210 BD ≡++=−σλ+ xxzn uBwBuBeea  (2.26) 

However, the elimination of ea1  between (2.21) and (2.25) in the inner 

domain (in  which )λD  yields 

 ( ),3 0
1 AA +λ→τ −

i  (2.27) 

which differs from the mixing-length approximation obtained by invoking 
λD  in (2.21): 

 ( ),2 0
1

1 xxzi uwuea HA ++ν=λ→→τ −  (2.28) 

where 

 ., 21
0001 zUaan κτ=′τ≡ν≡H  (2.29) 
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Indeed, if (as typically assumed in the mixing-length approximation) 
,, zxx uwu  (2.27) implies 

 ,
2
312 2

1

1
0 a

A
uz

+→
ν
τ  (2.30) 

which reduces to the conventional mixing-length approximation for 01 =A  

but is negative for Townsend’s values of 1a  and ,1A  6
1  and .03.0−  

3. Solution of Boundary-value Problem 

Miles-Sajjadi theory of wave generation by turbulent wind (Miles [14] 
and Sajjadi [16]) reduces to the solution of the Orr-Sommerfeld-like equation 

( ) [( ) ( ) ] T ′′≡Φ′′−Φ−Φ ′′−=″Φ ′′ν UkcUike
2  (3.1) 

subject to the boundary conditions 

( ) ,0on, =η′−=Φ′=Φ Ukcaac  (3.2) 

,as0, ∞→η→ΦνΦ ke  (3.3) 

where ( ),ηΦ=Φ  ( )η= UU  and ( ) .η≡′ dd  In equation (3.1), eν  is a 

complex eddy viscosity given by 

 ( ) ( ) ,,2 1
12 acUVikVUUe −≡+′=ν −

∗  (3.4) 

where 1a  ( 4.0;~ 2 =κκ−  is von Kármán’s constant) is Townsend’s boundary 

layer constant, and a, c and k are the amplitude, speed and wave number of 
the surface wave. The velocity profile has the logarithmic asymptote 

 ( ) ( ),,ln~ 001 zzUU ηη  (3.5) 

where 

 ., 2
101 gUzUU Ω=κ= ∗  (3.6) 
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∗U  is the wind friction velocity and Ω is Charnock’s constant. We seek the 

impedance 

 ( ) ( ),2
100 kaUii TP +=β+α  (3.7) 

where 

( ) ( )′Φ ′′ν+= −
eikkac 12

0P    and   0on0 =ηΦ′′ν= eT  (3.8) 

are complex amplitudes of the wind-induced perturbation pressure and shear 
stress action on the wave. 

3.1. Reduction to second-order differential equations 

It is convenient to reduce the fourth-order differential equation (3.1) to 
the pair of second-order equations 

 ( ) ( ) [ ( )] ,2 Φ−+′′−−ν=′′ cUkUikcUik e TT  (3.9) 

eν=Φ ′′ T  (3.10) 

for which the respective boundary conditions are 

 ( ) 0on, 2
00 =η−=′= kacik PTTT  (3.11) 

and (3.2). Note that, 0T  and 0P  are implicitly determined by the null 

conditions (3.3). 

We render the formulation dimensionless by referring to η to Uck ,,1−  

and V to Φ,1U  to P,1aU  and T  to ,2
1kaU  thereby reducing (3.4), (3.9)-

(3.11) and (3.2) to 

( ) ( ) ,2
1 Φ−+′′−+′=′′ cUUiiVUiV TT  (3.12) 

( ) ( ) ,2 12 TiVU +′κ=Φ ′′ −  (3.13) 

( ) .0on,,, 2
00 =η′−=Φ′=Φ−=′= Uccci PTTT  (3.14) 
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3.2. Inner expansion for surface layer 

A constant-stress interpolation between the logarithmic profile (3.5) and 
a viscous sublayer of vanishing thickness is given by (Rotta [15]) 

( ) ( )
02

2
1 2

1,ˆ
11

1log zeUU
U η=ζζ≡

+ζ+

ζ−+ζ+ζ=  (3.15) 

in which 

.
11 2

1

ζ++
=

ζ
U

d
dU  

Note that ( )2
01 zUOU =′′  for ( )1O=ζ  and therefore, in contrast to the 

conventional Orr-Sommerfeld problem, is not negligible near the boundary, 
although it does vanish at .0=ζ  

The inner and outer length scales are 0z  (or,  more conveniently, ≡0ẑ  

)ez02  and ,1−k  and the introduction of the inner variable ζ and the small 

parameter 

 ( ) 12ˆ 2
0

−Ω=≡ε cezk  (3.16) 

in (3.12-3.13) and (3.14) leads to the inner expansions 

( ) ( ) ( ),22
1 2

00
2 ε+⎥⎦

⎤
⎢⎣
⎡ ζ+ζκε+ζ⎟

⎠
⎞⎜

⎝
⎛ −ε+=Φ ∫

ζ
OiUdcc GT  (3.17) 

where 

( ) ( ) ( )∫ ∫ ∫
ζ ζ ζ

ζ⎥⎦
⎤

⎢⎣
⎡ ′−′ζ+−ζζ′ζ=ζ

0 0 0 3221
1 2 ,2

1 dUcUUcdUdG  (3.18) 

and 

 ( ) ( ).2
1

00 ε+⎥⎦
⎤

⎢⎣
⎡ ζ−−ζ++= ∫

ζ
OUdcUUciTT  (3.19) 
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Letting ∞→ζ  in (3.17) and (3.18) and invoking ,εη=ζ  we obtain 

( ) .2
7

4
112

1
2
1~ 21

0
11

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ +−ηε+−ηκ+η⎟

⎠
⎞⎜

⎝
⎛ ε−+Φ −−− UciUcc T  (3.20) 

Hence, the problem is reduced in determining T  and .0T  The form given by 

(3.19) is not very convenient for this task. A better approach is to determine 
T  in the inner via shear-stress-layer approximation. 

In this region, the complex amplitude of the wind-induced perturbation 
shear stress may be expressed as (Sajjadi [16]) 

 [ ( ) ( ) ] .,2 cUUe −≡′Φ′−″Φν= UUUUT  (3.21) 

Rearranging this equation, we obtain 

 .Φ′′−Φ ′′=
ν

U
e

U
TU  (3.22) 

Under the assumption that 1ηk  in this region, we may neglect ΦU2k  in 

(3.1) and upon combining the result with (3.22), we arrive at the shear-stress-
layer approximation 

 ( ) ( )1;0 η=ν−′′ kik e TUT  (3.23) 

whose asymptotic solution for ,0↓ηk  which may be expressed in terms of 

modified Bessel function of the first kind (Sajjadi [20]), is 

( ) ( ){ } ( )ε+η′η+−=η OK0412T  

(cf. Appendix A of BH)2, whence for growing waves we obtain 

( ) ( ).2 tcxiktkc ri ee −η−=τ T  

The real part of the complex amplitude of shear stress as a function of non-
dimensional height is shown in Figure 3. This figure clear that the shear 

                                                           
2The asymptotic solution given here reduces to that given by BH in the limit as .0↓ic  
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stress becomes negative after descending from a maxima and then rising 
again. The latter part is not depicted in this figure. 

However, for the purpose of calculating the energy-transfer parameter, 
from wind to wave β, we multiply (3.23) by T  and integrate by parts over 

∞<η<0  to obtain 

( ) [ ( ) ]∫
∞

ην+′−=′
0

22
0 .dik e TUTTT  (3.24) 

The integral (3.24) is stationary with respect to first-order variations in T  
about the true solution (3.23). 

 

Figure 3. The real part of the complex amplitude of T  as a function of non-
dimensional height .ηk  

Substituting the trial function 

 ,0
δη−= keTT  (3.25) 

where δ is a (complex) free parameter to be determined, and eν  is given by 

(3.4), with ,2
1 κ=a  into (3.24) and invoking the condition ( ) ,000 =δ∂′∂ TT  

we obtain 

( ) ,ˆ26
11

4
2122

20

0
⎥⎦
⎤

⎢⎣
⎡ −δ+⎟

⎠
⎞⎜

⎝
⎛ π+δ+

κ
−=

′ −
∗δ∗ cLik

T

T
 (3.26) 
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,,ln,0226
12 2

0
222 δκ≡δδ+≡=−δ+δ⎟

⎠
⎞⎜

⎝
⎛ π++ −

∗δ∗δ∗δδ iLLLLL  

 (3.27a-c) 

where ,2ln1
0 k−γ−=Λ≡ −L  ,ˆ ˆ2 cec−Ω=k  ,ˆ 1Ucc =  5772.0=γ  is the 

Euler’s number and Ω is the Charnock’s constant. 

Solving (3.27a) as a quadratic in δ∗δ L  and letting ,0→δ∗  we get 

 ( ).132 δ+−=
κ

δ δ OLi  (3.28) 

4. Outer Approximation Above Inertial Critical-layer 

In contrast to the inner region, the solution in the outer region is very 
straightforward. In the outer domain ,1ηk  U may be approximated by 

(3.5), and Φ admits the Green-Liouville approximation (Olver [11, chap. 6]) 

( ) ( ) ( ) ( ) ( ).ln1~,exp~ 2
0 cd ηηκη⎥⎦

⎤
⎢⎣
⎡ ηΦ ∫

η
ZZWZF  (4.1) 

Substituting (4.1) into the dimensionless counterpart of (3.1), we obtain 

 ( ) 012
1 224 =−+ WZW  (4.2) 

and 

( ) ( ) 02
2
16

32
22

22
=−κ+⎟

⎠
⎞⎜

⎝
⎛ +++

Z
WW

Z
W

ZW
Z
F

F
ZWW i

d
d

d
d  (4.3) 

from which it follows that 

[ ( ) ],84
1 212422 ZZZW +±−=  (4.4) 

( )
( ) ( ) ( ) 2124

3

22

3

22

2

8
2

4
2

4
1

ZZZ

W

ZWZ

W

ZWW

WZ
Z
W

+

±=
+

=
+
−−=d

d  (4.5) 
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and 

( )
( ) ( )

.
44

4ln
22

32

222

222

ZWZ

W

ZWZ

ZWW
Z
F

+
κ−

+

−−= i
d

d  (4.6) 

We restrict further consideration to the asymptotic limit ,∞→V  for 

which the admissible roots of (4.4) may be approximated by 

2,1~ ZW i−−  (4.7) 

(the  roots 1+  and 2Zi+  are ruled out by the null condition at ).∞=Z  

The corresponding approximations to (4.6) are 

 ,22
3,1~ln 2231

3

2
κ−−κ+ −−Z

ZZ
F i

d
d  (4.8) 

the integration of which leads, through (4.1), to 

( ) ,
222

exp~
22

23
21 ⎥

⎦

⎤
⎢
⎣

⎡ κ−κ−η−+Φ
−

−η− ZZ
Z

iCeC  for ,∞→Z  (4.9) 

where 1C  and 2C  are constants. (The term ,2
1 2−− Z  derived from the real 

part of (4.8), has been neglected in the exponent in (4.9) since it is dominated 
by the error implicit in the approximation (4.7).) The corresponding 
approximation to ,T  obtained through substitution of (4.9) into (3.13) is 

( ) .
222

exp2
12~

22
21

2
1

1
2

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ κ−κ−η−−κ

−
−η−− ZZ

ZZT
iCeCi  (4.10) 

Note that, using the standard exponential substitution of the Liouville-
Green method for the asymptotic solution of (3.1), we obtain the following 
expansion of the phase function: 

[ ( )] [ ( )] { [ ( )01030 logˆexpˆlogexpˆlogˆ~ 21 zizz ηηϑηγηηΦ γγ L  

     ( ( )) ( ) ]},ˆlogˆˆlog,1ˆ 04032 L+ηηϑ+η−ϑ+ηϑ+ zzEi  (4.11) 
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where kϑ  and kγ  are real, η≈η kˆ  and Ei is the exponential integral. 

Formally there is an infinite number of terms with coefficients kϑ  that 

precede the determination of the .kγ  However, as only the first of these, 

namely ,1ϑ  enters into the formula for ,1γ  the first two into 2γ  (although 

the ϑ  contributions happen to cancel), the first four into ,3γ  and so on. The 

result is depicted in Figure 4 where we see that an initial exponential decay 
follows by an algebraic tail. It should be noted that this is agreement with 
numerical simulation of Ierley and Miles [6], and the expression (4.11) is 
originally found by them. However, the results of Figure 4 are drawn from 
the analytical expression given by equation (4.11). 

 

Figure 4. The variation of the log of modulus square for perturbation stream 
function Φ against the non-dimensional distance ηk  showing the initial 

exponential decay follows by an algebraic tail. The lower figure is a close of 
the upper figure in the range .206 ≤η≤ k  
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Since the governing equation is fourth order, we find ϑ  by solving for 
the roots of the fourth degree polynomial 

[( ) ] .012 2
11

42
1 =+ϑ+κϑ A  

Two roots are zero and the other two constitute an imaginary pair. The 

double zero leads to a particularly simple result at next order: ,012
2 =−ϑ  

thus one pair of solutions is approximately ( ).exp η±  The pure imaginary 

root pair exhibits weak algebraic growth (or decay), as reflected in .1γ  A 

suitable boundary condition for (3.1) is to match the decaying exponential 
and the decaying algebraic solutions. For this purpose, we employ the 
following expressions: 

( ) ,2 214
11

−κ+−=ϑ A  

( ) ( )
( )

( )
( )

,
22
4

22
21

1
4

1
4

1
4

13214
1

3
2

A
Ab

A
BAA

+κ

+κ
−

+κ

+
−κ+κ+=ϑ −  

( ) 2
3;22

1
2

214
1

2
1 −=γκ+κ−=γ −A  

after selecting .~ 2
1 κ=a  

5. Effect of the Inertial Critical-layer 

5.1. Comparison with BHC 

In the case of slow waves, where ,1c  the perturbation shear stress in 

(3.1) can be neglected in the outer region and thus Φ will satisfy the Rayleigh 
equation 

 ( ) ( ) ,02 =Φ′′−Φ−Φ′′− UkcU  (5.1) 

where now we shall assume rcc =  and .0=ic  The corresponding 

expressions for unsteady waves will be given in the next subsection. 
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As was shown by Sajjadi [16], the leading order solution to (5.1) is 

( )
( )

.11
0 2 ⎥

⎦

⎤
⎢
⎣

⎡
η

⎭
⎬
⎫

⎩
⎨
⎧

−
−

′Φ+−=Φ ∫
∞ηη− d

cU
eUecU ck

cc
k A  (5.2) 

The integral (5.2) is regular at the critical height and hence, by indenting the 
path of integration in (5.2) under the singularity ,cη=η  we obtain 

( )
( )

,11
0 2 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−η

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−′Φ+−=Φ ∫
∞ηη− Id

cU
eUecU ck

cc
k A  (5.3) 

where A  is a constant which can be determined from the boundary 
conditions and 

 
( )∫

ϖ+η

ϖ−η→ϖ
η

⎭
⎬
⎫

⎩
⎨
⎧

−
−

=
c

c
d

cU
I .11lim 20

 (5.4) 

Expanding ( )ηU  in a Taylor expansion in the vicinity of the critical 

point, setting ,θϖη=η i
c e  where ,1∗≡ϖ Uci  and 

 ( ),tan cci Uc η−η′−=θ  (5.5) 

then (5.4) becomes 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′
′′

π+
η−η
η

′
= ∫

ϖ+η

ϖ−η→ϖ

c

c c
c

cc
U
Uid

U
I 202 lim1  

3
c

c
U

Ui
′

′′π
=  (5.6) 

which agrees with the result obtained by Belcher et al. [2]. 

As also pointed out by Belcher et al. [2], a logarithmic mean velocity 
profile (5.5) yields ( ).tan cc η−ηϖη=θ  Hence, θ varies between 0 and π 

as ( ) cc lη−η  tends to ,∞±  respectively. Note that, the transition between 

these limiting values occurs across the layer of thickness .cc ϖη=l  Note 

also, the significance of the term 3
cc UUi ′′′  in the solution for I is that it leads 
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to an out of phase contribution to the wave induced vertical velocity that 
gives rise to the same contribution to the wave growth from Miles [13] 
critical-layer mechanism. 

The result of the present analysis confirms the earlier finding of Belcher 
et al. [2] in that Miles [13] solution is only valid when the waves grow 
significantly slowly such that 

.~ ∗η′ UUc cci  (5.7) 

As in Belcher et al. [2], our analysis also shows that when inertial effects 
control the behaviour around the critical-layer, there is a smooth behaviour 
around the critical-layer of thickness 

.~~ ∗η′ UcUc iccicl  (5.8) 

Hence, this proves the effects of critical-layer, as calculated by Miles [13], 
are only valid in the limit .0↓∗Uci  

5.2. Steady monochromatic waves 

For comparison with the waves that are unsteady, we calculate the 
energy-transfer parameter due to critical-layer, ,cβ  for steady monochromatic 

waves. Thus, we let .UM−=Φ  Thus, (3.1) becomes 

[ ( )] [( ) ].2 222 MUMUMMMU kikUUe −′′=″′′+′′+′′ν  (5.9) 

In quasi-laminar limit, the left-hand side of (5.9) is negligible and thus (5.9) 
reduces to 

( ) .0222 =−′′ MUMU k  (5.10) 

Multiplying (5.10) by ,M  integrating by parts over ,0 ∞<η<  and invoking 

the inner limits a→M  and 0
2 PMU →′  and a null condition at ,∞=η  

we obtain 

 ( )∫
∞

η+′−=
0

2222
0 .dka MMUP  (5.11) 
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Using the simplest admissible trial function for the variational integral 
(5.11), i.e., 

 ,ςη−= kaeM  (5.12) 

where ς  is a free parameter. Substituting (5.12) into (5.11) together with the 

approximation ( ),ln1 cU ηη≈U  we get 

( ) ( )∫
∞ ςη−− ηηη+ς−=≡
0

2222
10 ln1ˆ dekkaU c

kPP  

( )∫
∞ −− +ςξ−=
0

22 ln1 tdte st
c  

,2ln62
2

21

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

ς
γξ

+πς+ς−=
−

c  (5.13) 

where .cc kη≡ξ  It then follows from the variational condition 00̂ =ς∂∂P  

that 

 ,
62

62
22

22
2

π++

π+−
=ς

ςς

ςς

LL

LL
 (5.14) 

where ςγξ≡ς cL 2  and ( ).1O=ς  

The corresponding, quasi-laminar approximation to the energy-transfer 
parameter may be calculated from (5.3), which implies ≈′=Φ ccc UP  

,0 cU ′P  and (5.6), which yields 

( )
2

2212
0

32
1 6

1
4
1ˆ ⎟

⎠
⎞⎜

⎝
⎛ π+ς+ςπ=πξ=Φπξ=β ς

− LaU cccc P  (5.15) 

( ) ,3
141 3224

0
3

⎥⎦
⎤

⎢⎣
⎡ Λ+Λ⎟

⎠
⎞⎜

⎝
⎛ π−−πξ= OLc  (5.16) 

where ( ),2ln1
0 k−γ−==Λ −L  δ−= δ ln0 LL  and ( ) +−=κδ δ 132Li  

( ).δO  
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To obtain the corresponding expression for the component of the  
energy-transfer parameter, ,Tβ  due to turbulence, we multiply (3.1) by 

,M−  integrating over ,0 ∞<< z  invoking the conditions 

[ ]2
0,, kacikkaa −=′=′= PTMM  

on 0=z  and the null condition for ,0→z  we obtain 

[ ] ( )∫ ∫
∞ ∞

′′++−=′′
0 0

2
00 dzkaciikadz r TMPTTM  

( ) ( )∫
∞

+′+=
0

22222 ,dzkikkaci r MMV  

with .ir iccc +=  Then, in the limit as ,was ρρ≡  where aρ  and wρ  are 

densities of the air and water, respectively, we obtain from 

( ) ( ) ( ),ˆˆ
00

2
100

2
1

22 TPTP ikaUisUcci w +≡+=−≡β+α  (5.17) 

where c is the complex wave speed, kgcw =  is the speed of water waves 

in the absence of the airflow above it and the suffix zero denotes evaluation 
at ,0=z  

( ) { [ ]∫
∞− ′′′′+′′′+′′ν=β+α
0

22
1 2 MMMMMV UUikaUi eTT  

( )} .2222 dzkk MMV +′−  (5.18) 

The above integral can be evaluated asymptotically3 whose imaginary part 
yields 

 .5 1
0

2 −κ=β LT  (5.19) 

Therefore, in summary, the energy-transfer parameter from wind to 
surface waves for steady monochromatic waves may be given by the 
following formulae: 

                                                           
3The detail evaluations may be obtained found in the appendix of the paper by Sajjadi [19]. 
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,341ˆ
2
5,5, 2

2
4
0

2
⎥
⎦

⎤
⎢
⎣

⎡
ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−−π=β
Λ
κ=ββ+β=β LWcTcT  

( ) ,2,ˆ,ˆlog, 2
00

1
0 ∗λλ
− ==−γ−==Λ λ UUcUekzWWLL r

Ucr  

where 4.0=κ  is von Kármán’s constant and 5772.0=γ  is an Euler’s 

constant. 

5.3. Unsteady waves 

The generalization of the results just obtained above follows a similar 
development, but with the exception that .0≠ic  Here we shall present 

results for Stokes waves being a sum of two harmonics ( ).2,1=n  Hence, 

we consider the surface wave expressed as 

( ) ( ) .,2
1 22

ir
ctxkictxik icccekaaeRez +=
⎭⎬
⎫

⎩⎨
⎧ += −−  

Note that, results for monochromatic waves follow immediately from what 
will be developed by setting 1=n  and ignoring the second harmonic. 

Therefore, we begin by using the expression (5.11), but now we take 

 .ir iccU −−=U  (5.20) 

Thus, the expression (5.11) now reads 

[( ) ( ) ] ( )∫
∞

η+′−−−−−=
0

2222
0 ,2 dkccUiccUa nnnirirn MMP  (5.21) 

where kk ≡1  and .22 kk ≡  

Once again using a similar admissible trial function as that given by 
(5.12), namely 

( )2,1== ςη nae nnk
nM  

the variational integral (5.21) becomes 
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( ) ( )
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Evaluating the integrals, we obtain 
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where .ˆ 1Ucc ii =  

As before, applying the variational condition 0ˆ
0 =ς∂∂ nnP  yields 
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whence 

 ,

6
ˆ2ˆ2

6
ˆ2ˆ2

2
22

2
22

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π++++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π+++−
=ς

ς
∗

ς

ςς

iinin

iinin

n
cicLL

cicLL

C

C

 (5.23) 

where ,ˆ1 ii c+=C  the superscript * denotes the complex conjugate, and 

,2 ncnn kL ςηγ≡ς  where ( ).2log cnn kL η−γ−=ς  

The expression (5.23) may be approximated to ( ),2
nO Λ  to give 
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1
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n
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where ,1
0

−≡Λ nn L  and therefore we obtain the following expression for the 

energy-transfer parameter to the two ( )2,1=n  harmonics of the wave: 

( ) .ˆ103412
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 (5.24) 

Note that, for a steady wave ( )0=ic  and a monochromatic wave 1( =n  and 

ignoring the second harmonic of the Stoke wave), the expression (5.24) 
reduces to (5.16). We remark that for a steady Stokes wave, we only need to 
assume .0=ic  

In a similar manner, for an unsteady wave, we adopt the complex 
amplitude of surface shear stress is given by (3.24) but with U  given by 
(5.20) and the following modification for the expression for the eddy 
viscosity, given by (3.4), namely 

 { [ ( ) ( )] } .ln2 1221
1

2 −−
∗ κ+ηηκ+η=ν incnne ckikUU  (5.25) 

Thus, upon substituting (5.25), and using an equivalent trial function to that 
given by (3.25), namely 

 ,0 nnk
nn e δη−= TT  (5.26) 

the ‘unsteady’ version of the integral (3.24) becomes 
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Invoking the condition ( ) ,00 =δ∂∂ nnn TT  after substituting U  and 

(5.26), and evaluating the integral (5.27), we obtain 
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where ,ˆ 2κδ=δ nn i  
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and .ln0 nnLL n δ+=δ  

Solving equation (5.29) for ,ˆ
nδ  we find that 
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Note that, nδ  may be complex and 1nδ  (but strictly not equal to zero), 

we may use the expansion for ,ln nδ  given by 
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we may cast (5.30) as 
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Hence, the asymptotic evaluation of integrals in (5.27) yields to the 
following expression (for further details, see the appendix of Sajjadi [19]) 

[ ( ) ( ) ( ) ( )2ln41311312 2 +−−−++κ=β δδδ nnn LLn E  
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where { },nni δ=δ T  

( ) pLLa
ipL

ipL
a

p
p

p
p ln2ln,212

0
1

1 +=−γ−=−≈⎟
⎠

⎞
⎜
⎝

⎛= kpEE  

and 

( ) ( )∫
∞ Θ−−Θ ΘΘ=Θ=Θ
0 1

1 .nn
t

nn nn edtete EE  



Asymptotic Analysis for Generation of Unsteady Waves … 135 

From these expressions, we obtain (see Sajjadi [19]) 
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n

nTnnnc n
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κ=β
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⎩
⎨
⎧ π+Λ+Λ=β ς

−
22

21 4,62
1  

which are in reasonable agreement with (5.19) and (5.24). 

6. Results and Conclusions 

In Figure 5, we show comparison of the energy-transfer rate, β, between 
the present result for a monochromatic unsteady (growing) wave, both 
analytically and numerically, and those calculated by Miles [13] and Janssen 
[7] for the steady wave counterpart. Miles and Janssen both assume that the 
drag ,DC  and thence β, is dominated by the limiting inviscid wave growth 

mechanism, thus their formulation is independent of .ic  In contrast, the 

present calculation is for a viscous unsteady (growing) wave, where 

01.0=∗Uci  and .10 4
0

−=kz  

 

Figure 5. Total energy-transfer parameter, β, using different models for 
critical-layer and sheltering mechanisms for unsteady waves ( icwhere  

)∗U  as a function of the wave age .1Ucr  +++++, Miles [13] calculation 

( )0,0 =ν= eic  from his formula: 
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where cc kz=η  is the critical height ( ) 12
1

Uc
rc recUΩ=η  and =Ω  

2
10 Ugz  is the Charnock’s [3] constant. Thick solid line, parameterization          

of Miles [13] formula, for ,0=ic  ,0=νe  given by Janssen [7]: =β  

,log2.1 42
cc ηηκ−  where { ( )[ ]}.,1min 011.0

0
+κ ∗=η cU

c ekz  Thin solid line, 

present formulation: ( )cT β+β  for ,.0,0 o≠ν≠ eic  numerical simulation 

using Launder et al. [9] Reynolds-stress closure model for .0,0 ≠ν≠ eic  

Note that, β for Miles and Janssen is equivalent to cβ  in our notation. Taken 

from Sajjadi et al. [21]. 

We emphasize that the various models, such as those by Belcher and 
Hunt [1], Mastenbroek et al. [12], etc., all generally agree with our numerical 
simulations performed using Launder et al. [9] Reynolds stress closure 
scheme for the energy-transfer parameter, β, shown in Figure 5. This shows 
consistency between these models and the unimportance of very small ic  for 

which viscous processes are significant. 

Figure 6 shows comparison of cβ  as a function of wave age ,1Ucr  

calculated according to (Conte and Miles [4]) for numerical solution of 
inviscid Orr-Sommerfeld equation, against the numerical solution of equation 

(1.6) for ,01.0=∗Uci  4
0 10−=kz  and .0≠νe  We remark that increasing 

∗Uci  from 0.01 to 0.1 (not shown here) makes no significant difference in 

the magnitude of .cβ  We conclude therefore for a finite value of eν  the 

right-hand side of equation (1.6) is dominant and therefore the magnitude of 
,cβ  calculated from the solution of (1.6), is practically zero over a wide 

range of the wave age, in particular for a ‘young’ wave, where .21 <Ucr  

We thus conclude that the critical-layer mechanism plays an insignificant 
role for ,91 <Ucr  and very little effect for .5.109 1 ≤≤ Ucr  
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Figure 6. Component of energy-transfer parameter, ,cβ  by different models 

of critical-layer mechanisms for unsteady waves ( )∗Uciwhere  as a 

function of the wave age ,.1 •Ucr  numerical solution of inviscid Orr-

Sommerfeld equation by Conte and Miles [4] for 0=ic  and 0=νe  using 

the singular critical-layer approach; o  numerical solution of equation (1) for 
0≠ic  and .0≠νe  Taken from Sajjadi et al. [21]. 

We remark that these parameterizations have been incorporated and 
tested in a spectral wave model, Wave Watch and Wind Wave, which show 
superior results when compared with field data (see Fitzpatrick et al. [5] and 
Sajjadi et al. [18]). 

In conclusion, we adopted an asymptotic multi-deck solution for 
turbulent shear flows over unsteady surface waves, in the limits of low 
turbulent stresses and small wave amplitude. The structure of the flow is 
defined, using an eddy viscosity turbulence model, in terms of 
asymptotically-matched thin-layers, namely the surface layer and a critical-
layer. Solutions for both inner and outer regions are constructed through an 
interpolation between an inner, mixing-length and an outer, rapid-distortion 
approximations. The results particularly demonstrate the physical importance 
of the singular flow features and physical implications of the elevated 
critical-layer in the limit of the unsteadiness tending to zero. These agree 
with the variational mathematical solution of Miles [13] for small but finite 
growth rate. However, the results obtained here, are not consistent physically 
or mathematically with his analysis in the limit of growth rate tending to 
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zero. In the present study, it is shown that in the limit of zero growth rate,         
the effect of the elevated critical-layer is eliminated by finite turbulent 
diffusivity, so that the perturbed flow and the drag force determined by the 
asymmetric and sheltering flow in the surface shear layer and its matched 
interaction with the upper region, as physically demonstrated by Sajjadi et al. 
[21]. The results for an unsteady monochromatic wave are also extended to 
those growing Stokes waves. Thus, estimation can be made as to what 
percentage of total energy-transfer from wind goes to each harmonic of a 
Stokes wave. 
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