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Abstract

This paper shows Caristi and Banach fixed point theorems type in the
partial metric space. Both will be proven by using Ekeland’s
variational principle in partial metric space which also introduced in
this article.

1. Introduction

Caristi fixed point theorem was generalized by several authors. For
example, Bae [1] generalized Caristi’s theorem to prove the fixed point
theorem for weakly contractive set-valued mapping as well as Banach fixed
point theorem in the other way.

In recent years, many works on domain theory have been made in order
to equip semantics domain with a notion of distance, see [2-3, 6-9]. In
particular, Matthews [8] introduced the notion of a partial metric space as a
part of the study of denotational semantic of data flow network, showing that
the Banach contraction mapping theorem can be generalized to the partial

metric context for applications in program verification.
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In this paper, we present the Caristi and Banach fixed point theorem type
in partial metric spaces. We would also introduce Ekeland variational
principle on partial metric spaces and its applications to fixed point.

2. Preliminaries

First, we start with some preliminaries on partial metric spaces. For more
details, we refer to reader to [8].

Definition 2.1. Let X be nonempty set. The mapping p : X x X — R*
is said partial metric on X if satisfies

(P1) p(x, x) < p(x, y) forall x, y e X;

(P2) x =y ifandonly if p(x, x) = p(y, y) = p(x, y);

(P3) p(x, y) =(y, x) forall x, y e X;

(P4) p(x, z) < p(x, y) + p(y, 2) = p(y, y) forall x, y, z € X.

The pair (x, p) is called a partial metric space. Note that the self-

distance of any point need not be zero. A partial metric is a metric on X if
p(x, x) = 0 forany x e X.

Example 2.2. Let R be a real number set and the distance function p:
R xR — R be defined by

1
PO, y) =Sidx=y[+]y[L, vxyeR

Then p is a partial metric on R.

Lemma 2.3. Let (X, p) be a partial metric space, and the function d p

X x X — [0, ) be defined by
dp(X, ¥) =2p(x, y)— p(x, X) = p(y, y), VX ye X.

Then d P is a metric.
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Proof. (i) Clear for all x, y € X, then d,(x, y) > 0.
(ii) From (P2), we have
x =y < p(x, x) = p(y, y) = p(x, y)
< dp(x y) =2p(x, y) = p(x, X) = p(y, ¥)
< dp(x, y) =2p(x, y) = 2p(x, y)
< dp(x y)=0.
(iii) Clear forall x, y € X, dp(x, y) = dp(y, X).
(iv) Forall x, y, z € X and from (P4), we obtain
dp(x 2) = 2p(x, 2) - P(X, X) - (2, 2)
< 2(p(x, y) + p(y, 2) = p(y, ¥)) = p(x, ) = p(z, 2)
=(2p(x, y) = p(x, x)= p(y, y)+(2p(y, 2) = p(y, y) - p(z, 2))
=dp(x, y)+dp(y, 2). O

Lemma 2.3 describes that metric is a special case of partial metric.
Therefore, the partial metric is a generalization of metric.

Definition 2.4. Let (X, p) be a partial metric space, a point xg € X
and ¢ > 0. The open ball for a partial metric p is set of the form

B:(X0) = {X € X| p(xo, X) < &}.
Since p(xg, Xg) > 0, the open ball are sets of the form
B+ p(xo,xo)(xo) = {x e X|p(xg, X) < &+ p(Xo, Xo)}-

Contrary to the metric space case, some open balls may be empty. If ¢ >
(X0, Xo), then Bg(Xg) = By p(xy, xo)(X0)- 1T 0 <& < p(Xg, Xo), then we

obtain
B:(Xp) = {x € X|p(Xg, X) < & < p(Xg, Xp)} = .
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This mean the open ball By, x,)(Xo) be empty set. However, may be
point Xo & Bp(xy, xo)(X0)-

Definition 2.5. A sequence (x,) in a partial metric space (X, p)
converges to X € X if, for any € > 0 such that xg € B;(xg) there exists

N € N sothat forany n > N, x, € Bo(Xg). We write lim,_,,, Xp = Xg.

Lemma 2.6. A sequence (X, ) in a partial metric space (X, p). Then (x,)
converges to point xg € X ifand only if limy_,., p(X,, Xg) = P(Xg, Xg)-

Proof. By Definition 2.5, for any ¢ > 0, p(x,, Xg) < € forany n > N.
Since B, (xg) = & of course p(Xg, Xg) < ¢ this implies p(x,, Xg)— p(Xg, Xo)
< g, forany n > N sothat lim,_,., p(Xn, Xg) = P(Xg, Xg)-

Conversely suppose that p(Xg, Xg) = lim,_.. P(Xn, Xg)- If Xg € Bg(Xg),
then there exists n € N such that for any n > N, p(x,, Xg) < & This mean
X, € Bg(Xp) for any n > N. By Definition 2.5, (x,) converges to point
Xg € X. If xg € Bg(a) with a € X, thatis p(a, Xg) < ¢, then there exists
N e N such that for any n > N, p(X,, Xg) — P(Xg, Xg) < € — p(Xg, @) SO
that for any n > N we obtain

P(X, @) < P(Xn, Xo) + P(Xo, @) = P(Xo, Xo)
< (e = p(xp, @)+ p(xp, @) = &.
This means forany n > N, x, € B.(a). O

Definition 2.7. A sequence (x,) in a partial metric space (X, p) is called

properly convergence to x € X if (x,) converges to x and
lim p(xy, Xp) = p(X, X).
nN—oo

In other words, a sequence (x,) properly converges to x e X if

lim,_o P(Xp, X) and lim,_,, p(x,, X,) existand
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lim p(x,, X) = lim p(x,, x) = p(x, X).
n—o0 n—oo
Notice that every convergent sequence in a metric space converging in
partial metric spaces.
Definition 2.8. A sequence (x,) in a partial metric space (X, p) is called

a Cauchy sequence if limp, .., p(Xy, Xy) exists and is finite.

In other words, (x,) is Cauchy if the number sequence p(Xp, Xm)
converges to some A R as n and m approach to infinity, that is, if
liMmp m—e0 P(Xn, Xm) = A < co. This means for every & >0 there exists

N e N such that for all m, n> N, | p(Xp, Xn)—A|<e If (X, p)isa
metric space, then A = 0.

Lemma 2.9. Let (x,) be a sequence in (X, p). If (x,) properly

converges to X, then (x,) is Cauchy sequence.
Proof. By Definition 2.7,
p(x, X) = limp_, p(Xn, X) = limy_00 p(Xn, Xp)-

By (P1) and (P4), we have

p(x, ) lim  p(xp, Xp) < lim - p(xXy, Xp)
n—o0 n,m—>w

m,

IN

lim  p(x,, X)+ lim  p(xy, X) = p(X, X)
n,m—oo n, m—oo

p(X, X).

Hence limp m o, P(Xy, Xm) = P(X, X). This means, there exists A € R such
that & = p(x, x) and limp o, P(Xn, Xy ) = A. The sequence (x,) is Cauchy
proved. O

Theorem 2.10. A sequence (x,) in a partial metric space (X, p) is a
Cauchy, if and only if for all € > 0 there exists N € N such that for all
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n, m > N we have
P(Xn, Xm) = P(Xm» Xm) < &.

Proof. Since (x,) is Cauchy, there exists A € R™ such that for all
e > 0 thereexists N € N and forall n, m > N we have

| PO, Xm) = 2| < 5

Let n =m > N. Then | p(Xy, Xm) —A| < % Therefore

| P(kns Xm) = POtms Xm) | <1 Py Xm) = A+ Pk Xm) =2 | < &,
By (P1), we obtain p(X,, Xm)— P(Xm, Xm) < & Conversely it is obvious. [

Definition 2.11. A partial metric space is complete if every Cauchy
sequence properly converges.

Definition 2.12. Let (X, p) be a partial metric space and A be a

nonempty subset of X. The diameter of A, denoted by D(A), is given by
D(A) = sup{p(x, ¥) - p(x, X) : X, y € A}

Theorem 2.13. Let (X, p) be a complete partial metric space and F,
be a decreasing sequence (that is, F, > F,,.1) of nonempty closed subsets
of X such that D(F,) > 0 as n — o. Then the intersection ﬂ:zl Fn
contains exactly one point.

Proof. The first, construct a sequence (x,) in X by selecting a point
Xn € Fy, foreach n e N. Since F, o F,,; forall n, we have x, € F, c Fy

forall n > m.

Let € > 0 be given. Since D(F,) — 0, there exists N € N such that
D(F,) < ¢ for each n> N. Since F,, F, < Fy for each n, m > N.

Therefore, x,, Xy, € Fy foreach n, m > N and thus, we have

P(Xn: Xm) = P(Xm, Xm) < D(Fy) <&
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By Theorem 2.10, (x,) is Cauchy sequence. Since X is complete, there

exists x* e X suchthat p(x,, x*) — p(x*, x*) < & foreach n > N.

Let n = N be fixed. Then the subsequence {x,, Xp.1, ..} Of the sequence
(x,) is contained in F, and still converges to x*. F, is closed in complete

partial metric space (X, p), it is complete and so x* € F, for each n e N.

Hence x" e (" Fy, thatis ()™ Fy = @.

Finally, we show that x" is unique in (" F,. If y e ()" F,, then
X",y e F, for each neN. Therefore, 0< p(x*, y)- p(y, y) < D(F,)
—0 as n— o and 0< p(x*, y)- p(x*, x*) < D(F,) > 0 as n — .
Thus p(x", y) = p(y. y) = p(x", X"). By (P2), X" = y. 0

Definition 2.14 [8]. Let (X, p) be a partial metric space. The mapping

f : X — X s called a contraction on X if there exists k € (0, 1) such that

for every x, y € X we have

p(f(x), T(y)— p(f(y), f(y)) <k(p(x, y)- p(y, ¥)) (2.1)

Theorem 2.15 [8]. Each contraction in a complete partial metric space
has a unique fixed point.

Proof. Suppose f : X — X is contraction in a complete partial metric
space. Let Xn,.q = f(x,) for n>0. We will first show that (x,) is a
Cauchy sequence. Since f is contraction, we obtain

p(f(x0) T(x)) = p(f(x) T(xq)) < k(p(xp, )~ p(xa, X))

p(f(x), f(x2)) = p(f(x2), T(x2)) < k*(p(¥g, %) — P(¥1, %))

p(f ). f () = POF Ot F(ni2)) < K™ H(p(x0, %) = PO %0)):
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Forall n, m € N, we obtain

P(F (), f(xnem)) = PO Onam ) F(Xnem))

< p(f(xn), f(Xn1m-1))
+ P(f(Xnsm-1), f(em)) = POF (Knim-2) F(Xnim-1))
= P(f (Xnsm) = F(Xnim))

< K™MH(p(xg, %) = PO, %)) = P(F Xyem-1): F(Xnm)
= P(f(Xns3) F(Xnim))

< K™MH(p(xg, %) = pOx1, %))+ P(F (Xpem-1)s F(Xnim—2))
+ P(f(Xnem-2), FOem)) = P(F(Xnim-2), f(Xnsm-2))
= P(f Onem) = F(Xnim))

< (KM K2 k™Y (p(Xg, %) — PO, X))

B %(p(xo, x) = P04, X))

By Theorem 2.10, (x,) to be a Cauchy sequence. Since (X, p) is a

complete partial metric space, (x,) properly convergesto x* e X say.

We now show that x* is a fixed point of f. For all & > 0, there exists
N e N such that for n > N,

P(Xn, X*)_ P(Xn, Xp) < ﬁ
and

* * * &
P(Xy, X7) = p(x7, X )<m-
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Thus for n > N,

p(f(x"), x*) = p(x*, x)

< p(f(x"), f(xy))
+ p(f(xp), X°) = p(f (%), F(x7))— p(x*, x*)

< (P(f(Xn ) X) = p(f (X, T(xn))) + (P(F(X"), f(x1))
- p(x*, x))

< K(P(Xn, X*) = p(Xn, Xn) + K(P(X*, Xq) = p(x*, x*)))

ity

Thus, as € > 0 arbitrary, then

p(f(x"), x*) = p(x", x"). (2.2)

Similarly, for n > N,
p(f(x"), x") = p(F(x7), (x7)
< p(f(x*), f(x)) + p(f (%), X7)
= P(F (%), f (%)) = p(F(X7), F(x"))
< (P(F (%) X7) = P(F(xq), f(%q))+ (P(F(X"), f(xq))
= p(F(x7), f(x))

< k(p(Xn, X*)_ p(xn’ Xn)"‘ k(p(X*, Xn)_ p(X*, X*))
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Thus, as € > 0 arbitrary, then
p(f(x"), x) = p(f(x*), f(x")). (2.3)

Thus, from (2.2), (2.3) and by (P2), f(x") = x* and so f has been shown

to have a fixed point.
It just remains to show that x™ is unique.
Suppose y* € X and y* = f(y"). Then
pP(x", y*) = p(Y", ¥) = p(f(x"), T(y")) = p(F(y") p(y")
< k(p(x", y*) = p(Y", y°)).
It follows p(x*, y*)— p(y*, y")=0as 0<k <1.
Similarly, suppose x* € X and x* = f(x*). Then
p(X", y*) = p(x", x*) = p(f(x"), F(y")) = p(f(x*), p(x"))
< k(p(x*, y*) = p(x", x*)).
It follows p(x*, y*) - p(x*, x*) =0 as 0 <k < 1.
According to axiom (P2), p(x*, y*) = p(x*, x*) = p(y*, y*), thus
y* =x" is unique. 0
3. Main Results

In this section, main result will be shown as a fixed point theorem of
both Caristi [4] and Banach [8] on partial metric space. In addition, it shall be
shown the prove Caristi fixed point theorem with two methods, that is,
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without and use Ekeland’s variational principle. Similarly, for the Banach
fixed point theorem.

We start with the following lemma needed to prove our main result.

Lemma 3.1. Let (X, p) be a partial metric space and the function o :
X — [0, ) be lower semicontinuous. For any x, y € X we define relation

“<p” onXby
X=p Yo px y)=px x) < o(x) - o(y). (3.1)
Then the relation “<,” is partial ordered on X.

Proof. (i) It is clear that p(x, y)— p(X, X) = 0 = @(x) — ¢(x) so that

X<p X is reflexive.

(i) If x <y, then p(x, y) = p(X, X) < o(x) — o(y) and if y <, X, then
p(y, X) = p(Y, ¥) < @(y) — (x). This implies 2p(x, y) - p(x, X) = p(y, ¥)
= 0. Of course p(x, y) = p(x, x) = p(y, y). By (P2), we obtain x =y.

(iii) If x <, y, then p(x, y) = p(x, X) < o(x) — o(y) and if y <, z, then
p(y, 2) = p(y, ¥) < o(y) — @(x). This implies 2p(x, z) - p(x, X) < p(x, ¥)
+ p(y, 2) = p(y, ¥) = P(X, X) < o(x) — o(z) and hence x <, z. O

Lemma 3.2 (Zorn’s lemma). Let X be nonempty partially ordered set in
which every totally set has an upper bound. Then X has at least one maximal
element.

The following is Caristi fixed point theorem type on partial metric space.

Theorem 3.3. Let (X, p) be a complete partial metric space and f :
X — X be a mapping on X. Suppose there exists a lower semicontinuous
function ¢ : X — [0, o) such that

p(x, £0)) = p(f(x), f(x)) < o(x) = o(f(x)) (3.2)

for all x € X. Then f has a fixed point.
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Proof. Forany x, y € X, we define the relation “<,” on X by

X=py e pxy)-ply, y) < ox)-oy) (3.3)

By Lemma 3.1, (X ﬁp) is a partial ordered. Let xg € X be an arbitrary but

fixed element of X. Then by Zorn’s lemma, we obtain totally ordered subset
M of X containing Xg.

Let M = {X,},.,, Where I is totally ordered and
X SpXg S =Xy P (3.4)
forall a, B € I.

Since {p(xy)} is decreasing net in R, there exists r > 0 such that

9(X,) — r as o increases.

Let ¢ > O be given. Then there exists ag e | such that for o =, ag we

have
F<o(X) < @(Xg) ST+ (3.5)

Let B =, o =p ag. Then by (4) we obtain

P(Xes Xg) = P(Xp, Xg) < @(Xg) —@(xg) <r+e—r =t (3.6)

which implies that {x,} is a Cauchy net in X by Theorem 2.10. Since X is
complete, there exists x € X such that x, — X as a increases. From the lower

semicontinuity of ¢ we deduce that o(x,) < r. If B =, o, then p(xy, Xg)
= p(xg, Xg) < 0(Xy) = @(xg)-
Letting B as increases, we obtain
P(Xer X) = P(X, X) < Xy ) = T < 9%y ) — 0(X) 3.7)

which is given x, <, x for a e I. In particular, Xg <, x. Since M is
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maximal, X € M. Moreover, the condition (3) implies that

Xq <p X ZXp f(x) forall o e l. (3.8)

Again by maximality, f(x) e M. Since x € M, f(x) <, x and hence f(x)

The mapping f satisfying (3.2) is called Caristi’s map. Again we write
selff map f : X — X contraction on a partial metric space, as follows:

p(f(x), T(y) = p(f(x) f(x))=<Kkk[p(x, y)- p(y, y)]
forall x, y € X and for some k € (0, 1).
For y = f(x) it will be deduced as follows:
p(f(x), £2(x)) = p(f(x), f(x)) < K[p(x, f(x))= p(f(x), f(x))]
thus
[p(x, f(x)) = p(x, X)] = K[p(x, f(x))= p(x, x)]
< [p(x, £(x)) = p(x, )] = [p(f(x), £2(x)) = p(f(x), F(x))].
Hence
@-K)[p(x, f(x))- p(x, x)]
< [p(x, £(x)) = p(x, )] = [p(f(x), F2(x)) - p(f(x), (x))]
or
p(x, f(x)) = p(x, x)

[ 100) = p0x, 0] = g [p(F(0), 12(x)) = p(F(X), F(0)]

<

If the function ¢ : X — [0, ) is defined by

000 = = [p(x, (X))~ p(x, )],
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then we obtain
p(x, F(x)) = p(x, x) < o(x) — @( f(x)).

It appears that f is a Caristi’s mapping on partial metric space. Thus, the
contraction mapping is a special case of Caristi’s mapping.

The following will be given the Ekeland’s variational principle on partial
metric spaces.

Theorem 3.4. Let (X, p) be a complete partial metric space and ¢ :
X — [0, o) be a lower semicontinuous function. Let ¢ >0 and X € X be

given such that

o(X) < inf @(x) + &
xeX
Then for a given & > 0 there exists x* € X such that
@ o(x") < (%),

(b) p(X, x*) <8+ p(x", x*),

(€) o(x*) < (p(x)+%(p(x, x*) = p(x*, x*)) forall x e X\{x*}.

1
Proof. For & > 0, we set ps(x, ¥) = ps(y, ¥) = 5 (p(x, y) = P(Y, ¥))-

Then pg is equivalent to p and (X, ps) is complete. Let us define a partial

ordering < on X by

X<y < o(x) < o(y) - e(ps(x, y) = ps(y, ¥))- (3.9)

It is easy to see that this ordering is (i) reflexive, that is, for all
X € X, X <X x; (ii) antisymmetric, that is, forall x, y e X, x <y and y < x
imply x = y; (iii) transitive, that is, forall x,y,ze X, x<y and y<z

imply x < z.

We define a sequence (E,) of subsets of X as follows: We start x, = X
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and define

Ep = {x e X 1 x<x}; X, € Ey suchthat ¢(xp) < infycg (p(X)+%,
E, = {Xx € X 1 X2 X}, X3 € E, such that ¢(x3) < infyc, (p(X)+2%,

and inductively
. €
Ep = {X € X 1 X2X}; Xny1 € By such that ¢(xq,q) < infycg o(x) + o
Clearly, E; o E, o E3---. Let uy, € E, with u,, > u e X. Then up,
< Xp and so @(Un) < o(Xp) — &(Ps(Um, Xn) — Ps(Xns Xn))- Therefore
o(u) < lim inf o(uy)
m—oo

< (p(Xn)—SrJi_r)nwinf(pg(Um, Xn) = Ps(Xn, Xn))

< ¢(%n) = &(Ps (U, Xn) = Ps(Xns Xn))-
Thus u € E,. We conclude that each Ej, is closed.
Take any point x € Ep, one on hand x < x,,, implies that
o(x) < @(Xn) = &(Ps (X, Xn) = P5(Xn, Xn))- (3.10)

We observe that x also belongs to E,,_; o E,,. So it is one of the points

which entered in the competition when we picked x,,. Therefore,

. € €
o(xn) < jamf o(y) + P o(x) + T (3.11)

From (3.10) and (3.11), we obtain

€
1"

00 + &P % Xn) = P X)) < 00+
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It follows that
Ps (X Xn) = Ps(Xy, Xp) < 2"
forall x € E,,.

Which resulted D(E,) < 27" and hence D(E,) — 0 (n — ).

Since (X, ps) is complete and (E,) is a decreasing sequence of closed

sets, by Theorem 2.13, we infer that
[En = &X).
n=1
Since x* € E;, we have
X* <X =X < o(X") < o(X) - &(ps (X", X) = ps(X, X)) < ¢(X).
Hence, (a) is proved.
Now, we write

Ps (X, Xn) = Ps(Xn, Xn) = Ps (X1, Xn) = Ps(Xn, Xn)

n-1
< > [ps(Xiy Xir1) = Ps(Xi, %i)]
i=1
n-1
S 2—i+1
i=1

and taking limit as n — oo, we obtain
1 — * * * — * % *
S(P(%, X") = PO, X)) = pa(X, x*) = (X, X) <1
and so (p(X, x*) < & + p(x*, x*)). This proves (b).

Finally, let x = x*, of course x ¢ ﬂ:]o:l E,, S0 X £ X", which means that
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o(x) > o(x”) — e[ ps(x, x*) = ps(x", x")]
= o(x") = [p(x, X) = p(", X")]

and hence (c) is proved. O

We now present, so called the weak formulation of Ekeland’s variational
principle.

Corollary 3.5. Let (X, p) be a complete partial metric space and ¢ :

X — [0, o) be a lower semicontinuous function. Then for any given ¢ > 0

there exists x* e X such that
o(x") < inf o(x)+
and
o(x*) < o(x) + g[p(x, ) = p(x", x7)]
forall x e X\{x*}.

Definition 3.6. Let (X, p) be a partial metric space. The function f :
X — X is called continuous at the point X, if for any sequence (x,) in X

converges to Xg, then a sequence ( f(x,)) converges to f(xg).

Lemma 3.7. Let (X, p) be a partial metric space and the function f :

X — X. Then for each x € X, the function ¢, : X — [0, ) defined by
ex(y) = p(x, f(y)).
If f is contraction, then the function ¢, is continuous on X.

Proof. Assume that a sequence 1y, converges to y in X. Then
limp_0 P(Yn, ¥Y)— p(Y, y)=0. For each x e X and k € (0, 1) and by
(P4), we have
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[ ox(¥n) = @x(Y)[ =] p(x, f(yn)) = p(x, f(y))|
<[ p(f(y) flyn)) = p(f(y). f(¥))]
= p(f(y) f(yn)) = p(f(y). f(y))
< k(p(yn. ¥) = p(y, ¥)).

This yields lim,_,, ox(yn) = @x(y) because lim,_,, p(yn, y)— p(y, Y)
= 0. D

Now, we will present the proof of fixed point theorem using Ekeland’s
variational principle.

As first applications of Ekeland’s variational principle, we prove
Caristi’s fixed point theorem version.

Theorem 3.8. Let (X, p) be a complete partial metric space and f :

X — X be a mapping on X. Suppose there exists a lower semicontinuous
function ¢ : X — [0, o) such that

p(x, F(x)) = p(f(x). f(x)) < @(x) - o(f(x)) (3.12)
for all x € X. Then f has a fixed point.
Proof. By using Corollary 3.5 with € = 1, we obtain x* € X such that
o(x") < o(x) +[p(x, x*) = p(x, x)] (3.13)
forall x e X\{x"}.

We assume for all y = f(x") € X such that y = x*. Then from (3.12)
and (3.13), we have

p(x*, y) = p(Y, ¥) < o(x7) — o(y)
and

@(x*) < o(y)+ [p(y, X*) = p(y, ¥)]

which cannot hold simultaneously. Hence, x* = f(x"). 0



Caristi and Banach Fixed Point Theorem on Partial Metric Space 171

As second applications of Ekeland’s variational principle, we prove the
well-known Banach contraction theorem.

Theorem 3.9. Let (X, p) be a complete partial metric space and f :

X — X be a contraction mapping. Then f has a unique fixed point in X.

Proof. Consider the function ¢ : X — [0, o) defined by
o(x) = p(x, f(x)),
forall x € X.

By Lemma 3.7, ¢ is a continuous on X. Choose ¢ > 0 such that 0 < ¢

<1-k, where k e (0, 1). By Corollary 3.5, there exists x* € X such that
o(x") < o(x) +e[p(x, X) = p(x, X)]
forall x e X.
Putting x = f(x*), we have
p(x™, f(x"))
< p(x, f(x))+elp(x, x*) = p(x, x)]
= (F(x"), F(F(<)) +e[p(F(x7), x7) = p(f(x"), f(x))]
< k[p(x", £(x7)) = p(f(x"), F(x N+ elp(F(x7), x) = p(f(x"), F(x7))]
= (k+e)[p(x", f(x")) = p(f(x7), f(x"))]
< (k+e)p(x", F(x7)).

If x* = f(x"), then we obtain 1< (k +¢), which contradicts to our
assumption that 1> (k + ). Therefore, we have x* = f(x"). The uniqueness

of x* can be proved as in Theorem 2.15. 0
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