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Abstract 

This paper shows Caristi and Banach fixed point theorems type in the 
partial metric space. Both will be proven by using Ekeland’s 
variational principle in partial metric space which also introduced in 
this article. 

1. Introduction 

Caristi fixed point theorem was generalized by several authors. For 
example, Bae [1] generalized Caristi’s theorem to prove the fixed point 
theorem for weakly contractive set-valued mapping as well as Banach fixed 
point theorem in the other way. 

In recent years, many works on domain theory have been made in order 
to equip semantics domain with a notion of distance, see [2-3, 6-9]. In 
particular, Matthews [8] introduced the notion of a partial metric space as a 
part of the study of denotational semantic of data flow network, showing that 
the Banach contraction mapping theorem can be generalized to the partial 
metric context for applications in program verification. 
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In this paper, we present the Caristi and Banach fixed point theorem type 
in partial metric spaces. We would also introduce Ekeland variational 
principle on partial metric spaces and its applications to fixed point. 

2. Preliminaries 

First, we start with some preliminaries on partial metric spaces. For more 
details, we refer to reader to [8]. 

Definition 2.1. Let X be nonempty set. The mapping +→× RXXp :  

is said partial metric on X if satisfies 

(P1) ( ) ( )yxpxxp ,, ≤  for all ;, Xyx ∈  

(P2) yx =  if and only if ( ) ( ) ( );,,, yxpyypxxp ==  

(P3) ( ) ( )xyyxp ,, =  for all ;, Xyx ∈  

(P4) ( ) ( ) ( ) ( )yypzypyxpzxp ,,,, −+≤  for all .,, Xzyx ∈  

The pair ( )px,  is called a partial metric space. Note that the self-

distance of any point need not be zero. A partial metric is a metric on X if 
( ) 0, =xxp  for any .Xx ∈  

Example 2.2. Let R  be a real number set and the distance function :p  

RRR →×  be defined by 

( ) { } .,,2
1, R∈∀+−= yxyyxyxp  

Then p is a partial metric on R. 

Lemma 2.3. Let ( )pX ,  be a partial metric space, and the function :pd  

[ )∞→× ,0XX  be defined by 

( ) ( ) ( ) ( ) .,,,,,2, Xyxyypxxpyxpyxd p ∈∀−−=  

Then pd  is a metric. 



Caristi and Banach Fixed Point Theorem on Partial Metric Space 155 

Proof. (i) Clear for all ,, Xyx ∈  then ( ) .0, ≥yxd p  

 (ii) From (P2), we have 

( ) ( ) ( )yxpyypxxpyx ,,, ==⇔=  

( ) ( ) ( ) ( )yypxxpyxpyxd p ,,,2, −−=⇔  

( ) ( ) ( )yxpyxpyxd p ,2,2, −=⇔  

( ) .0, =⇔ yxd p  

(iii) Clear for all ( ) ( ).,,,, xydyxdXyx pp =∈  

(iv) For all Xzyx ∈,,  and from (P4), we obtain 

( ) ( ) ( ) ( )zzpxxpzxpzxd p ,,,2, −−=  

( ) ( ) ( )( ) ( ) ( )zzpxxpyypzypyxp ,,,,,2 −−−+≤  

( ) ( ) ( )( ) ( ) ( ) ( )( )zzpyypzypyypxxpyxp ,,,2,,,2 −−+−−=  

( ) ( ).,, zydyxd pp +=  ~ 

Lemma 2.3 describes that metric is a special case of partial metric. 
Therefore, the partial metric is a generalization of metric. 

Definition 2.4. Let ( )pX ,  be a partial metric space, a point Xx ∈0  

and .0>ε  The open ball for a partial metric p is set of the form 

( ) ( ){ }.,00 ε<|∈=ε xxpXxxB  

Since ( ) ,0, 00 >xxp  the open ball are sets of the form 

( )( ) ( ) ( ){ }.,, 0000, 00 xxpxxpXxxB xxp +ε<|∈=+ε  

Contrary to the metric space case, some open balls may be empty. If >ε  
( ),, 00 xxp  then ( ) ( )( ).0,0 00 xBxB xxp−εε =  If ( ),,0 00 xxp≤ε<  then we 

obtain 

( ) ( ) ( ){ } .,, 0000 ∅=≤ε<|∈=ε xxpxxpXxxB  
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This mean the open ball ( )( )0, 00 xB xxp  be empty set. However, may be 

point ( )( ).0,0 00 xBx xxp∉  

Definition 2.5. A sequence nx  in a partial metric space ( )pX ,  

converges to Xx ∈0  if, for any 0>ε  such that ( )00 xBx ε∈  there exists 

N∈N  so that for any ( )., 0xBxNn en ∈≥  We write .lim 0xxnn =∞→  

Lemma 2.6. A sequence nx  in a partial metric space ( )., pX  Then nx  

converges to point Xx ∈0  if and only if ( ) ( ).,,lim 000 xxpxxp nn =∞→  

Proof. By Definition 2.5, for any ( ) ε<>ε 0,,0 xxp n  for any .Nn ≥  

Since ( ) ∅≠ε 0xB  of course ( ) ε≤00, xxp  this implies ( ) ( )000 ,, xxpxxp n −  

,ε<  for any Nn ≥  so that ( ) ( ).,,lim 000 xxpxxp nn =∞→  

Conversely suppose that ( ) ( ).,lim, 000 xxpxxp nn ∞→=  If ( ),00 xBx ε∈  

then there exists N∈n  such that for any ( ) .,, 0 ε<≥ xxpNn n  This mean 

( )0xBxn ε∈  for any .Nn ≥  By Definition 2.5, nx  converges to point 

.0 Xx ∈  If ( )aBx ε∈0  with ,Xa ∈  that is ( ) ,, 0 ε<xap  then there exists 

N∈N  such that for any ,Nn ≥  ( ) ( ) ( )axpxxpxxp n ,,, 0000 −ε<−  so 

that for any Nn ≥  we obtain 

( ) ( ) ( ) ( )0000 ,,,, xxpaxpxxpaxp nn −+≤  

( )( ) ( ) .,, 00 ε=+−ε< axpaxp  

This means for any ( )., aBxNn n ε∈≥  ~ 

Definition 2.7. A sequence nx  in a partial metric space ( )pX ,  is called 

properly convergence to Xx ∈  if nx  converges to x and 

( ) ( ).,,lim xxpxxp nn
n

=
∞→

 

In other words, a sequence nx  properly converges to Xx ∈  if 

( )xxp nn ,lim ∞→  and ( )nnn xxp ,lim ∞→  exist and 



Caristi and Banach Fixed Point Theorem on Partial Metric Space 157 

( ) ( ) ( ).,,lim,lim xxpxxpxxp n
n

nn
n

==
∞→∞→

 

Notice that every convergent sequence in a metric space converging in 
partial metric spaces. 

Definition 2.8. A sequence nx  in a partial metric space ( )pX ,  is called 

a Cauchy sequence if ( )mnnm xxp ,lim , ∞→  exists and is finite. 

In other words, nx  is Cauchy if the number sequence ( )mn xxp ,  

converges to some R∈λ  as n and m approach to infinity, that is, if 
( ) .,lim , ∞<λ=∞→ mnmn xxp  This means for every 0>ε  there exists 

N∈N  such that for all ,, Nnm ≥  ( ) ., ε<λ−mn xxp  If ( )pX ,  is a 

metric space, then .0=λ  

Lemma 2.9. Let nx  be a sequence in ( )., pX  If nx  properly 

converges to x, then nx  is Cauchy sequence. 

Proof. By Definition 2.7,  

( ) ( ) ( ).,lim,lim, nnnnn xxpxxpxxp ∞→∞→ ==  

By (P1) and (P4), we have 

( ) ( ) ( )mn
mn

nn
nm

xxpxxpxxp ,lim,lim,
,, ∞→∞→

≤=  

( ) ( ) ( )xxpxxpxxp m
mn

n
mn

,,lim,lim
,,

−+≤
∞→∞→

 

( )., xxp=  

Hence ( ) ( ).,,lim , xxpxxp mnmn =∞→  This means, there exists +∈λ R  such 

that ( )xxp ,=λ  and ( ) .,lim , λ=∞→ mnmn xxp  The sequence nx  is Cauchy 

proved. ~ 

Theorem 2.10. A sequence nx  in a partial metric space ( )pX ,  is a 

Cauchy, if and only if for all 0>ε  there exists N∈N  such that for all 
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Nmn ≥,  we have 

( ) ( ) .,, ε<− mmmn xxpxxp  

Proof. Since nx  is Cauchy, there exists +∈λ R  such that for all 

0>ε  there exists N∈N  and for all Nmn ≥,  we have 

( ) .2, ε<λ−mn xxp  

Let .Nmn ≥=  Then ( ) .2, ε<λ−mm xxp  Therefore 

( ) ( ) ( ) ( ) .,,,, ε<λ−+λ−≤− mmmnmmmn xxpxxpxxpxxp  

By (P1), we obtain ( ) ( ) .,, ε<− mmmn xxpxxp  Conversely it is obvious. ~ 

Definition 2.11. A partial metric space is complete if every Cauchy 
sequence properly converges. 

Definition 2.12. Let ( )pX ,  be a partial metric space and A be a 

nonempty subset of X. The diameter of A, denoted by ( ),AD  is given by 

( ) ( ) ( ){ }.,:,,sup AyxxxpyxpAD ∈−=  

Theorem 2.13. Let ( )pX ,  be a complete partial metric space and nF  

be a decreasing sequence (that is, )1+⊃ nn FF  of nonempty closed subsets 

of X such that ( ) 0→nFD  as .∞→n  Then the intersection I
∞
=1n nF  

contains exactly one point. 

Proof. The first, construct a sequence nx  in X by selecting a point 

nn Fx ∈  for each .N∈n  Since 1+⊃ nn FF  for all n, we have mnn FFx ⊂∈  

for all .mn >  

Let 0>ε  be given. Since ( ) ,0→nFD  there exists N∈N  such that 

( ) ε<nFD  for each .Nn ≥  Since Nnm FFF ⊆,  for each ., Nmn ≥  

Therefore, Nmn Fxx ∈,  for each Nmn ≥,  and thus, we have 

( ) ( ) ( ) .,, ε<≤− nmmmn FDxxpxxp  
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By Theorem 2.10, nx  is Cauchy sequence. Since X is complete, there 

exists Xx ∈∗  such that ( ) ( ) ε<− ∗∗∗ xxpxxp n ,,  for each .Nn ≥  

Let Nn =  be fixed. Then the subsequence { }...,, 1+nn xx  of the sequence 

nx  is contained in nF  and still converges to .∗x  nF  is closed in complete 

partial metric space ( ),, pX  it is complete and so nFx ∈∗  for each .N∈n  

Hence I
∞
=

∗ ∈ 1 ,n nFx  that is I
∞
= ∅≠1 .n nF  

Finally, we show that ∗x  is unique in I
∞
=1 .n nF  If I

∞
=∈ 1 ,n nFy  then 

nFyx ∈∗,  for each .N∈n  Therefore, ( ) ( ) ( )nFDyypyxp ≤−≤ ∗ ,,0  

0→  as ∞→n  and ( ) ( ) ( ) 0,,0 →≤−≤ ∗∗∗
nFDxxpyxp  as .∞→n  

Thus ( ) ( ) ( ).,,, ∗∗∗ == xxpyypyxp  By (P2), .yx =∗  ~ 

Definition 2.14 [8]. Let ( )pX ,  be a partial metric space. The mapping 

XXf →:  is called a contraction on X if there exists ( )1,0∈k  such that 

for every Xyx ∈,  we have 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ).,,,, yypyxpkyfyfpyfxfp −≤−  (2.1) 

Theorem 2.15 [8]. Each contraction in a complete partial metric space 
has a unique fixed point. 

Proof. Suppose XXf →:  is contraction in a complete partial metric 

space. Let ( )nn xfx =+1  for .0≥n  We will first show that nx  is a 

Cauchy sequence. Since f is contraction, we obtain 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )11101110 ,,,, xxpxxpkxfxfpxfxfp −≤−  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1110
2

2221 ,,,, xxpxxpkxfxfpxfxfp −≤−  

M  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ).,,,, 1110
1

111 xxpxxpkxfxfpxfxfp n
nnnn −≤− +
+++  
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For all ,, N∈mn  we obtain 

( ) ( )( ) ( ) ( )( )mnmnmnn xfxfpxfxfp +++ − ,,  

( ) ( )( )1, −+≤ mnn xfxfp  

( ) ( )( ) ( ) ( )( )111 ,, −+−++−+ −+ mnmnmxmn xfxfpxfxfp  

( ) ( )( )mnmn xfxfp ++ −−  

( ) ( )( ) ( ) ( )( )mnmn
mn xfxfpxxpxxpk +−+
−+ −−≤ ,,, 11110

1  

( ) ( )( )mnn xfxfp ++− ,3  

( ) ( )( ) ( ) ( )( )211110
1 ,,, −+−+
−+ +−≤ mnmn

mn xfxfpxxpxxpk  

( ) ( )( ) ( ) ( )( )222 ,, −+−++−+ −+ mnmnmnmn xfxfpxfxfp  

( ) ( )( )mnmn xfxfp ++ −−  

( ) ( ) ( )( )1110
21 ,, xxpxxpkkk nmnmn −+++≤ −+−+ L  

( ) ( )( ).,,1 1110 xxpxxpk
kn

−
−

=  

By Theorem 2.10, nx  to be a Cauchy sequence. Since ( )pX ,  is a 

complete partial metric space, nx  properly converges to Xx ∈∗  say. 

We now show that ∗x  is a fixed point of f. For all ,0>ε  there exists 
N∈N  such that for ,Nn ≥  

( ) ( ) kxxpxxp nnn +
ε<−∗

1,,  

and 

( ) ( ) .1,, kxxpxxp n +
ε<− ∗∗∗  
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Thus for ,Nn ≥  

( ( ) ) ( )∗∗∗∗ − xxpxxfp ,,  

( ( ) ( ))nxfxfp ,∗≤  

( ( ) ) ( ) ( )( ) ( )∗∗∗ −−+ xxpxfxfpxxfp nnn ,,,  

( ( ( ) ) ( )( )( ) ( ( ( ) ( ))nnnn xfxfpxfxfpxxfp ,,, ∗∗ +−≤  

( ))∗∗− xxp ,  

( ( ) ( ) ( ( ) ( )))∗∗∗∗ −+−≤ xxpxxpkxxpxxpk nnnn ,,,,  

⎟
⎠
⎞⎜

⎝
⎛

+
ε+

+
ε< kkk 11  

.ε<  

Thus, as 0>ε  arbitrary, then 

 ( ( ) ) ( ).,, ∗∗∗∗ = xxpxxfp  (2.2) 

Similarly, for ,Nn ≥  

( ( ) ) ( ( ) ( ))∗∗∗∗ − xfxfpxxfp ,,  

( ( ) ( )) ( ( ) )∗∗ +≤ xxfpxfxfp nn ,,  

 ( ) ( )( ) ( ( ) ( ))∗∗−− xfxfpxfxfp nn ,,  

( ( ( ) ) ( ) ( )( ) ( ( ( ) ( ))nnnn xfxfpxfxfpxxfp ,,, ∗∗ +−≤  

 ( ( ) ( ))∗∗− xfxfp ,  

( ( ) ( ) ( ( ) ( ))∗∗∗∗ −+−≤ xxpxxpkxxpxxpk nnnn ,,,,  
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⎟
⎠
⎞⎜

⎝
⎛

+
ε+

+
ε< kkk 11  

.ε<  

Thus, as 0>ε  arbitrary, then 

 ( ( ) ) ( ( ) ( )).,, ∗∗∗∗ = xfxfpxxfp  (2.3) 

Thus, from (2.2), (2.3) and by (P2), ( ) ∗∗ = xxf  and so f has been shown 

to have a fixed point. 

It just remains to show that ∗x  is unique. 

Suppose Xy ∈∗  and ( ).∗∗ = yfy  Then 

( ) ( ) ( ( ) ( )) ( ( ) ( ))∗∗∗∗∗∗∗∗ −=− ypyfpyfxfpyypyxp ,,,,  

( ( ) ( )).,, ∗∗∗∗ −≤ yypyxpk  

It follows ( ) ( ) 0,, =− ∗∗∗∗ yypyxp  as .10 <≤ k  

Similarly, suppose Xx ∈∗  and ( ).∗∗ = xfx  Then 

( ) ( ) ( ( ) ( )) ( ( ) ( ))∗∗∗∗∗∗∗∗ −=− xpxfpyfxfpxxpyxp ,,,,  

( ( ) ( )).,, ∗∗∗∗ −≤ xxpyxpk  

It follows ( ) ( ) 0,, =− ∗∗∗∗ xxpyxp  as .10 <≤ k  

According to axiom (P2), ( ) ( ) ( ),,,, ∗∗∗∗∗∗ == yypxxpyxp  thus 
∗∗ = xy  is unique. ~ 

3. Main Results 

In this section, main result will be shown as a fixed point theorem of 
both Caristi [4] and Banach [8] on partial metric space. In addition, it shall be 
shown the prove Caristi fixed point theorem with two methods, that is, 
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without and use Ekeland’s variational principle. Similarly, for the Banach 
fixed point theorem. 

We start with the following lemma needed to prove our main result. 

Lemma 3.1. Let ( )pX ,  be a partial metric space and the function :ϕ  

[ )∞→ ,0X  be lower semicontinuous. For any Xyx ∈,  we define relation 

”“ p  on X by 

 ( ) ( ) ( ) ( ).,, yxxxpyxpyx p ϕ−ϕ≤−⇔  (3.1) 

Then the relation ”“ p  is partial ordered on X. 

Proof. (i) It is clear that ( ) ( ) ( ) ( )xxxxpyxp ϕ−ϕ==− 0,,  so that 

xx p  is reflexive. 

 (ii) If ,yx p  then ( ) ( ) ( ) ( )yxxxpyxp ϕ−ϕ≤− ,,  and if ,xy p  then 

( ) ( ) ( ) ( ).,, xyyypxyp ϕ−ϕ≤−  This implies ( ) ( ) ( )yypxxpyxp ,,,2 −−  

.0=  Of course ( ) ( ) ( ).,,, yypxxpyxp ==  By (P2), we obtain .yx =  

(iii) If ,yx p  then ( ) ( ) ( ) ( )yxxxpyxp ϕ−ϕ≤− ,,  and if ,zy p  then 

( ) ( ) ( ) ( ).,, xyyypzyp ϕ−ϕ≤−  This implies ( ) ( ) ( )yxpxxpzxp ,,,2 ≤−  

( ) ( ) ( ) ( ) ( )zxxxpyypzyp ϕ−ϕ≤−−+ ,,,  and hence .zx p  ~ 

Lemma 3.2 (Zorn’s lemma). Let X be nonempty partially ordered set in 
which every totally set has an upper bound. Then X has at least one maximal 
element. 

The following is Caristi fixed point theorem type on partial metric space. 

Theorem 3.3. Let ( )pX ,  be a complete partial metric space and :f  

XX →  be a mapping on X. Suppose there exists a lower semicontinuous 
function [ )∞→ϕ ,0: X  such that 

 ( )( ) ( ) ( )( ) ( ) ( )( )xfxxfxfpxfxp ϕ−ϕ≤− ,,  (3.2) 

for all .Xx ∈  Then f has a fixed point. 
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Proof. For any ,, Xyx ∈  we define the relation ”“ p  on X by 

 ( ) ( ) ( ) ( ).,, yxyypyxpyx p ϕ−ϕ≤−⇔  (3.3) 

By Lemma 3.1, ( )pX   is a partial ordered. Let Xx ∈0  be an arbitrary but 

fixed element of X. Then by Zorn’s lemma, we obtain totally ordered subset 
M of X containing .0x  

Let { } ,IxM ∈αα=  where I is totally ordered and 

 βα⇔βα pp xx   (3.4) 

for all ., I∈βα  

Since ( ){ }αϕ x  is decreasing net in ,+R  there exists 0≥r  such that 

( ) rx →ϕ α  as α  increases. 

Let 0>ε  be given. Then there exists I∈α0  such that for 0αα p  we 

have 

 ( ) ( ) .0 ε+≤ϕ≤ϕ≤ αα rxxr  (3.5) 

Let .0ααβ pp   Then by (4) we obtain 

 ( ) ( ) ( ) ( ) trrxxxxpxxp =−ε+≤ϕ−ϕ≤− βαβββα ,,  (3.6) 

which implies that { }αx  is a Cauchy net in X by Theorem 2.10. Since X is 

complete, there exists Xx∈  such that xx →α  as α increases. From the lower 

semicontinuity of ϕ we deduce that ( ) .rx ≤ϕ α  If ,αβ p  then ( )βα xxp ,  

( ) ( ) ( )., βαββ ϕ−ϕ≤− xxxxp  

Letting β as increases, we obtain 

 ( ) ( ) ( ) ( ) ( )xxrxxxpxxp ϕ−ϕ≤−ϕ≤− ααα ,,  (3.7) 

which is given xx pα  for .I∈α  In particular, .0 xx p  Since M is 
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maximal, .Mx ∈  Moreover, the condition (3) implies that 

 ( )xfxx pp α   for all .I∈α  (3.8) 

Again by maximality, ( ) .Mxf ∈  Since ,Mx ∈  ( ) xxf p  and hence ( )xf  

.x=  ~ 

The mapping f satisfying (3.2) is called Caristi’s map. Again we write 
self map XXf →:  contraction on a partial metric space, as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )[ ]yypyxpkkxfxfpyfxfp ,,,, −≤−  

for all Xyx ∈,  and for some ( ).1,0∈k  

For ( )xfy =  it will be deduced as follows: 

( ( ) ( )) ( ) ( )( ) ( )( ) ( ) ( )( )[ ]xfxfpxfxpkxfxfpxfxfp ,,,, 2 −≤−  

thus 

( )( ) ( )[ ] ( )( ) ( )[ ]xxpxfxpkxxpxfxp ,,,, −−−  

( )( ) ( )[ ] [ ( ( ) ( )) ( ) ( )( )].,,,, 2 xfxfpxfxfpxxpxfxp −−−≤  

Hence 

( ) ( )( ) ( )[ ]xxpxfxpk ,,1 −−  

( )( ) ( )[ ] [ ( ( ) ( )) ( ) ( )( )]xfxfpxfxfpxxpxfxp ,,,, 2 −−−≤  

or 

( )( ) ( )xxpxfxp ,, −  

( )( ) ( )[ ] [ ( ( ) ( )) ( ) ( )( )].,,1
1,,1

1 2 xfxfpxfxfpkxxpxfxpk −
−

−−
−

≤  

If the function [ )∞→ϕ ,0: X  is defined by 

( ) ( )( ) ( )[ ],,,1
1 xxpxfxpkx −
−

=ϕ  
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then we obtain 

( )( ) ( ) ( ) ( )( ).,, xfxxxpxfxp ϕ−ϕ≤−  

It appears that f is a Caristi’s mapping on partial metric space. Thus, the 
contraction mapping is a special case of Caristi’s mapping. 

The following will be given the Ekeland’s variational principle on partial 
metric spaces. 

Theorem 3.4. Let ( )pX ,  be a complete partial metric space and :ϕ  

[ )∞→ ,0X  be a lower semicontinuous function. Let 0>ε  and Xx ∈  be 

given such that 

( ) ( ) .inf ε+ϕ≤ϕ
∈

xx
Xx

 

Then for a given 0>δ  there exists Xx ∈∗  such that 

(a) ( ) ( ),xx ϕ≤ϕ ∗  

(b) ( ) ( ),,, ∗∗∗ +δ≤ xxpxxp  

(c) ( ) ( ) ( ( ) ( ))∗∗∗∗ −
δ
ε+ϕ≤ϕ xxpxxpxx ,,  for all { }.\ ∗∈ xXx  

Proof. For ,0>δ  we set ( ) ( ) ( ) ( )( ).,,1,, yypyxpyypyxp −
δ

=− δδ  

Then δp  is equivalent to p and ( )δpX ,  is complete. Let us define a partial 

ordering   on X by 

 ( ) ( ) ( ) ( )( ).,, yypyxpyxyx δδ −ε−ϕ≤ϕ⇔  (3.9) 

It is easy to see that this ordering is (i) reflexive, that is, for all 
;, xxXx ∈  (ii) antisymmetric, that is, for all ,, Xyx ∈  yx   and xy   

imply ;yx =  (iii) transitive, that is, for all ,,, Xzyx ∈  yx   and zy   

imply .zx   

We define a sequence nE  of subsets of X as follows: We start xx =1  
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and define 

{ } 1211 ;: ExxxXxE ∈∈=   such that ( ) ( ) ,2inf 12
ε+ϕ≤ϕ ∈ xx Ex  

{ } 2322 ;: ExxxXxE ∈∈=   such that ( ) ( ) ,
2

inf 23 2
ε+ϕ≤ϕ ∈ xx Ex  

and inductively 

{ } nnnn ExxxXxE ∈∈= +1;:   such that ( ) ( ) .
2

inf1 nExn xx n
ε+ϕ≤ϕ ∈+  

Clearly, .321 LEEE ⊃⊃  Let nm Eu ∈  with .Xuum ∈→  Then mu  

nx  and so ( ) ( ) ( ) ( )( ).,, nnnmnm xxpxupxu δδ −ε−ϕ≤ϕ  Therefore 

( ) ( )mm
uu ϕ≤ϕ

∞→
inflim  

( ) ( ) ( )( )nnnm
m

n xxpxupx ,,inflim δδ
∞→

−ε−ϕ≤  

( ) ( ) ( )( ).,, nnnn xxpxupx δδ −ε−ϕ≤  

Thus .nEu ∈  We conclude that each nE  is closed. 

Take any point ,nEx ∈  one on hand ,nxx   implies that 

 ( ) ( ) ( ) ( )( ).,, nnnn xxpxxpxx δδ −ε−ϕ≤ϕ  (3.10) 

We observe that x also belongs to .1 nn EE ⊃−  So it is one of the points 

which entered in the competition when we picked .nx  Therefore, 

 ( ) ( ) ( ) .
22

inf 111 −−∈

ε+ϕ≤ε+ϕ≤ϕ
− nnEyn xyx

n
 (3.11) 

From (3.10) and (3.11), we obtain 

( ) ( ) ( )( ) ( ) .
2

,, 1−δδ
ε+ϕ≤−ε+ϕ nnnn xxxpxxpx  
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It follows that 

( ) ( ) 12,, +−
δδ ≤− n

nnn xxpxxp  

for all .nEx ∈  

Which resulted ( ) n
nED −≤ 2  and hence ( ) ( ).0 ∞→→ nED n  

Since ( )δpX ,  is complete and nE  is a decreasing sequence of closed 

sets, by Theorem 2.13, we infer that 

{ }I
∞

=

∗=
1

.
n

n xE  

Since ,1Ex ∈∗  we have 

( ) ( ) ( ( ) ( )) ( ).,,1 xxxpxxpxxxxx ϕ≤−ε−ϕ≤ϕ⇔= δ
∗

δ
∗∗   

Hence, (a) is proved. 

Now, we write 

( ) ( ) ( ) ( )nnnnnn xxpxxpxxpxxp ,,,, 1 δδδδ −=−  

( ) ( )[ ]∑
−

=
δ+δ −≤

1

1
1 ,,

n

i
iiii xxpxxp  

∑
−

=

+−≤
1

1

12
n

i

i  

and taking limit as ,∞→n  we obtain 

( ( ) ( )) ( ) ( ) 1,,,,1 ≤−=−
δ

∗∗
δ

∗
δ

∗∗∗ xxpxxpxxpxxp  

and so ( ( ) ( )).,, ∗∗∗ +δ≤ xxpxxp  This proves (b). 

Finally, let ,∗≠ xx  of course I
∞
=∉ 1 ,n nEx  so ,∗/ xx   which means that 
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( ) ( ) [ ( ) ( )]∗∗
δ

∗
δ

∗ −ε−ϕ>ϕ xxpxxpxx ,,  

( ) [ ( ) ( )]∗∗∗∗ −
δ
ε−ϕ= xxpxxpx ,,  

and hence (c) is proved. ~ 

We now present, so called the weak formulation of Ekeland’s variational 
principle. 

Corollary 3.5. Let ( )pX ,  be a complete partial metric space and :ϕ  

[ )∞→ ,0X  be a lower semicontinuous function. Then for any given 0>ε  

there exists Xx ∈∗  such that 

( ) ( ) ε+ϕ≤ϕ
∈

∗ xx
Xx

inf  

and 

( ) ( ) [ ( ) ( )]∗∗∗∗ −ε+ϕ<ϕ xxpxxpxx ,,  

for all { }.\ ∗∈ xXx  

Definition 3.6. Let ( )pX ,  be a partial metric space. The function :f  

XX →  is called continuous at the point 0x  if for any sequence nx  in X 

converges to ,0x  then a sequence ( )nxf  converges to ( ).0xf  

Lemma 3.7. Let ( )pX ,  be a partial metric space and the function :f  

.XX →  Then for each ,Xx ∈  the function [ )∞→ϕ ,0: Xx  defined by 

( ) ( )( )., yfxpyx =ϕ  

If f is contraction, then the function xϕ  is continuous on X. 

Proof. Assume that a sequence ny  converges to y in X. Then 

( ) ( ) .0,,lim =−∞→ yypyyp nn  For each Xx ∈  and ( )1,0∈k  and by 

(P4), we have 
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( ) ( ) ( )( ) ( )( )yfxpyfxpyy nxnx ,, −=ϕ−ϕ  

( ) ( )( ) ( ) ( )( )yfyfpyfyfp n ,, −≤  

( ) ( )( ) ( ) ( )( )yfyfpyfyfp n ,, −=  

( ) ( )( ).,, yypyypk n −<  

This yields ( ) ( )yy xnxn ϕ=ϕ∞→lim  because ( ) ( )yypyyp nn ,,lim −∞→  

.0=  ~ 

Now, we will present the proof of fixed point theorem using Ekeland’s 
variational principle. 

As first applications of Ekeland’s variational principle, we prove 
Caristi’s fixed point theorem version. 

Theorem 3.8. Let ( )pX ,  be a complete partial metric space and :f  

XX →  be a mapping on X. Suppose there exists a lower semicontinuous 
function [ )∞→ϕ ,0: X  such that 

 ( )( ) ( ) ( )( ) ( ) ( )( )xfxxfxfpxfxp ϕ−ϕ≤− ,,  (3.12) 

for all .Xx ∈  Then f has a fixed point. 

Proof. By using Corollary 3.5 with ,1=ε  we obtain Xx ∈∗  such that 

 ( ) ( ) [ ( ) ( )]xxpxxpxx ,, −+ϕ<ϕ ∗∗  (3.13) 

for all { }.\ ∗∈ xXx  

We assume for all ( ) Xxfy ∈= ∗  such that .∗≠ xy  Then from (3.12) 

and (3.13), we have 

( ) ( ) ( ) ( )yxyypyxp ϕ−ϕ≤− ∗∗ ,,  

and 

( ) ( ) [ ( ) ( )]yypxypyx ,, −+ϕ<ϕ ∗∗  

which cannot hold simultaneously. Hence, ( ).∗∗ = xfx  ~ 
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As second applications of Ekeland’s variational principle, we prove the 
well-known Banach contraction theorem. 

Theorem 3.9. Let ( )pX ,  be a complete partial metric space and :f  

XX →  be a contraction mapping. Then f has a unique fixed point in X. 

Proof. Consider the function [ )∞→ϕ ,0: X  defined by 

( ) ( )( ),, xfxpx =ϕ  

for all .Xx ∈  

By Lemma 3.7, ϕ is a continuous on X. Choose 0>ε  such that ε<0  

,1 k−<  where ( ).1,0∈k  By Corollary 3.5, there exists Xx ∈∗  such that 

( ) ( ) [ ( ) ( )]xxpxxpxx ,, −ε+ϕ<ϕ ∗∗  

for all .Xx ∈  

Putting ( ),∗= xfx  we have 

( ( ))∗∗ xfxp ,  

( )( ) [ ( ) ( )]xxpxxpxfxp ,,, −ε+≤ ∗  

( ( ) ( ( ))) [ ( ( ) ) ( ( ) ( ))]∗∗∗∗∗∗ −ε+= xfxfpxxfpxffxf ,,,  

[ ( ( )) ( ( ) ( ))] [ ( ( ) ) ( ( ) ( ))]∗∗∗∗∗∗∗∗ −ε+−≤ xfxfpxxfpxfxfpxfxpk ,,,,  

( )[ ( ( )) ( ( ) ( ))]∗∗∗∗ −ε+= xfxfpxfxpk ,,  

( ) ( ( ))., ∗∗ε+≤ xfxpk  

If ( ),∗∗ ≠ xfx  then we obtain ( ),1 ε+≤ k  which contradicts to our 

assumption that ( ).1 ε+> k  Therefore, we have ( ).∗∗ = xfx  The uniqueness 

of ∗x  can be proved as in Theorem 2.15. ~ 



Mohamad Muslikh 172 

References 

 [1] J. S. Bae, Fixed point theorem for weakly contractive multivalued maps, J. Math. 
Anal. Appl. 284 (2003), 690-697. 

 [2] V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit 
contractive conditions, Fixed Point Theory Appl. 2012 (2012), 105-112. 

 [3] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972),       
727-730. 

 [4] J. Caristi, Fixed point theorem for mapping satisfying inwardness condition, 
Trans. Amer. Math. Soc. 215 (1976), 241-251. 

 [5] I. Ekeland, Sur les problemes variationnels, C. R. Acad Sci. Paris Ser. A-B 275 
(1972), 1057-1059. 

 [6] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and 
fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391. 

 [7] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 
405-408.  

 [8] S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on 
General Topology Appl. Ann. New York Acad. Sci. 78 (1994), 183-197. 

 [9] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings 
on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188. 


