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Abstract

In this paper, we establish some fixed point theorems by using a
modified Abbas and Nazir iteration process for total asymptotically
nonexpansive mappings in uniformly convex hyperbolic spaces, a
nonlinear domain. The results presented here extend and improve
some well-known results in the current literature.

1. Introduction

Fixed point theory is a branch of nonlinear analysis which has
attracted much attention in recent times due to its possible applications.
Approximating fixed points of nonlinear mappings using different iteration
processes on different domains has remained at the heart of fixed point
theory. Nonexpansive mappings constitute one of the most important classes
of nonlinear mappings which have remained a crucial part of such studies.

Received: August 15, 2015; Revised: September 7, 2015; Accepted: September 21, 2015
2010 Mathematics Subject Classification: 47H09, 47H10.

Keywords and phrases: nonlinear domain, approximating fixed point, hyperbolic spaces.
Communicated by Simeon Reich; Editor: JP Journal of Fixed Point Theory and Applications:
Published by Pushpa Publishing House.




134 Duangkamon Kitkuan
The Picard iteration process {x,} is defined by
Xpt1 = TXy, N 2>1 (1.1)
In 1953, Mann defined the Mann iteration process [16] as
Xn+1 = (L= 0tp) Xy + 0T, (1.2)
where {a,} is a sequence of positive numbers in (0, 1).
In 2007, Agarwal et al. defined the S-iteration process [2] as
Xna1 = 1= op)TXy + onTYn,
Yn = @=Bn) X + BrTXp, (1.3)
where {a,} and {B,,} are sequences of positive numbers in (0, 1).
In 2013, Abbas and Nazir defined the iteration process [1] as
Xne1 = L= an)Ty, + anTzy,
Yn = A=Bn)TXy + BnTzp,
Zn = @ =v0) Xy + YnTXn, (1.4

where {o,} and {B,} are sequences of positive numbers in (0,1) and
converge faster than all Picard, Mann and S-iterations for nonexpansive
mappings.

Khan [24] proved the strong and A -convergence theorems of the Abbas
and Nazir iteration process on a nonlinear domain in a hyperbolic space for a
nonexpansive mapping.

The purpose of this paper is to study the iterative scheme defined as
follows. Let C be a nonempty closed convex subset of a complete uniformly
convex hyperbolic space X with monotone modulus of uniform convexity
n. Let T:C — C be a uniformly L-Lipschitzian and asymptotically
nonexpansive mapping with F(T) = &. Suppose that {x,} is a sequence
generated iteratively by
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Xne1 = W(T "y, T"z,, o),

Yn = W(T "%, T"zp, Bn),

Zn =W (Xn, T, vn)- (1.5)

In this paper, we prove the strong and A -convergence of a three-step
iteration process for totally asymptotically nonexpansive maps on a nonlinear
domain in hyperbolic spaces.

2. Preliminaries

Let (X, d) be a metric space and C be its nonempty subset. Let
T :C — C be a mapping. A point x € C is called a fixed point of T if
Tx = x. We will also denote by F(T) the set of fixed points of T, that is,

F(T)={x e C:Tx = x}. Tissaid to be nonexpansive if
d(Tx, Ty) < d(x, y), Vx,yeC. (2.2)

A mapping T : C — C is said to be asymptotically nonexpansive if
there exists a sequence {k,} < [0, ) with k, — O such that

dT"%, T"y) < @+ ky)d(x, y), ¥n>=1 x yeC. (2.2)

A mapping T :C — C is said to be L-Lipschitzian if there exists a
constant L > O such that

d(T"x, T"y) < Ld(x, y), ¥n>1 x yeC. (2.3)

A mapping T : C — C is said to be totally asymptotically nonexpansive
if there exist nonnegative sequences {u,}, {&,} with u, - 0, &, — 0 and

a strictly increasing continuous function ¢ : [0, ) — [0, ) with £(0) =0
such that

d(T", T"y) < d(x, y) + up&(d(x, y))+ &, ¥n=1 x,yeC. (24)
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It follows from the above definitions that each nonexpansive mapping
is an asymptotically nonexpansive mapping with k, =1, ¥n >1 and that
each asymptotically nonexpansive mapping is a totally asymptotically
nonexpansive mapping with pu, =k, -1, §,=0, vn>1, ((t)=t, Vt>0.
Moreover, each asymptotically nonexpansive mapping is a uniformly
L-Lipschitzian mapping with L = sup,>1{k,}. However, the converse of

these statements is not true, in general.
Example 2.1. Let X =[0,3], d(x,y)=|x-y]|, ¢t)=t Vvt=>0,
uh =1 &, =0, Vn>1 and define T by

0, if x=#3,

T = {1, if x = 3.

By taking x = 3 and y = 2.5, we have

d(T"(3), T"(2.5)) < d(3, 2.5) + £(d(3, 2.5)) = 1.
But
d(T(3), T(2.5)) =1 £ 0.5 = d(3, 2.5).

Therefore, T is a totally asymptotically nonexpansive mapping, but T is not
nonexpansive mapping.

A mapping T from a subset C of a metric space (X, d) into itself is
semi-compact if every bounded sequence {x,} = C satisfying d(x,, TX,)
— 0 as n — o« has a strongly convergent subsequence.

A mapping T : C — C with F(T) # & is said to satisfy condition (1) if
there exists a non-decreasing function f : [0, ) — [0, ) with f(0) =0
and f(r)>0 forall r € (0, ©) such that d(x, Tx) > f(d(x, F(T))) for all
X € C (see [21]).

Hyperbolic spaces in general and uniformly convex hyperbolic spaces in

particular originate in [19]. An important example of such spaces is the
Hilbert ball with the hyperbolic metric, which is studied in detail in the book
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by Goebel and Reich [25]. See also the recent paper by Kopecka and Reich
[26].

A hyperbolic space [13] is a triple (X, d, W), where (X, d) is a metric
space and a mapping W : X2 x[0, 1] — X satisfying

(W1) d(u, W(x, y, @) < ad(u, x) + (1 - a)d(u, Y),

(W2) dW(x, y, a), W(x, ¥, B)) =[a —B[d(X, y),

(W3) W(X, y, o) =W(y, x, (1 -a)),

(W4) dW(x, z, o), W(y, w, ) < (1 - a)d(x, y) + ad(z, W)
forall x, y, ze X and a, B € [0, 1].

The class of hyperbolic spaces in the sense of Kohlenbach [13] contains
all normed linear spaces and convex subsets thereof as well as Hadamard
manifolds and CAT(0) spaces in the sense of Gromov (see [5]).

A hyperbolic space (X, d, W) is uniformly convex [22], if forall r > 0

and ¢ € [0, 2), there exists & € (0, 1] such that for all u, x, y € X, we have
d(W(x, Y, %) uj <@-9d)r (2.5)
whenever d(x, u) <r, d(y,u)<r and d(x, y) > er.

A map m: (0, ) x (0, 2] - (0, 1] which provides such & = n(r, ¢) for
given r > 0 and ¢ e (0, 2] is called modulus of uniform convexity of X. We

call n to be monotone if it decreases with r (for a fixed ¢).

Lemma 2.2 (See [11]). Let (X, d, W) be a complete uniformly convex
hyperbolic space with monotone modulus of uniform convexity n. Let x € X
and {a,} be a sequence in [a, b] for some b, ¢ € (0, ). If {x,} and {y,}

are sequences in X such that limsup d(x,, x) <r, limsupd(y,, x)<r and
X—>00 X—>0

lim dW(X,, Yn, on), X) =r forsome r > 0, then lim d(x,, y,) = 0.
X—>00 X—>0
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The concept of A -convergence in a metric space was introduced by
Lim [15]. A -convergence in CAT(0) spaces has been investigated initially
by Dhompongsa and Panyanak [8]. See also Khan and Abbas [12] and Khan
et al. [11].

Let {x,} be a bounded sequence in a hyperbolic space X. For x € X,
we define a continuous functional r(,, {x,}): X — [0, ©) by r(x, {X,}) =

limsup d(x, x,) for all x e C. The asymptotic radius of {x,} with respect
X—>0

to C < X isdefined as r({x,}) = inf{r(x, {x,}): x € C}.
The asymptotic center of a bounded sequence {x,} with respect to
C < X isdefined as

Ac(txn}) = {x € X 1r(x, {x}) < r(y, {x,}) for any y e C}.
Lemma 2.3 (Leustean [14]). Let (X, d, W) be a complete uniformly

convex hyperbolic space with monotone modulus of uniform convexity. Then
every bounded sequence {x,} in X has a unique asymptotic center with

respect to any nonempty closed convex subset C of X.

A sequence {x,} in X is said to A -convergence x € X if x is the unique
asymptotic center of {u,,} for every subsequence {u,} of {x,}. In this case,
we write A -limit of {x,} as A —lim, x, = x.

Lemma 2.4 (See [11]). Let C be a nonempty closed convex subset of
uniformly convex hyperbolic space and let {x,} be a bounded sequence in C
such that Ac ({x,}) = {y} and r=({x,}) = p. If {yy} is another sequence in

Csuchthat lim r(yy, {xq}) =p, then lim y, =vy.
n—oo nN—oo

Lemma 2.5 (See [6]). Let {a,}, {b,} and {c,} be sequences of
nonnegative numbers such that

apn = (@+by)a, +cp Vn>1.

o0 o0
If > by <o and ) ¢, < oo, then lim a, exists.
n=1 n=1 N—e0
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3. Main Results

In this section, we prove our main theorems.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform
convexity m. Let T:C — C be a uniformly L-Lipschitzian and totally

asymptotically nonexpansive mapping with F(T) = &. Suppose that {x,}

is defined by the iteration process (1.5) and the following conditions are
satisfied:

(i) Zun<oo and Z‘:n < o0,
n=1 n=1

(i) there exist constants a, b € (0,1) such that {a,}, {Bn} {vn} <
[a, b],

(iii) there exists a constant M > 0 such that {(r) < Mr, Vr > 0.

Then lim d(x,, u) and lim d(x,, F(T)) existforall u € F(T).
nN—o0

n—oo

Proof. Let ue F(T). By (1.5), T be a totally asymptotically

nonexpansive mapping and condition (iii), we have
d(zp, u) = d(W(xy, Tnxn: Yn) U)
< (L= yn)d(Xy, u) +vpd(T "xq, )
< (= 7vp)d(Xp, U) + yp[d(Xn, U) + pa&(d(Xy, U)) + &l
= d(Xy, U) + Yakn&(d (X, U)) + Ynén
< (@ + vauaM)d(Xn, U) + vp&p (3.1)
and
d(yn, U) = dW (T "%y, Tz, Bp), U)

<(1- Bn)d(Tany u)+ Bnd(TnZn: u)
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< (1= Bn)[d(Xn, U) + punC(d(xn, U)) + &p]
+ Bnld(zn, U) + pn&(d(zn, U)) + &p]
< (@=PBn)[@+paM)d(Xy, U) + &p]
+ Bl + paM)d (2o, u) + &y (32)
Substituting (3.1) into (3.2), we have
d(yn, u) < (@=Bn) [+ paM)d(Xn, U) + &p]
+ Bnl(+ tpM){L+ yaraM)d(Xn, U) + yn€n} + &n]
< (+ M@+ Bpynd+ ppM))d(xy, U))
+ 1+ Bryn@+ ppM))E,. (3.3
Thus,
d(%ns1, u) = dW(T " yn, T 2y, ap), u)
<(1-0y)d(T"y,, )+ and(Tz,, U)
< (L= o) [d(yn, u) + un(d(yn, u)) + &n]
+ ap[d(zn, U) + upE(d(zn, U)) + &p]
< (L= o) [@+upM)d(yn, u) + &p]
+ o[+ paM)d(z,, u) + &, (3.4)
Combining (3.1), (3.3) and (3.4), we have
d(Xns1, U) < L+ on)d(Xp, W)+ v, Vn>1and ue F(T) (3.5)
and
d(Xqi1, F(T)) < @+ 0p)d(Xy, F(T)) +wp, Vn>1, (3.6)
where

on = UM (2 + apyn + Bavn + BaM @+ onyy + 2Bayn + BpYnkinM))
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and

Wn = UpM (2 + Bpyn + taM @+ oy + 2Bpyn + BpynknM)).

Furthermore, using condition (i), we have

o0 o0
Dup<o and D g <o (3.7)
n=1 n=1

Consequently, a combination of (3.5), (3.6), (3.7) and by Lemma 2.5 shows
that lim d(x,, u) and lim d(x,, F(T)) exist for all u € F(T). The proof
n—oo

n—o0

is completed. O

Theorem 3.2. Let C be a nonempty closed convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform
convexity n. Let T:C — C be a uniformly L-Lipschitzian and totally

asymptotically nonexpansive mapping with F(T) = &. Suppose that {x,}

is defined by the iteration process (1.5) and the following conditions are
satisfied:

(i) Z“n<°° and Z&n < o,
n=1 n=1
(ii) there exist constants a, b € (0,1) such that {a,}, {Bn} {vn} <
[a, b],

(iii) there exists a constant M > 0 such that {(r) < Mr, Vvr > 0.

Then lim d(x,, Tx,)=0.

n—oo

Proof. By Theorem 3.1, lim d(x,, u) exists for all u € F(T). Assume
n—o0
that
lim d(x,, u)=r=>0. (3.8)

Nn—oo
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Now, taking limsup on both sides in inequality (3.3), we get

limsup d(yy,, u) < limsup(l+ usM (1 + By @+ ppM))d(x,, u))

n—oo n—oo

+ (L4 Bpyn@ + upM))E,

< nli_r)noo d(x,, u)
-r. (3.9)
Noting
d(T"yp, u) = d(T"y,, TM)
< d(Yn, U) + pn&(d(Yn, W) + &n
<@+ paM)d(yy, u)+&,, Vn2>1 (3.10)
and

d(T"z,, u) = d(T"z,, T"u)
< d(zp, U) + pn&(d(zn, U)) + &y
<@+ paM)d(zy, U) + &, YN 21, (3.11)
by (3.1), (3.8) and (3.9), we have

limsupd(T"y,,u)<r and limsupd(T"z,, u)<r. (3.12)

n—oo n—oo

Besides, by (3.4) and (3.5), we get
d(Xps1, U) = dW (T "y, T"2q, 0p), U) < @+ oq)d(Xy, U) + Wy
which yields that

lim d(Xp,q, U) = lim dW(T"y,, T"z,, ap), u)=r.  (3.13)
N—o0 nN—o0
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By (3.12), (3.13) and Lemma 2.4, we have

lim d(T"y,, T"z,) = 0. (3.14)

n—o0

Next,
d(Xps, ) = dW(T"y,, T"z,, o), U)
<(L-0y)d(T"y,, u)+ and(T"z,, u)
<(@-0y)d(T"y,, u)+ ond(T"z,, T"y,) + 0, d(T"y,, U)
<d(T"y,, u)+ o,d(T"z,, Ty,)

<@+ ppM)d(yy, u) + &, +O‘nd(TnvaTnYn)a (3.15)

we have liminf d(y,, u) > r and from (3.7), limsupd(y,, u) <r, ityields
n—co n—o

that lim d(yp, u) = r. This implies that

n—o0

lim dW(T"x,, T"z,, Bp), u) =r. (3.16)

nN—o0

Since limsupd(T"x,, u)<r and limsupd(T"z,, u)<r, it follows
n—o n—o0

from Lemma 2.4 that
lim d(T"x,, T"z,) = 0. (3.17)
Nn—oo
Also,
d(yp, u) = d(W(Tan, Tnzn: Bn) u)

< (1_Bn)d(Tan: U)‘*‘Bnd(TnZn: u)

<(@- Bn)[d(Tan’ Tnzn)"' d(TnZn: u)] + Bnd(TnZn- u)

<(@-By)d(T "%y, T"zp) +d(T"z,, u)

<@-By)d(T"%,, T"zp) + @+ upM)d(z,, u) + &, (3.18)
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By virtue of (3.17) that

liminf d(z,, u)>r,
n—o0

and since (3.1),
d(zy, U) < @+ vpppM)d(Xy, U) + yn&p,

we have limsup d(z,, u) < r. Therefore,
nN—o0

lim d(z,, u) = lim dW(x,, T"X,, v5), U) = T.
nN—oo

n—o0

Thus, from Lemma 2.4, we obtain

lim d(x,, T"x,) = 0.

n—oo

By (3.14), we have

(3.19)

(3.20)

d(Xn4+1, Yn) < d(W(Tnan Tnzny an) Yn) < O‘nd(Tnyna Tnzn) -0

as N — oo.

Similarly, we have

d(yn, zp) < d(W(Tan’ Tnzn, Bn) zn) < (1~ Bn)d(Tan’ Tnzn) -0

as n— oo

and

d(zp, X,) < dW (X, T™n, 70 ) Xn) < 70d(T"Xq, X,) = 0 as n— oo,

It follows that

d(Xn11, Xn) < d(Xn41s Yn) + d(Yn, 2h) + d(z,, X,) > 0 as n — o, (3.21)

Since T is uniformly L-Lipschitzian, we get
1
d(Xn, T%) < d(Xn, Xnsa) + d(Xniz, T X0 41)

+ d(T”+1Xn+1, T”+1xn) + d(T”*lxn, TX,)

< (@ + L)d(Xn, Xpe1) + d(Xn41, Tn+1xn+1) + Ld(Tan, Xp ).
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Therefore, (3.20) and (3.21) imply that
d(Xn, TXy) = 0. (3.22)
The proof is completed. O

Theorem 3.3. Let C be a nonempty closed convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform
convexity . Let T :C — C be a uniformly L-Lipschitzian and totally

asymptotically nonexpansive mapping with F(T) = &. Suppose that {x,}

is defined by the iteration process (1.5) and the following conditions are
satisfied:

Q) Zun<oo and Z‘:n < o0,
n=1 n=1
(ii) there exist constants a, b € (0,1) such that {a,}, {Bn} {vn} <
[a, b],
(iii) there exists a constant M > 0 such that {(r) < Mr, Vvr > 0.

Then the sequence {x,} A-converges to a fixed point of T.

Proof. By Theorem 3.1, we have lim d(x,, u) exists. This implies that
n—o0

the sequence {x,} is bounded. Therefore, by Lemma 2.3, {x,} has a unique
asymptotic center Az ({xn}) = {x}. Let {y,} be any subsequence of {x,} such
that Ac({yn}) = {y}. By Theorem 3.2, we have

lim d(y,, Ty,) = 0. (3.23)
Nn—oo

We claim that y e F(T), we define a sequence {a,,} in Cby a, =T"y.
Then one has

d(am, yp) < d(TmY: TmYn)+ d(TmYn’ Tm_lYn)+"' +d(Tyn, Yn)
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m H -
< d(y, Yn) + ra&(d(y, yn)) +&n +Zd(T’yn, Ti-ly )
1

<L+ paM)d(y, Yn) + & + Y d(Tly,, TIhyp). (3.24)
j=1

By (3.23), one gets

limsupd(a,, yn) < limsupd(y, yq) = r(y, {Yn})

N—o0 N—o0

which yields that
| r@m, tyn}) = (Y, {yn})| > 0 as m — 0.

It follows from Lemma 2.4 that lim T™y = y. Utilizing the uniform
m—oo

continuity of T, Ty = T( lim T™My)= lim T™y = y. Thatis, y e F(T).
m-—oo

m—oo
By the uniqueness of asymptotic centers, Tx = x. Similarly, we can prove
Ty = y. Suppose that x = y. Then by the unigueness of asymptotic centers,

we have

lim d(yp, y) < limsupd(y,, x)
n—o0

n—oo

< limsup d(X,, X)
n—o0

< limsupd(x,, Y)

n—o0

= limsupd(y,, y), (3.25)

nN—o0

a contradiction. Therefore, x = y. Hence, A({y,})=1{y} for all subsequences
{yn} of {x,}, thisis, {x,} A-converges to a fixed point of T. The proof is
completed. O



Some Convergence Results ... 147

Theorem 3.4. Let C be a nonempty closed convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform
convexity m. Let T:C — C be a uniformly L-Lipschitzian and totally

asymptotically nonexpansive mapping with F(T) = &. Suppose that {x,}

is defined by the iteration process (1.5) and the following conditions are
satisfied:

(i) Zun<oo and2§n<oo,

n=1 n=1
(ii) there exist constants a, b € (0,1) such that {a,}, {Bn} {vn} <
[a, b],

(iii) there exists a constant M > 0 such that {(r) < Mr, Vr > 0.
Then the sequence {x,} converges strongly to a point u € F(T) if and only
if liminf d(x,, F(T)) =0.

nN—o0

Proof. Since 0 < d(x,, F(T)) <d(x,, u). If {x,} converges to u e
F(T), then lim d(x,, u)=0. That is, we get liminf d(x,, F(T))=0.

n—oo n—oo
Suppose that liminfd(x,, F(T))=0. By Theorem 3.1, we have
nN—oo

lim d(x,, F(T)) exists and hence by hypothesis lim d(x,, F(T)) =0.
N—00 n—o0

Next, we prove that {x,} is a Cauchy sequence, it follows from (3.5),
d(Xpi1, U) < (14 0y)d(X,, U)+w,, Vn>1 and ue F(T),
where Z ®p < o and Z Y, < oo. Thus, for any positive integers m, n, we

n=1 n=1
have

d(Xp4m» Xn) < d(Xqpm, U)+d(u, x,)

< 1+ opim-1)d(Xnim=1, U) + Wpymo1 + d(X,, U).
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Foreach x > 0, 1+ x < e, we have
d(Xn+m: Xn)

< e®MM1d (X, o1, U) + Wnymog + (X, )

< @Pmm-1TONEm-2d (x5, U) + €M MLy oo + d(Xg, U)

IA

m+n-1 m+n-1 m+n-2
2 o 2 o X o
< e i=n d(Xn, u) + eli=n+l W, + e i=n+2 Wnap + o

(O] _
+ oMMy n o + Wingno1 + d(Xp, U)

n+m-1
<@+ A, )+ A Dy,

i=n

o0
2 o
where A =e'=" < 0. Hence, we have

n+m-1
d(Xnem» Xn) < @+ A)d(xy, F(T)) + A Z yi >0asm,n— oo
i=n
Thus, {x,} is a Cauchy sequence in a closed subset of a complete

hyperbolic space X, it is complete. We assume that {x,} converges strongly
to a point u* € C. Now, d(x,, F(T))=0 gives that d(u*, F(T))= 0. Since
F(T) is closed, we obtain u* e F(T). The proof is completed. O

Theorem 3.5. Let C be a nonempty closed convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform
convexity m. Let T :C — C be a uniformly L-Lipschitzian and totally
asymptotically nonexpansive mapping with F(T) = &. Suppose that {x,}

is defined by the iteration process (1.5) and the following conditions are
satisfied:
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Q) z;,tn<oo and2§n<oo,

n=1 n=1

(ii) there exist constants a, b € (0,1) such that {a,}, {Bn} {vn} <
[a, b],

(iii) there exists a constant M > 0 such that (r) < Mr, Vr > 0.

If T is semi-compact, then the sequence {x,} converges strongly to a
fixed point of T.

Proof. By Theorem 3.2, we have lim d(x,, Tx,) =0 and since T is
n—o0

semi-compact, there exists a subsequence {x, } of {x,} such that x, —

ueC. Therefore, d(u, Tu)= lim d(x, , Tx, )=0. Hence, ueF(T).
n—o0

By Theorem 3.1, lim d(x, u) exists and x, — u e F(T). The proof is
n—oo

completed. O

Theorem 3.6. Let C be a nonempty closed convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform
convexity . Let T:C — C be a uniformly L-Lipschitzian and totally

asymptotically nonexpansive mapping with F(T) = &. Suppose that {x,}

is defined by the iteration process (1.5) and the following conditions are
satisfied:

(i) an<oo and Z‘t-»n < o0,
n=1 n=1

(ii) there exist constants a, b € (0,1) such that {a,}, {Bn} {vn} <
[a, b],

(iii) there exists a constant M > 0 such that £(r) < Mr, Vr > 0.

If T satisfies condition (1), then the sequence {x,} converges strongly to
a fixed point of T.
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Proof. By Theorem 3.1, we have lim d(x,, u) exists. From condition
n—o0

(1) and Theorem 3.2, we have lim f(d(x,, F(T))) < lim d(x,, Tx,) = 0.
n—oo N—o0

Since f is a non-decreasing function f :[0, ) — [0, o) satisfying f(0)=0
and f(r)>0 forall r € (0, ), it follows that lim d(x,, F(T)) = 0. Now,
n—oo

Theorem 3.4 implies that {x,} converges strongly to a point u € F(T). The

proof is completed. O
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