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Abstract 

In this paper, the estimators of the parameters of AR(2) model with 
(without) constant term will be derived using weighted symmetric 
(WS) method of estimation. The linearization and the unbiasedness of 
the estimated parameter of AR(1) model will be proven which is an 
extension of Park and Fuller [5]. 

1. Introduction 

Dickey et al. [1] proposed the simple weighted symmetric estimator 

(SWS) for AR(1) model constructed with .5.0=tw  Park and Fuller [5] 

derived the WSE for AR(1) model without constant term. Fuller [2] 
suggested a modification of the WSE for AR(1) model approximated for 



Sayed Mesheal El-Sayed et al. 146 

( ].1,1−∈ρ  So and Shin [6] applied a recursive mean adjustment to the OLS 

estimator (R-OLS) and they concluded that the mean squares error of the 

R-OLS estimator, is smaller than the OLS estimator for ( ).1,0∈ρ  They also 

showed that the estimator has a coverage probability that is close to the 
nominal value. Panichkitkosolkul [3] suggested an estimator for an unknown 
mean Gaussian AR(1) process with additive outliers by applying the 
recursive median adjustment to the weighted symmetric estimator (Rmd-W). 
Youssef et al. [7] suggested an OLS estimator for AR(2) model with constant 
and the properties of the estimated parameters have been derived. Also, a 
closed form of the variance of the estimated parameters has been obtained. 

2. WS Estimator for Autoregressive Model 

In this section, the parameter of AR(1) model without constant and its 
properties will be derived. Moreover, the estimators for AR(2) model with 
(without) constant will be obtained by using the weighted symmetric method. 

2.1. WS estimator for AR (1) without constant 

Park and Fuller [5] introduced a weighted symmetric estimator of AR(1) 
model that has the form: 

,...,,3,2,1 ntyy ttt =ε+ρ= −  (1) 

where { }tε  are IID ( )2,0 σ  random variables, and 0y  is a fixed. Under the 

stationarity condition, ,1<ρ  a backward representation of model (1) can 

be represented as: 

....,,3,2,1 ntyy ttt =ε+ρ= +  (2) 

The weighted symmetric estimator of ρ is the estimator that minimizes: 
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By differentiating equation (3) with respect to ρ and equal to zero to get, 
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By solving equation (4) to obtain: 
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where ( ) ntww tt ...,,2,1,10 =≤≤  had the form: 
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where p is the number of the estimated parameters. 

And as a result wsρ̂  will take the form: 
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which can be simplified by using Hoang [4] to the form: 
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2.2.  Properties of the Weighted Symmetric Estimator (WS) 

(a) The linearity of (WS) estimator of AR(1) 

By reformulated equation (8), wsρ̂  can be rewritten as: 
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This provided the linearity of the estimator. 

(b) Unbiasedness of (WS) estimator of AR (1) 

By using the values of ty  of (1) and (2) in (9) to get, 

wsρ̂  
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It can be shown that, equation (11) can be rewritten as: 
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By taking the expectation of equation (11) and since ( ) 0=εtE  the property 

of unbiasedness will be proved. 
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2.3. WS estimator for AR(2) model without constant 

Let, the second order autoregressive model can be defined as: 

,...,,4,3,2211 ntyyy tttt =ε+ρ+ρ= −−  (12) 

where { }tε  are IID ( )2,0 σ  random variables, and ( )10, −yy  is a fixed. A 
backward representation of the model (12) can be written as 

....,,4,3,2211 ntyyy tttt =ε+ρ+ρ= ++  (13) 

The weighted symmetric estimators of (12) and (13) are the estimators that 
minimize: 
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By differentiating equation (14) with respect to 1ρ  and 2ρ  and equal to zero, 
to get 
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So, 1ρ̂  can be obtained as: 
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Also, 2ρ̂  can be obtained as: 

,ˆˆ 2122 MH ρ−=ρ  (16) 

where 
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By solving equations (15) and (16) to get 
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2.4.  WS estimator for AR(2) with constant 

By adding the constant term to equation (12) and under the same 
assumptions above, taking the expectation of the model,  

....,,4,3,2211 ntyyy tttt =ε+ρ+ρ+α= −−  (18) 

To get 
( ) ,1 21 α=ρ−ρ− y  (19) 
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where 
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So, equation (18) can be written as: 

,2211 tttt ε+ρ+ρ= −− zzz  (20) 

where ( ) ( )yyyy tttt −=−= −− 11, zz  and ( ).22 yytt −= −−z  

Similarly, the backward autoregressive models can be rewritten as: 

,2211 tttt ε+ρ+ρ= ++ zzz  (21) 

where ( )yytt −= ++ 11z  and ( ).22 yytt −= ++z  

The weighted symmetric estimators of model (20) are the estimators that 
minimizes, 
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