Far East Journal of Mathematical Sciences (FJMS)
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: December 2015
http://dx.doi.org/10.17654/FJMSDec2015_1087_1101

THE HERGLOTZ SPACE ASSOCIATED WITH THE DE BRANGES-ROVNYAK SPACE IN MULTISCALE SYSTEMS

Meehyea Yang
Department of Mathematics
Incheon National University
Yeonsoo-Gu Songdo-Dong 12-1
Incheon 406-772, Korea
e-mail: mhyang@incheon.ac.kr

Abstract

For a Schur multiplier S in a multiscale system and $\phi=$ $(I+S)^{-1}(I-S)$, we obtain a multiscale linear system whose main transformation is found to be an isometry. The state space of the system is $$
\mathcal{E}(\Phi)=\left\{(F, G):\left((I+\Phi) F,-\left(I+\Phi^{*}\right) G\right) \in \mathcal{D}(S)\right\} .
$$

\section*{1. Introduction}

This paper continues the study of the de Branges-Rovnyak space in stationary multiscale systems based on the complementation theory (see [6, 7]). As in non-stationary systems, we derive the analogue Herglotz representation theorem in the stationary systems (see [2]). We first state some of notations and results as mentioned in [3] and [4].

[^0]Let \mathcal{T} be a homogeneous tree of order $q \geq 2$ and let $l_{2}(\mathcal{T})$ be the Hilbert space of square-summable sequences indexed by the nodes of \mathcal{T} and $\mathbf{X}(\mathcal{T})$ the C^{*}-algebra of bounded linear operators on $l_{2}(\mathcal{T})$. Let $\bar{\gamma}: \mathcal{T} \rightarrow \mathcal{T}$ be the primitive upward shift. Define the upward shift operator $\bar{\gamma}$ on $l_{2}(\mathcal{T})$ by

$$
\bar{\gamma} f(t)=\frac{1}{\sqrt{q}} f(t \bar{\gamma}) .
$$

Then $\bar{\gamma}$ is an isometry but not a unitary.
Define

$$
\sigma_{n}=\bar{\gamma}^{n} \gamma^{n}, \quad \sigma_{0}=I, \quad \omega_{0}=I-\sigma_{1}, \quad \text { and } \quad \omega_{n}=\sigma_{n}-\sigma_{n+1}, \quad n \in \mathbb{Z}_{+} .
$$

Define the commutative \mathbf{C}^{*} algebra

$$
\mathbb{K}=\left\{\mathbf{c}=\sum_{k=0}^{\infty} c_{k} \omega_{k}: c_{k} \in \mathbb{C}, \sup _{k}\left|c_{k}\right|<\infty\right\}
$$

with the operator norm $\|\mathbf{c}\|_{\text {op }}=\sup _{k}\left|c_{k}\right|$ and define the Banach algebra

$$
\mathbf{U}(\mathcal{T})=\left\{S=\sum_{k=0}^{\infty} \bar{\gamma}^{k} \mathbf{s}_{k}: \mathbf{s}_{k} \in \mathbb{K} \text { and }\left\|\mathbf{s}_{k}\right\|_{\mathrm{op}} \leq\|S\|_{\mathrm{op}}\right\} .
$$

In [1] it was shown that $S \in \mathbf{U}(\mathcal{T})$ if and only if

$$
S=\sum_{k=0}^{\infty} \bar{\gamma}^{k} \mathbf{s}_{k}, \quad \mathbf{s}_{k} \in \mathbb{K} .
$$

In this case, the operators \mathbf{s}_{k} are uniquely determined by

$$
\omega_{n} \mathbf{s}_{k}=\gamma^{k} \omega_{n+k} S \omega_{n}, \quad n, k \in \mathbb{Z}_{+} .
$$

In [3] it was shown that the multiscale system is both stationary and casual if S is of the form

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1089

$$
S=\sum_{k, n \in \mathbb{Z}_{+}} \bar{\gamma}^{n} \omega_{k} s_{k, n} \text { with } s_{k, n} \in \mathbb{C} .
$$

An operator $S \in \mathbf{U}(\mathcal{T})$ with $\|S\|_{\text {op }} \leq 1$ is called a Schur multiplier.
As in the non-stationary system, define Hilbert spaces

$$
\mathbb{K}_{2}=\left\{\mathbf{c}=\sum_{k=0}^{\infty} c_{k} \omega_{k} \in \mathbb{K}: \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<\infty\right\}
$$

and

$$
\mathbf{H}_{2}=\left\{F=\sum_{k=0}^{\infty} \bar{\gamma}^{k} \mathbf{f}_{k}: \mathbf{f}_{k} \in \mathbb{K}_{2},\|F\|_{\mathbf{H}_{2}}^{2}=\sum_{k=0}^{\infty}\left\|\mathbf{f}_{k}\right\|_{\mathbb{K}_{2}}^{2}<\infty\right\}
$$

with the scalar product

$$
\langle\mathbf{c}, \mathbf{d}\rangle_{\mathbb{K}_{2}}=\sum_{\mathbf{k}=0}^{\infty} \overline{\mathbf{d}}_{\mathbf{k}} \mathbf{c}_{\mathbf{k}} \text {, and }\langle\mathbf{F}, \mathbf{G}\rangle_{\mathbf{H}_{2}}=\sum_{\mathbf{k}=0}^{\infty}\left\langle\mathbf{f}_{\mathbf{k}}, \mathbf{g}_{\mathbf{k}}\right\rangle_{\mathbb{K}_{2}} .
$$

Then \mathbf{H}_{2} is a left ideal in $\mathbf{U}(\mathcal{T})$ and for a Schur multiplier S, the multiplication operator $M_{S} F=S F$ is a contraction in \mathbf{H}_{2} (see [3]).

Now review the following notations to define the left point evaluation on \mathbf{H}_{2} (see [1]).

For $\mathbf{c} \in \mathbb{K}$ and $n \in \mathbb{Z}$, define

$$
\begin{aligned}
& \mathbf{c}^{[n]}=(\mathbf{c} \gamma)^{n} \bar{\gamma}^{n}, \quad \mathbf{c}^{\langle n\rangle}=\bar{\gamma}^{n}(\gamma \mathbf{c})^{n}, \quad \mathbf{c}^{[0]}=\mathbf{c}^{\langle 0\rangle}=I, \\
& \mathbf{c}^{(n)}=\gamma^{n} \mathbf{c} \bar{\gamma}^{n}, \quad \mathbf{c}^{(-n)}=\bar{\gamma}^{-n} \mathbf{c \gamma}^{-n} \text { and } \mathbf{c}^{(0)}=\mathbf{c} .
\end{aligned}
$$

Define the unit open disk in the multiscale system by

$$
\mathbb{D}(\mathcal{T})=\left\{\mathbf{c} \in \mathbb{K}: \rho(c)=\underset{n \rightarrow \infty}{\limsup }\left\|\mathbf{c}^{[n]}\right\|^{\frac{1}{n}}<1\right\} .
$$

For $F=\sum_{k=0}^{\infty} \bar{\gamma}^{k} \mathbf{f}_{k} \in \mathbf{U}(\mathcal{T})$ and $\mathbf{c} \in \mathbb{D}(\mathcal{T})$, the left point evaluation of F
at \mathbf{c} is defined by

$$
F^{\wedge}(\mathbf{c})=\sum_{k=0}^{\infty} \mathbf{c}^{[k]} \mathbf{f}_{k}=\sum_{k=0}^{\infty}(\mathbf{c} \gamma)^{k} \bar{\gamma}^{k} \mathbf{f}_{k}
$$

and the right point evaluation of F at \mathbf{c} is defined by

$$
F^{\triangle}(\mathbf{c})=\sum_{k=0}^{\infty} \mathbf{f}_{k}^{(-k)} \mathbf{c}^{\langle k\rangle}=\sum_{k=0}^{\infty} \bar{\gamma}^{k} \mathbf{f}_{k}(\gamma \mathbf{c})^{k} .
$$

Then both $F^{\wedge}(\mathbf{c})$ and $F^{\triangle}(\mathbf{c})$ are absolutely convergent in \mathbb{K} and for any $\mathbf{k} \in \mathbb{K}_{2}$,

$$
\left\langle F, K_{\wedge}^{\mathbf{c}} \mathbf{k}\right\rangle_{\mathbf{H}_{2}}=\left\langle F^{\wedge}(\mathbf{c}), \mathbf{k}\right\rangle_{\mathbb{K}_{2}} \text { and }\left\langle F, K_{\triangle}^{\mathbf{c}} \mathbf{k}\right\rangle_{\mathbf{H}_{2}}=\left\langle F^{\triangle}(\mathbf{c}), \mathbf{k}\right\rangle_{\mathbb{K}_{2}},
$$

where

$$
K_{\wedge}^{\mathbf{c}}=\left(I-\bar{\gamma} \mathbf{c}^{*}\right)^{-1} \text { and } K_{\Delta}^{\mathbf{c}}=\left(I-\mathbf{c}^{*} \bar{\gamma}\right)^{-1} .
$$

2. The de Branges-Rovnyak Space $\mathcal{H}(S)$

Let S be a Schur multiplier. The Hilbert space

$$
\mathcal{H}(S)=\left\{F \in \mathbf{H}_{2}: \sup _{G \in \mathbf{H}_{2}}\left\{\|F+S G\|_{\mathbf{H}_{2}}^{2}-\|G\|_{\mathbf{H}_{2}}^{2}\right\}<\infty\right\}
$$

with the scalar product

$$
\|F\|_{\mathcal{H}(S)}^{2}=\sup _{G \in \mathbf{H}_{2}}\left\{\|F+S G\|_{\mathbf{H}_{2}}^{2}-\|G\|_{\mathbf{H}_{2}}^{2}\right\}<\infty
$$

was introduced by de Branges and Rovnyak (see [5]). The de BrangesRovnyak space $\mathcal{H}(S)$ was constructed based on the complementation theory. $\operatorname{Ran}\left(I-M_{S} M_{S}^{*}\right)$ is a dense in $\mathcal{H}(S)$ and $K_{S}^{\mathbf{c}}=\left(I-S S^{\wedge}(\mathbf{c})^{*}\right) K_{\wedge}^{\mathbf{c}}$ is a reproducing kernel function of $\mathcal{H}(S)$.

The space $\mathcal{H}(S)$ is the state space of a linear system whose transfer function is a Schur multiplier S (see [1]).

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1091
Theorem 2.1. Let S be a Schur multiplier. Then the linear system

$$
V_{S}=\left(\begin{array}{ll}
A_{S} & B_{S} \\
C_{S} & D_{S}
\end{array}\right):\binom{\mathcal{H}(S)}{\mathbb{K}_{2}} \rightarrow\binom{\mathcal{H}(S)}{\mathbb{K}_{2}}
$$

defined by

$$
\begin{align*}
A_{S} F & =\left(F-F^{\wedge}(0)\right) \gamma, \quad B_{S} \mathbf{k}=\left(S-S^{\wedge}(0)\right) \mathbf{k} \gamma, \\
C_{S} F & =F^{\wedge}(0) \text { and } D_{S} \mathbf{k}=S^{\wedge}(0) \mathbf{k} \tag{2.1}
\end{align*}
$$

satisfies

$$
V_{S} V_{S}^{*}=\left(\begin{array}{cc}
I-\hat{M}_{\omega_{0}} & 0 \tag{2.2}\\
0 & I
\end{array}\right)
$$

where $\hat{M}_{\omega_{0}} F=F \omega_{0} . S$ can be written by

$$
S \mathbf{k}=D_{S} \mathbf{k}+\sum_{k=0}^{\infty} \bar{\gamma}^{k+1}\left(C_{S} A_{S}^{k} B_{S} \mathbf{k}\right)^{(k+1)}
$$

The space

$$
\mathcal{L}(S)=\{F \in \mathbb{U}(\mathcal{T}): S F \in \mathcal{H}(S)\}
$$

is a Hilbert space with the norm

$$
\|F\|_{\mathcal{L}(S)}^{2}=\|S F\|_{\mathcal{H}(S)}^{2}+\|F\|_{\mathbb{H}_{2}}^{2}
$$

The space $\mathcal{L}(S)$ is called the overlapping space of $\mathcal{H}(S)$. The transformation $T: \mathcal{L}(S) \rightarrow \mathcal{L}(S)$ defined by $T F=\left(F-F^{\wedge}(0)\right) \gamma$ is contractive and its adjoint is isometric (see [7]).

For a Schur multiplier $S, \quad \Phi=(I+S)^{-1}(I-S)$ is a Carathéodory operator. The space $\mathcal{L}(\Phi)=\operatorname{Ran}\left(M_{\Phi}+M_{\Phi}^{*}\right)^{1 / 2}$ is the state space of a bounded linear system (see [7]).

Theorem 2.2. Let $\Phi=(I+S)^{-1}(I-S)$ for a Schur multiplier S. Then

$$
\mathcal{L}(\Phi)=\{(I+\Phi) G: G \in \mathcal{H}(S)\}
$$

and for $G \in \mathcal{H}(S)$,

$$
\begin{equation*}
\|(I+\Phi) G\|_{\mathcal{L}(\Phi)}=\sqrt{2}\|G\|_{\mathcal{H}(S)} . \tag{2.3}
\end{equation*}
$$

The linear system

$$
\left(\begin{array}{ll}
A_{\Phi} & B_{\Phi} \\
C_{\Phi} & D_{\Phi}
\end{array}\right):\binom{\mathcal{L}(\Phi)}{\mathbb{K}_{2}} \rightarrow\binom{\mathcal{L}(\Phi)}{\mathbb{K}_{2}}
$$

defined by

$$
\begin{align*}
& A_{\Phi} F=\left(F-F^{\wedge}(0)\right) \gamma, \quad B_{\Phi} \mathbf{k}=\left(\Phi-\Phi^{\wedge}(0)\right) \mathbf{k} \gamma \\
& C_{\Phi} F=F^{\wedge}(0) \text { and } D_{\Phi} \mathbf{k}=\Phi^{\wedge}(0) \mathbf{k} \tag{2.4}
\end{align*}
$$

satisfies

$$
A_{\Phi} A_{\Phi}^{*}((I+\Phi) G)=(I+\Phi)\left(A_{S} A_{S}^{*} G+B_{S} B_{S}^{*} G\right)
$$

for $G \in \mathcal{H}(S)$ and

$$
A_{\Phi} C_{\Phi}^{*}=B_{\Phi}
$$

3. The Overlapping Space of $\mathcal{D}(S)$

From (2.1), we have that $A_{S}^{*} F=F \bar{\gamma}-S B_{S}^{*} F$ for $F \in \mathcal{H}(S)$ and

$$
\left\|F \bar{\gamma}-S B_{S}^{*} F\right\|_{\mathcal{H}(S)}^{2}=\|F\|_{\mathcal{H}(S)}^{2}-\left\|B_{S}^{*} \mathbf{k}\right\|_{\mathbf{K}_{2}}^{2} .
$$

Let $F_{0}=F \in \mathcal{H}(S), F_{n+1}=A_{S}^{*} F_{n}$ and $\mathbf{g}_{n}=B_{S}^{*} F_{n}$ for each non-negative integer n. Then for each n,

$$
F \bar{\gamma}^{n}-S\left(\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right) \in \mathcal{H}(S)
$$

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1093 and

$$
\left\|F \bar{\gamma}^{n}-S\left(\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2}=\|F\|_{\mathcal{H}(S)}^{2}-\sum_{k=0}^{n-1}\left\|\mathbf{g}_{k}\right\|_{\mathbf{K}_{2}}^{2} .
$$

Define the extension space $\mathcal{D}(S)$ associated with $\mathcal{H}(S)$ by the set of pairs (F, G), where $F \in \mathcal{H}(S)$ and $G=\sum_{k=0}^{\infty} \mathbf{g}_{k} \gamma^{k}$ and for each non-negative integer n,

$$
F \gamma^{n}-S\left(\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right) \in \mathcal{H}(S) .
$$

Then the sequence

$$
\left\|F \bar{\gamma}^{n}-S\left(\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2}+\sum_{k=0}^{n-1}\left\|\mathbf{g}_{k}\right\|_{\mathbf{K}_{2}}^{2}
$$

is bounded and non-decreasing. $\mathcal{D}(S)$ becomes a Hilbert space with the scalar product

$$
\|(F, G)\|_{\mathcal{D}(S)}^{2}=\lim _{n \rightarrow \infty}\left[\left\|F \bar{\gamma}^{n}-S\left(\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2}+\sum_{k=0}^{n-1}\left\|\mathbf{g}_{k}\right\|_{\mathbf{K}_{2}}^{2}\right] .
$$

There is a partial isometry from $\mathcal{D}(S)$ onto $\mathcal{H}(S)$.
The extended space $\mathcal{D}(S)$ is the state space of a linear system (see [6]).
Theorem 3.1. Let S be a Schur multiplier. The linear system

$$
\hat{V}_{S}=\left(\begin{array}{ll}
\hat{A}_{S} & \hat{B}_{S} \tag{3.1}\\
\hat{C}_{S} & \hat{D}_{S}
\end{array}\right):\binom{\mathcal{D}(S)}{\mathbb{K}_{2}} \rightarrow\binom{\mathcal{D}(S)}{\mathbb{K}_{2}}
$$

defined by

$$
\begin{aligned}
& \hat{A}_{S}((F, G))=\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma-S^{*} F^{\wedge}(0)\right), \\
& \hat{B}_{S} \mathbf{k}=\left(\left(S-S^{\wedge}(0)\right) \mathbf{k} \gamma,\left(I-S^{*} S^{\wedge}(0)\right) \mathbf{k}\right), \\
& \hat{C}_{S}((F, G))=F^{\wedge}(0) \text { and } \hat{D}_{S} \mathbf{k}=S^{\wedge}(0) \mathbf{k}
\end{aligned}
$$

satisfies

$$
\hat{V}_{S} \hat{V}_{S}^{*}\binom{(F, G)}{\mathbf{k}}=\binom{\left(F \bar{\gamma} \gamma,\left(G-G^{\vee}(0)\right) \bar{\gamma} \gamma+G^{\vee}(0)\right)}{\mathbf{k}}
$$

Define

$$
\mathcal{E}(S)=\{(F, G):(S F,-G) \in \mathcal{D}(S)\} .
$$

Then $\mathcal{E}(S)$ is a Hilbert space with the scalar product

$$
\|(F, G)\|_{\mathcal{E}(S)}^{2}=\|F\|_{\mathbf{H}_{2}}^{2}+\|(S F,-G)\|_{\mathcal{D}(S)}^{2}
$$

The space $\mathcal{E}(S)$ is a Herglotz space and there is a relation between $\mathcal{E}(S)$ and $\mathcal{L}(S)$.

Theorem 3.2. Let S be a Schur multiplier. Then $\mathcal{E}(S)$ is the set of pairs (F, G) with $G=\sum_{k=0}^{\infty} \mathbf{g}_{k} \gamma^{k}$ such that for each non-negative integer n,

$$
F \bar{\gamma}^{n}+\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1} \in \mathcal{L}(S)
$$

There is a partial isometry from $\mathcal{E}(S)$ onto $\mathcal{L}(S)$. Furthermore, the transformation $\hat{T}: \mathcal{E}(S) \rightarrow \mathcal{E}(S)$ defined by

$$
\hat{T}(F, G)=\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right)
$$

is an isometry.
Proof. Let $F \in \mathcal{L}(S)$. If $T: \mathcal{L}(S) \rightarrow \mathcal{L}(S)$ is defined by $T F=$ $\left(F-F^{\wedge}(0)\right) \gamma$, then $T^{*} F=F \bar{\gamma}-B_{S}^{*}(S F)$ so T^{*} is isometric (see [7]).

Let $\quad F_{0}=F \in \mathcal{L}(S), \quad F_{n+1}=T^{*} F_{n}$ and $\overline{\mathbf{f}}_{n}=-B_{S}^{*}\left(S F_{n}\right)$. For $\tilde{F}=$ $\sum_{k=0}^{\infty} \tilde{\mathbf{f}}_{k} \gamma^{k}$,

$$
F \bar{\gamma}^{n}+\tilde{\mathbf{f}}_{0} \bar{\gamma}^{n-1}+\cdots+\tilde{\mathbf{f}}_{n-1} \in \mathcal{L}(S)
$$

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1095
so we have $(S F,-\widetilde{F}) \in \mathcal{D}(S),(F, \tilde{F}) \in \mathcal{E}(S)$ and

$$
\|(F, \tilde{F})\|_{\mathcal{E}(S)}=\|F\|_{\mathcal{L}(S)}
$$

Let \mathcal{E} be the set of all elements in $\mathcal{E}(S)$ of the form (F, \tilde{F}). If $(F, \tilde{F}) \in \mathcal{E}$ and $(0, Q) \in \mathcal{E}(S)$ with $Q=\sum_{k=0}^{\infty} \mathbf{q}_{k} \gamma^{k}$, then the identities

$$
\begin{aligned}
& \left\langle F \bar{\gamma}^{n}+\tilde{\mathbf{f}}_{0} \bar{\gamma}^{n-1}+\cdots+\tilde{\mathbf{f}}_{n-1}, \mathbf{q}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{q}_{n-1}\right\rangle_{\mathcal{L}(S)} \\
= & \left\langle F \bar{\gamma}^{n-1}+\tilde{\mathbf{f}}_{0} \bar{\gamma}^{n-2}-\cdots-\tilde{\mathbf{f}}_{n-2},\left(\mathbf{q}_{0} \bar{\gamma}^{n-2}+\cdots+\mathbf{q}_{n-2}\right) \bar{\gamma} \gamma\right\rangle_{\mathcal{L}(S)} \\
= & \left\langle F \bar{\gamma}+\tilde{\mathbf{f}}_{0}, \mathbf{q}_{0} \bar{\gamma}^{n-1} \gamma^{n-1}\right\rangle_{\mathcal{L}(S)}=0
\end{aligned}
$$

imply that \mathcal{E} is the orthogonal complement of the set of elements of the form $(0, Q) \in \mathcal{E}(S)$. Hence the transformation which maps (F, G) to F is a partial isometry from $\mathcal{E}(S)$ onto $\mathcal{L}(S)$.

Let $(F, G) \in \mathcal{E}(S)$. Since $(S F,-G) \in \mathcal{D}(S)$, the linear system (3.1) implies that

$$
\left(\left(S F-S^{\wedge}(0) F^{\wedge}(0)\right) \gamma,-G \gamma-S^{*} S^{\wedge}(0) F^{\wedge}(0)\right) \in \mathcal{E}(S)
$$

Hence $\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right) \in \mathcal{E}(S)$ from

$$
S\left(F-F^{\wedge}(0)\right) \gamma=\left(S F-S^{\wedge}(0) F^{\wedge}(0)\right) \gamma-\left(S-S^{\wedge}(0)\right) F^{\wedge}(0) \gamma
$$

and

$$
G \gamma+F^{\wedge}(0)=G \gamma+S^{*} S^{\wedge}(0) F^{\wedge}(0)+\left(I-S^{*} S^{\wedge}(0)\right) F^{\wedge}(0) .
$$

Define

$$
\hat{T}(F, G)=\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right) .
$$

For $(F, G) \in \mathcal{E}(S)$ and $G=\sum_{k=0}^{\infty} \mathbf{g}_{k} \gamma^{k}$, write $G^{\vee}(0)=\mathbf{g}_{0}$. Then the identities

$$
\begin{aligned}
\langle\hat{T}(F, G),(P, Q)\rangle_{\mathcal{E}(S)}= & \left\langle\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right),(P, Q)\right\rangle_{\mathcal{E}(S)} \\
= & \left\langle\left(S\left(F-F^{\wedge}(0)\right) \gamma,-G \gamma-F^{\wedge}(0)\right),(S P,-Q)\right\rangle_{\mathcal{D}(S)} \\
& +\left\langle\left(F-F^{\wedge}(0)\right) \gamma, P\right\rangle_{\mathbf{H}_{2}} \\
= & \left\langle\left(\hat{A}_{S}(S F,-G)-\hat{B}_{S} F^{\wedge}(0)\right),(S P,-Q)\right\rangle_{\mathcal{D}(S)} \\
& +\langle F, P \bar{\gamma}\rangle_{\mathbf{H}_{2}} \\
= & \left\langle(S F,-G),\left(S P \bar{\gamma}+S Q^{\vee}(0),-\left(Q-Q^{\vee}(0)\right) \bar{\gamma}\right)\right\rangle_{\mathcal{D}(S)} \\
& +\left\langle F^{\wedge}(0), Q^{\vee}(0)\right\rangle_{\mathbf{H}_{2}}+\langle F, P \bar{\gamma}\rangle_{\mathbf{H}_{2}} \\
= & \left\langle(F, G),\left(P \bar{\gamma}+Q^{\vee}(0)\right),\left(Q-Q^{\vee}(0)\right) \bar{\gamma}\right\rangle_{\mathcal{E}(S)}
\end{aligned}
$$

hold for each $(P, Q) \in \mathcal{E}(S)$. Hence

$$
\hat{T}^{*}(F, G)=\left(F \bar{\gamma}+G^{\vee}(0),\left(G-G^{\vee}(0)\right) \bar{\gamma}\right)
$$

and \hat{T} is isometric.
Let $\Phi=(I+S)^{-1}(I-S)$ for a Schur multiplier S. Define $\mathcal{E}(\Phi)$ by the set of pairs (F, G) such that for each non-negative integer n,

$$
F \bar{\gamma}^{n}+\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1} \in \mathcal{L}(\Phi)
$$

and $G=\sum_{k=0}^{\infty} \mathbf{g}_{k} \gamma^{k}$.
The relation (2.3) implies that

$$
A_{\Phi}^{*} F=F \bar{\gamma}-\left(I+S^{* \vee}(0)\right)^{-1} B^{*}((I+S) F) .
$$

Let $F_{0}=F \in \mathcal{L}(\Phi), F_{n+1}=A_{\Phi}^{*} F_{n}$ and $\hat{\mathbf{f}}_{n}=-\left(I+S^{* \vee}(0)\right)^{-1} B^{*}\left((I+S) F_{n}\right)$. Then for $\hat{F}=\sum_{k=0}^{\infty} \hat{\mathbf{f}}_{k} \gamma^{k}$,

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1097

$$
F \bar{\gamma}^{n}+\overline{\mathbf{f}}_{0} \bar{\gamma}^{n-1}+\cdots+\hat{\mathbf{f}}_{n-1} \in \mathcal{L}(\Phi)
$$

so $(F, \hat{F}) \in \mathcal{E}(\Phi)$. Since

$$
\left\langle F \bar{\gamma}^{n}+\overline{\mathbf{f}}_{0} \bar{\gamma}^{n-1}+\cdots+\hat{\mathbf{f}}_{n-1}, \mathbf{q}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{q}_{n-1}\right\rangle_{\mathcal{L}(\Phi)}=0
$$

for any $Q=\sum_{k=0}^{\infty} \mathbf{q}_{k} \gamma^{k} \in \mathcal{L}(\Phi), \mathcal{E}(\Phi)$ becomes a Hilbert space with the scalar product

$$
\|(F, G)\|_{\mathcal{E}(\Phi)}=\lim _{n \rightarrow \infty}\left\|F \bar{\gamma}^{n}+\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right\|_{\mathcal{L}(\Phi)}
$$

and

$$
\begin{equation*}
\|(F, G)\|_{\mathcal{E}(\Phi)}=\|F\|_{\mathcal{L}(\Phi)} \tag{3.2}
\end{equation*}
$$

There is a relation between $\mathcal{E}(\Phi)$ and $\mathcal{D}(S)$.
Theorem 3.3. If $(F, G) \in \mathcal{E}(\Phi)$, then $\left((I+S) F,-\left(I+S^{*}\right) G\right) \in \mathcal{D}(S)$ and

$$
\|(F, G)\|_{\mathcal{E}(\Phi)}=\frac{1}{\sqrt{2}} \|\left((I+S) F,-\left(I+S^{*}\right) G \|_{\mathcal{D}(S)}\right.
$$

Proof. Let $(F, G) \in \mathcal{E}(\Phi)$ and $G=\sum_{k=0}^{\infty} \mathbf{g}_{k} \gamma^{k}$. For $\mathbf{c} \in \mathbf{K}_{2}$,

$$
M_{S}^{*}\left(\bar{c}^{k}\right)=\sum_{j=0}^{k} \bar{\gamma}^{j} \mathbf{s}_{k-j}^{(j) *} \mathbf{c}^{(k)}=\sum_{j=0}^{k} \mathbf{s}_{k-j}^{*} \mathbf{c}^{(k-j)} \bar{\gamma}^{j} .
$$

So we have $S^{*} G=\sum_{k=0}^{\infty} \mathbf{p}_{k} \gamma^{k}$ and

$$
M_{S}^{*}\left(\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right)=\mathbf{p}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{p}_{n-1},
$$

where $\mathbf{p}_{k}=\sum_{j=0}^{k} \mathbf{s}_{k-j}^{*} \mathbf{g}_{j}^{(k-j)}$.
Let $G_{n-1}=\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}$ and $M_{S}^{*} G_{n-1}=P_{n-1}$ for each positive
integer n. The relation (2.2) implies that

$$
(I+S)\left(F \bar{\gamma}^{n}+\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right)=(I+S)\left(F \bar{\gamma}^{n}+G_{n-1}\right) \in \mathcal{H}(S) .
$$

Hence $\left((I+S) F,-\left(I+S^{*}\right) G\right) \in \mathcal{D}(S)$ since

$$
\begin{aligned}
& (I+S) F \bar{\gamma}^{n}+S\left(G_{n-1}+P_{n-1}\right) \\
= & (I+S) F \bar{\gamma}^{n}+S\left(I+M_{S}^{*}\right) G_{n-1} \\
= & (I+S)\left(F \bar{\gamma}^{n}+G_{n-1}\right)-\left(I-S M_{S}^{*}\right) G_{n-1} \in \mathcal{H}(S) .
\end{aligned}
$$

From (3.2) and the identities

$$
\begin{aligned}
& \left\|(I+S) F \bar{\gamma}^{n}+S\left(G_{n-1}+P_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2} \\
= & \left\|(I+S)\left(F \bar{\gamma}^{n}+G_{n-1}\right)-\left(I-S M_{S}^{*}\right) G_{n-1}\right\|_{\mathcal{H}(S)}^{2} \\
= & \left\|(I+S)\left(F \bar{\gamma}^{n}+G_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2}-\left\|G_{n-1}+P_{n-1}\right\|_{\mathbf{H}_{2}}^{2},
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left\|\left((I+S) F,-\left(I+S^{*}\right) G\right)\right\|_{\mathcal{D}(S)}^{2} \\
= & \lim _{n \rightarrow \infty}\left[\left\|(I+S) F \bar{\gamma}^{n}+S\left(G_{n-1}+P_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2}+\left\|G_{n-1}+P_{n-1}\right\|_{\mathbf{H}_{2}}^{2}\right] \\
= & \lim _{n \rightarrow \infty}\left\|(I+S)\left(F \bar{\gamma}^{n}+G_{n-1}\right)\right\|_{\mathcal{H}(S)}^{2} \\
= & 2 \lim _{n \rightarrow \infty}\left\|F \bar{\gamma}^{n}+G_{n-1}\right\|_{\mathcal{L}(\Phi)}^{2} \\
= & 2\|(F, G)\|_{\mathcal{E}(\Phi)}^{2} .
\end{aligned}
$$

The space $\mathcal{E}(\Phi)$ is a Herglotz space.
Theorem 3.4. Define the linear system

$$
\left(\begin{array}{ll}
\hat{A}_{\Phi} & \hat{B}_{\Phi} \\
\hat{C}_{\Phi} & \hat{D}_{\Phi}
\end{array}\right):\binom{\mathcal{E}(\Phi)}{\mathbb{K}_{2}} \rightarrow\binom{\mathcal{E}(\Phi)}{\mathbb{K}_{2}}
$$

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1099 by

$$
\begin{aligned}
& \hat{A}_{\Phi}((F, G))=\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right) \\
& \hat{B}_{\Phi} \mathbf{k}=\left(\left(\Phi-\Phi^{\wedge}(0)\right) \mathbf{k} \gamma,\left(\Phi^{*}+\Phi^{\wedge}(0)\right) \mathbf{k}\right) \\
& \hat{C}_{\Phi}((F, G))=F^{\wedge}(0) \text { and } \hat{D}_{\Phi} \mathbf{k}=\Phi^{\wedge}(0) \mathbf{k} .
\end{aligned}
$$

Then

$$
\hat{A}_{\Phi}^{*} \hat{A}_{\Phi}=I, \quad \hat{A}_{\Phi}^{*} \hat{B}_{\Phi}=\hat{C}_{\Phi}^{*} \text { and } \hat{B}_{\Phi}^{*} \hat{B}_{\Phi}=\hat{C}_{\Phi} \hat{C}_{\Phi}^{*}=\hat{D}_{\Phi}+\hat{D}_{\Phi}^{*} .
$$

Proof. Let $(F, G) \in \mathcal{E}(\Phi)$ and $G=\sum_{k=0}^{\infty} \mathbf{g}_{k} \gamma^{k}$. Since

$$
\begin{aligned}
& F \bar{\gamma}^{n}+\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1} \\
= & \left.\left(F-F^{\wedge}(0)\right)\right) \gamma \bar{\gamma}^{n+1}+\left(F^{\wedge}(0) \bar{\gamma}^{n}+\mathbf{g}_{0} \bar{\gamma}^{n-1}+\cdots+\mathbf{g}_{n-1}\right) \\
= & \left(F \bar{\gamma}-\mathbf{g}_{0}\right) \bar{\gamma}^{n-1}+\left(\mathbf{g}_{1} \bar{\gamma}^{n-2}+\cdots+\mathbf{g}_{n-1}\right) \in \mathcal{L}(\Phi),
\end{aligned}
$$

we have

$$
\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right) \in \mathcal{E}(\Phi)
$$

and

$$
\left(F \bar{\gamma}+G^{\vee}(0),\left(G-G^{\vee}(0)\right) \bar{\gamma}\right) \in \mathcal{E}(\Phi) .
$$

Define

$$
\hat{A}_{\Phi}(F, G)=\left(\left(F-F^{\wedge}(0)\right) \gamma, G \gamma+F^{\wedge}(0)\right) .
$$

Then

$$
\hat{A}_{\Phi}^{*}(F, G)=\left(\left(F \bar{\gamma}+G^{\vee}(0)\right),\left(G-G^{\vee}(0)\right) \bar{\gamma}\right)
$$

so \hat{A}_{Φ} is isometric.
Since $\left(\left(S-S^{\wedge}(0)\right) \mathbf{k} \gamma,\left(I-S^{*} S^{\wedge}(0)\right) \mathbf{k}\right)$ and $\left(\left(I-S S^{* \vee}(0)\right) \mathbf{k},\left(S^{*}-\right.\right.$
$\left.\left.S^{* \vee}(0)\right) \mathbf{k} \bar{\gamma}\right)$ are elements of $\mathcal{D}(S)$ for $k \in \mathbb{K}_{2}$,

$$
\begin{aligned}
& \left((I+\Phi)\left(S-S^{\wedge}(0)\right)\left(I+S^{\wedge}(0)\right)^{-1} \mathbf{k} \gamma,\right. \\
& \left.-\left(I+\Phi^{*}\right)\left(I-S^{*} S^{\wedge}(0)\right)\left(I+S^{\wedge}(0)\right)^{-1} \mathbf{k}\right) \\
= & \left.\left(-\left(\Phi+\Phi^{\wedge}(0)\right) \mathbf{k} \gamma,-\left(\Phi^{*}+\Phi^{\wedge}(0)\right) \mathbf{k}\right)\right) \in \mathcal{E}(\Phi)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left((I+\Phi)\left(I-S S^{* \vee}(0)\right)\left(I+S^{* \vee}(0)\right)^{-1} \mathbf{k},\right. \\
& \left.-(I+\Phi)^{*}\left(S^{*}-S^{* \vee}(0)\right)\left(I+S^{* \vee}(0)\right)^{-1} \mathbf{k} \bar{\gamma}\right) \\
= & \left(\left(\Phi+\Phi^{* \vee}(0)\right) \mathbf{k},\left(\Phi^{*}-\Phi^{* \vee}(0) \mathbf{k} \bar{\gamma}\right) \in \mathcal{E}(\Phi) .\right.
\end{aligned}
$$

Define

$$
\hat{B}_{\Phi} \mathbf{k}=\left(\left(\Phi-\Phi^{\wedge}(0)\right) \mathbf{k} \gamma,\left(\Phi^{*}+\Phi^{\wedge}(0)\right) \mathbf{k}\right)
$$

and

$$
\hat{C}_{\Phi}^{*} \mathbf{k}=\left(\left(\Phi+\Phi^{* \vee}(0)\right) \mathbf{k},\left(\Phi^{*}-\Phi^{* \vee}(0)\right) \mathbf{k} \bar{\gamma}\right) .
$$

Then $\hat{B}_{\Phi}^{*}(F, G)=G^{\vee}(0)$ and $\hat{C}_{\Phi}(F, G)=F^{\wedge}(0)$. Hence we have $\hat{A}_{\Phi}^{*} \hat{B}_{\Phi}$ $=\hat{C}_{\Phi}^{*}$ and $\hat{B}_{\Phi}^{*} \hat{B}_{\Phi}=\hat{C}_{\Phi} \hat{C}_{\Phi}^{*}=\hat{D}_{\Phi}+\hat{D}_{\Phi}^{*}$.

References

[1] D. Alpay, H. Attia and D. Volok, Realization theorems for stationary multiscale systems, Linear Algebra Appl. 412 (2006), 326-347.
[2] D. Alpay, A. Dijksma and Y. Peretz Nonstationary analogs of the Herglotz representation theorem: the discrete case, J. Funct. Anal. 166 (1999), 85-129.
[3] D. Alpay and D. Volok, Point evaluation and Hardy space of a homogeneous tree, Integral Equations Operator Theory 53 (2005), 1-22.
[4] M. Basseville, A. Berveniste and A. Willsky, Multiscale statistical signal processing, Res. Notes Appl. Math 20 (1992), 352-367.

The Herglotz Space Associated with the de Branges-Rovnyak Space ... 1101
[5] L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Application in Quantum Mechanics, John Wiley \& Sons, Inc., 1966, pp. 295-392.
[6] M. Yang, The extended space of a stationary multiscale system, Far East J. Math. Sci. (FJMS) 83(2) (2013), 167-183.
[7] M. Yang, The Herglotz space associated with the state space of a multiscale system, Far East J. Math. Sci. (FJMS) 93(2) (2014), 211-227.

[^0]: Received: June 23, 2015; Revised: August 11, 2015; Accepted: August 22, 2015
 2010 Mathematics Subject Classification: 93B28.
 Keywords and phrases: multiscale system, de Branges-Rovnyak space.
 This research was supported by Incheon National University Research Grant in 2013.
 Communicated by K. K. Azad

