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Abstract 

A complete analysis is presented for the nonlinear pendulum covering 
the low, medium and high regimes of the pendulum motion. In 
addition, the behavior of the pendulum velocity, potential and kinetic 
energies is investigated in all regimes. Numerical integration in the 
form of Gaussian quadrature with 9 quadrature points proved 
sufficient in solving the elliptic integral of the first kind which 
represents the behavior of the nonlinear pendulum. Also, the power 
series solution is calculated here for all regimes and used as the exact 
solution for comparison purposes. A regression based equation for the 
period in the low and medium regimes is given in terms of the 
amplitude and length of the pendulum. The equation was successfully 
used to calculate the gravitational acceleration in terms of the 
measured values of the pendulum length, period and amplitude. 
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1. Introduction 

Pendulums have played an important role in physics, mathematics and 
engineering. A pendulum is a rigid body suspended from a fixed point 
(hinge) which is offset with respect to the body’s center of mass. If all the 
mass is assumed to be concentrated at a point, we obtain the idealized simple 
pendulum. The simple pendulum is an idealized model for the real pendulum, 
consisting of a rod of length L and a bob of mass m, with the following 
assumptions: (1) The rod/string/cable is not extensible and its weight is 
negligible. (2) There is no loss of energy and no friction and (3) The motion 
is under the gravitational field and takes place in a vertical plane. 

 

Figure 1. Schematic of the pendulum. 

The angular displacement of the bob from the vertical line is represented 
by θ, Figure 1. From the law of conservation of energy, we get, Edwards and 
Penney [1]: 

 ( ) ( ),cos12
1cos1

2
2

0 θ−+




 θ=θ−= mgLdt
dmLmgLE  (1) 

where E is the total energy, m is the mass of pendulum, g is the acceleration 
due to gravity, L is the pendulum length, 0θ  is amplitude or the maximum 

angular displacement at time zero measured from the vertical line, and θ is 
the angle at time t. The first term on the right hand side of equation (1) is the 
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kinetic energy and the second term is the potential energy. We measure         
the potential energy in such a way that when ,0=θ  the potential is equal           

to zero. We assume that π<θ< 00  such that the pendulum does not go 

around the pivot and bob is never directly above the pivot. The interval from 
0 to π can be divided into the following three regimes: 

Small regime: 150 0 ≤θ<  

Medium regime: 9015 0 ≤θ<  

High regime: .18090 0 <θ<  

By equating the forces acting on the bob, we have the following differential 
equation: 

 .0sin2

2
=θ+θ

L
g

dt
d  (2) 

In a usual course of physics or calculus, θ is assumed small and .sin θ≈θ  

Edwards and Penney [1] stated that sin θ and θ agree to two decimal digits 

when θ  is at most 12π  (that is less than .)15  This gives the linear model 

or the simple harmonic motion model as: 

 .02

2
=θ+θ

L
g

dt
d  (3) 

Straightforward solution of equation (3) yields the well-known cosine 
function solution as 

 .cos0 






θ=θ tL
g  (4) 

The period of oscillation of the linear pendulum, ,0T  can be found from 

equation (4) as: 

 .20 g
LT π=  (5) 
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Students of physics in colleges and universities are often taught the simple 
pendulum motion as a simple harmonic motion in that case the amplitude of 

the pendulum should be less than ,15  Giancoli [2]. As seen in equation (5), 
the period of the simple pendulum depends only on the length of pendulum. 
Students’ scientific curiosity requires knowing the period and profile motion 
beyond this limit of low amplitudes. In addition, velocity of the pendulum 
bob, potential and kinetic energies transformations are usually not addressed 
in standard physics text books. In this paper, a complete analysis is given of 

the simple pendulum for amplitudes up to 180  (the medium and high 
regimes). To analyze the pendulum in all regimes, the nonlinear equation (1) 
is rewritten as 

 ( ),coscos2
0θ−θ±=θ

L
g

dt
d  (6) 

where + (-) sign is for counter-clockwise (clockwise) motion, Lima and Arun 
[3]. They integrated dtdθ  from 0θ  to 0 (thus choosing the negative sign in 

equation (6)) which corresponds to a time equal to one quarter of the exact 
period T yielding: 

 
( )

.
coscos

122 0

0 0
∫
θ

θ
θ−θ

= dg
LT  (7) 

The definite integral in equation (7) cannot be solved analytically and it is an 
improper integral as it has a vertical asymptote at .0θ=θ  Edwards and 

Penney [1], Lima and Arun [3] and Benacka [4] are among others who in 

order to circumvent this difficulty substituted ( )2sin21cos 2 θ−=θ  while 

making a change of variables given implicitly by ( ) ( ).2sin2sinsin 0θθ=ϕ  

In this way, equation (7) becomes 

 
( )

,
sin1

14
2

0 22∫
π

ϕ
ϕ−

= d
kg

LT  (8) 

where ( ).2sin 0θ=k  The definite integral in equation (8) is the complete 
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elliptic integral of the first kind, which is not improper because 1<k  for 
.0 π<θ  Now different approaches have dealt with evaluating the complete 

elliptic integral of the first kind in equation (8) as in the following. 

2. Previous Work 

Edwards and Penney [1], Fulcher and Davis [5] and Benacka [6] gave the 
power series solution to the pendulum equation, equation (8), as follows: 

 







+





+





+
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2
11 kkkTT  (9) 

for the period T of the nonlinear pendulum released from rest with initial 
angle 0θ  in terms of the linear period 0T  given in equation (5) and 

( ).2sin 0θ=k  The same equation was used by Benacka [4] and Benacka [6] 

for amplitudes between 0° and 90°. Benacka [6] used spread sheet 
capabilities for evaluating the terms in the series appearing in the brackets of 
equation (9) and the first 12 terms were sufficient for relative error 0.1% and 
amplitudes up to 90°. The same solution (graph) was also obtained by 
Benacka [4] using numerical integration in the form of the trapezoidal rule. 
The number of subintervals in the trapezoidal rule was less than 170. Qureshi 
et al. [7] used a generalized hypergeometric function to solve the problem 
exactly. Their analysis is presented for maximum amplitude of 90°. They 
reported that their hypergeometric functions are intended for graduate 
students who are familiar with hypergeometric functions. 

Several approximations were made for either integrating the elliptic 
integral equation or considering few terms of the power series solution as         
in the following. A perturbation analysis with second-order approximation 
found by Bernoulli in 1749 was applied to equation (8) yielded the most 
famous formula, Smith [8], for the large angle period as: 

 .161
2
0

02 








 θ
+= TT  (10) 
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According to Nelson and Olsson [9], the following expression can be 
deduced: 

 ( )
( )
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Similar expression is given in pendulum (mathematics) in Wikipedia, the free 
encyclopedia [10], by expanding equation (11) up to seven terms: 
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+θ+θ+ …  (12) 

The Kidd-Fogg [11] formula has attracted much interest due its simplicity 
and is given as 

 
( )

.
2cos

1
0

0 θ
= TTKF  (13) 

Molina [12] used an interpolation-like linearization in equation (2) which 
results in 

 .sin 83

0
0

0
−








θ
θ

= TTM  (14) 

Lima and Arun [3] made linear interpolation to the function ( )ϕ− 22 sin1 k  

and obtained 

 ,1
ln

0log a
aTT

−
−=  (15) 

where ( ).2cos 0θ=a  They noted that 0ln <a  and hence 0log >T  for 

.0 π<θ  

The focus was on the calculation of the period in the low and medium 
regimes with little attention to the profile motion. To the best of the author’s 
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knowledge, no attention has been given to other important variables such as 
pendulum velocity, potential energy and kinetic energy. Moreover, the period 
and profile motion in the high regime are rarely addressed. 

In this paper, a complete analysis of the period, profile motion, velocity, 
potential energy and kinetic energy of the nonlinear pendulum is presented 
using numerical integration in the form of Gaussian quadrature technique. In 
addition, an expression is presented to calculate the gravitational acceleration 
for amplitudes in the medium regime. This analysis should be useful to 
students in physics, applied mathematics and mechanics. 

3. The Present Approach 

The elliptic integral in equation (8) for the calculation of the pendulum 
period is evaluated herein using numerical integration in terms of Gaussian 
quadrature. Gaussian quadrature, Burden and Faires [13], is applied to 
equation (8) as follows: 

 
( )

( ) ( ) ,2
024

sin1

14
2

0

1

122∫ ∫
π

−
ϕϕ−π=ϕ

ϕ−
= dFg

Ld
kg

LT  (16) 

where ( )
( )

.
sin1

1
22 ϕ−

=φ
k

F  Gauss quadrature allows equation (16) to be 

written as: 

 ( ) ( ),2
024

1
∑
=

−π=
n

i
ii xFWg

LT  (17) 

where n is the number of Gaussian quadrature points used, s’iW  are the 

weighting factors corresponding to the s’ix  which are the coordinates of 

quadrature. Thompson [14] listed the Gaussian weights and coordinates for 
,4=n  7 and 9. It should be noted that the quadrature formula is exact if the 

integrand function can be approximated by a polynomial of degree less than 
.12 −n  The profile motion is calculated from the following integral: 



Youssef I. Hafez 60 

 
( )

,,
coscos

10
00

0
∫
θ

φ
θ≤ϕ≤θ−θ

θ−θ
= dg

Lt  (18) 

where θ is any angle between 0θ  and ϕ. A FORTRAN computer code is 

written to perform the numerical integrations needed in equation (17) and 
equation (18) using Gaussian quadrature. In equation (18), ϕ is taken in           

one degree increments, i.e., for ,150 =θ  the domain from 0θ−  to 0θ  is 

traversed 30 times in steps of one degree. In addition, velocity is calculated 
from the following equation: 

 ( ).coscos2
0θ−θ±=θ= L

gLdt
dLV  (19) 

The total, kinetic and potential energies of the pendulum at any time are 
calculated from equation (1). The length of the pendulum is taken as 1.0m 
throughout this study unless stated otherwise. 

4. Results for the Small Regime ( )15Amplitude0 ≤<  

Figure 2 shows that there is no difference between the numerical solution 
and the cosine solution for amplitudes in the small regime such as at 

.150 =θ  This shows that equations (2) and (3) can be made equivalent and 

neglecting the nonlinearity in equation (2) can be assumed. The calculated 
period is 2.01469s for amplitude equal to 15°. Table 1 shows that the 
calculated dimensionless period has a value of 0019.10 =TT  at amplitude 

equal to 10° using 4, 7 and 9 quadrature points which matches the exact 
solution obtained from equation (9). Figure 3 shows the velocity profile 
follows in this case a typical sine curve which is the derivative of the cosine 
angular displacement curve. As shown in Figure 3, the maximum velocities 
are –0.0818m/s and +0.818m/s occurring at 0=θ  with the corresponding 

times at about 0.5s ( )4Tt =  and 1.5s . ( ),43 Tt =  respectively. 
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Figure 2. Motion profile for amplitude .15=  

 

Figure 3. Velocity profile for amplitude = 15°. 

Energy transformations from potential energy to kinetic energy and vice 
versa are evident from Figure 4 where the sum of the potential and kinetic 
energies remains constant as initially assumed. Initially at 0=t  and ,0θ=θ  

the potential energy is at its maximum value and gradually decreases till it 
reaches its minimum value of zero at 0=θ  ( )s5.04 == Tt  because it has 

been transforming completely into kinetic energy. The kinetic energy on the 
other hand starts to increase from zero till it reaches its maximum value at 

0=θ  ( ).s5.04 == Tt  This energy transformation graphical representation 

is very useful to physics and applied mathematics students. 
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Figure 4. Total, potential and kinetic energies for amplitude = 15°. 

Table 1. The dimensionless period ( )0TT  from Gaussian quadrature and the 

exact solution 

0θ  

angle° 
0TT 4 quad. 

points 
0TT  7 quad.

points 
0TT  9 quad.

points 
0TT  exact solution, 

equation (9) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

1.00191 

1.00767 

1.01741 

1.03134 

1.04978 

1.07318 

1.10215 

1.13749 

1.18031 

1.00191 

1.00767 

1.01741 

1.03134 

1.04978 

1.07318 

1.10214 

1.13749 

1.18034 

1.00191 

1.00767 

1.01741 

1.03134 

1.04978 

1.07318 

1.10214 

1.13749 

1.18034 

1.0019 

1.0077 

1.0174 

1.0313 

1.0498 

1.0732 

1.1021 

1.1375 

1.1803 

5. Results for the Medium Regime ( )90Amplitudes15 ≤<  

Since most published data are for amplitudes up to 90°, comparisons are 
then made using these data with the present approach which is based on 
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numerical integration and Gaussian quadrature. Table 1 shows that the exact 
periods from equation (9) match up to four decimal digits the periods 
calculated from the present approach using numerical integration with 4, 7 
and 9 Gaussian quadrature points for amplitudes up to 90°. It should be noted 
that equation (9) was calculated independently by writing a FORTRAN code 
to sum the power series terms in the equation and the calculation coincided 
with the published ones by Edwards and Penney [1]. 

It is apparent from Table 1 that up to four decimal digits, four quadrature 
points are sufficient for matching with the exact solution. A regression 
equation using Microsoft Office Excel 2007 was constructed with the 
numerically generated calculated periods versus the pendulum amplitude 
angles in radians. The equation reads as 

 002.1016.0081.0 0
2
0

0
+θ−θ=T

T  for .20 0 π≤θ<  (20) 

Equation (20) has regression coefficient .999.02 =R  Table 2 shows the 
periods calculated from equation (20) and the relative error. The maximum 
absolute relative error is less than 0.2% at all amplitudes except at amplitude 

2π=  where it reaches 0.308%. The average value of the absolute error for 

20 0 π≤θ<  is about 0.1% which shows a very good accuracy by equation 

(20). At amplitude ,2π=  Kidd-Fogg (equation (13)) gives absolute relative 

error 0.8%, Molina (equation (14)) gives 0.4% while Lima and Arun 
(equation (15)) gives a value of about 0.25%. 

Equation (20) can be used for estimation of the gravitational acceleration, 
g (m/s2) after solving for g and rearranging to yield: 

 ( ) .002.1016.0081.02 2
0

2
0

2
+θ−θ





 π= TLg  (21) 

It should be emphasized that equation (21) is valid for 20 0 π≤θ<  and         

0θ  is expressed in radian measure. For small values of ( ),15≤θθ  the 

gravitational acceleration is usually calculated from equation (5) in the form 
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 .2 2





 π= TLg  (22) 

Table 2. The period calculated from equation (20) and its error 

0θ  angle 
(rad.) 

0θ  angle
(degrees) 

0TT  exact, 
equation (9), [1] 

0TT  

equation (20)

Relative 
error %  

0.17453 10 1.00191 1.00167 –0.023 

0.34907 20 1.00767 1.00628 –0.137 

0.52360 30 1.01741 1.01583 –0.155 

0.69813 40 1.03134 1.03031 –0.100 

0.87266 50 1.04978 1.04972 –0.006 

1.04720 60 1.07318 1.07407 +0.083 

1.22173 70 1.10214 1.10335 +0.110 

1.39626 80 1.13749 1.13757 +0.007 

1.57080 90 1.18034 1.17673 –0.306 

Benacka [4] reported that the error in calculating g using equation (22) 
passes 1% at amplitude 17° and increases afterwards to pass 25% at amplitude 
= 90°. 

The similarities and differences between equation (21) and equation (22) 
are clear. To illustrate the use of equation (21) in the calculation of g, 
consider a pendulum of length ,m0.1=L  an amplitude = 5° and a period          
= 2.0s (a roughly measured value); substituting these values in equation (21) 

yields .sm8937.9 2=g  If a more accurate value for the period (2.006s) is 

used, then 2sm8346.9=g  after substitution in equation (21). Although 

equation (21) is derived for medium amplitudes, it still yields close 

predictions compared to the commonly known value of .sm81.9 2=g  Table 

3 shows prediction of the gravitational acceleration using equation (21) and 
measured data by Lima and Arun [3] who used pendulum of length = 1.5m. 
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They used more sophisticated experiments in which both time keeping and 
position detection were done automatically to reduce the instrumental error 
to milliseconds. They gave values for 0TT  which with the help of equation 

(5) for 0T  and using m5.1=L  enables the calculation of T which is shown 

in Table 3 in the third column. 

Table 3. Prediction of the gravitational acceleration using equations (15), 
(21) and (22) 

0θ  

(deg.)  

 

Measured  

0TT  

Lima and 
Arun [3]  

Period 
(seconds) 
calculated 
from [2]  

g (m/s2)
from

equation
(21)  

% 
Relative 

error
in g from 
equation

(21)  

g (m/s2)
From

equation
(22)  

% 
Relative

error 
in g from 
equation

(22)  

g (m/s2)
From

equation
(15)  

% 
Relative 
error in 
g from 

equation 
(15)  

40 1.030 2.531 9.8161 0.06 9.2471 –5.74 9.837 0.28 

45 1.040 2.555 9.7986 –0.12 9.0699 –7.54 9.812 0.02 

50 1.049 2.577 9.8236 0.14 8.9150 –9.12 9.829 0.19 

55 1.060 2.604 9.8340 0.24 8.7311 –11.00 9.832 0.22 

60 1.070 2.629 9.8848 0.76 8.5685 –12.66 9.877 0.68 

65 1.085 2.666 9.8658 0.57 8.3329 –15.06 9.856 0.47 

70 1.100 2.703 9.8700 0.61 8.1075 –17.35 9.865 0.56 

75 1.115 2.740 9.8952 0.87 7.8906 –19.57 9.902 0.93 

80 1.130 2.776 9.9421 1.35 7.6828 –21.68 9.970 1.63 

90 1.170 2.875 9.9231 1.15 7.1663 –26.95 10.034 2.28 

It is clear from Table 3 that the error in calculating g from equation (21) 

is relatively small and is less than 1% for amplitudes 75≤  while equation 
(22) significantly under-predicts g. Equation (15) yields good predictions, 

however, it produces less accurate predictions at amplitudes 75≥  when 
compared to equation (21) predictions. Equation (21) thus allows more 
flexibility in conducting pendulum experiments for measuring the 
gravitational acceleration through allowing large amplitudes for which the 
period is considerably large and consequently the error in its measurement is 
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small. In addition, it has simple and attractive structure as compared for 
example with g calculated from equation (15). Because the gravitational 
acceleration is inversely proportional to the period (as seen from equations 
(21) and (22)), equation (21) can be used for calculation of gravitational 
accelerations in high gravitational planets, stars or asteroids where high 
amplitudes can be allowed to measure the periods more accurately. Also, in 
physics laboratory experiments for calculation of g by measuring the period 
of the pendulum, equation (21) allows large amplitudes to be considered and 
hence large measured periods which improve the accuracy. 

Figure 5 shows the calculated motion profile for amplitude .20 π=θ  

This profile coincides with that of Benacka [4] based on power series 
solution and deviates from the cosine solution. 

 

Figure 5. Pendulum motion profile for amplitude = 90°. 

Velocity calculated from equation (19) is shown in Figure 6 which has a 
shape close to a sine curve. 

The energy of the pendulum system calculated from equation (1) is 
shown in Figure 7. It can be seen that the total energy is conserved (constant) 
during the motion of the pendulum at any angle. Its value for a pendulum 
with m1=L  happens to be equal to the numerical value of g, i.e., =E  
9.81N.m.  Figure 7 shows that the sum of the potential and kinetic energies is 
exactly equal to the total energy. As before, the potential energy is converted 
to kinetic energy and vice versa. 
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Figure 6. Velocity profile for amplitude = 90°. 

 
Figure 7. Total, potential and kinetic energies for amplitude = 90°. 

In Figure 7, it is noted that the middle loop has grown in size compared 
to its left and right neighboring or adjacent loops while for small regime in 
Figure 4, the middle loop is exactly the same size as its neighboring loops. 
Thus, some change in energy transformation has begun. 

6. Results for the High Regime ( )180Amplitudes90 <<  

Figure 8 shows that the dimensionless calculated periods from the 
numerical integration using 9 quadrature points tend to increase rapidly in 

the high regime region ( ).180Amplitudes90 <<  Moreover, at amplitudes 

of 150° and above, the increase is even more rapid approaching the 
theoretically infinite value at 180°. Such behavior will affect the pendulum 
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motion profile and velocity as will be shown later. First, a trial is made to 
calculate the periods in this high regime from the power series solution, 
equation (9), as no tabulated values exist in the literature. A FORTRAN code 
was written to evaluate the terms of the series appearing in equation (9). 
With increase in the amplitude, it was noted that more terms are needed for 
the period to reach its exact value as seen in Table 4. For example, the 
second column shows that at amplitudes 160°, 170° and 179°, respectively, 
111, 308 and 2611 terms are sufficient up to an accuracy of 4 decimal digits. 
However, for amplitude of 179° and 10 decimal digits accuracy, at least 
100,000 terms are needed. The values of the period from the power series 
solution in equation (9), which can be considered as exact values, are shown 
in the last column of Table 5 up to an accuracy of 10 decimal digits. Table 5 
shows also the period calculated from the various equations listed earlier for 
amplitudes ranging from 10° to 179°. Superiority of the present numerical 
integration approach with 9 quadrature points is evident over other methods. 
A closer look to the behavior of the period for amplitudes between 170° and 
179° is shown in Table 6. It is noted that the difference between the 9-points 
numerical integration and the power series exact solution is about 1.1% 
except at 179° amplitude where it reaches about –6.1%. At amplitude of 
179°, the period is about to approach infinity and some doubt is there on any 
predictive method.  

 

Figure 8. Numerical integration (9-quad pts.) results for ( )oTT  versus 

amplitudes. 
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Figure 9 shows that equation (10) (T2) clearly underestimates the period 
in the high regime while equation (13) ( ),KFT  equation (14) ( )MT  and 

equation (15) ( )logT  overestimate the exact period. Figure 10 shows that 

equation (12) (T7) yields reasonable values up to amplitudes of 170° and that 
the seven quadrature points give also very close values to the exact solution. 
It is also clear from Table 5 that numerical integration using 9 quadrature 
points yields the same exact values for amplitudes up to 140°. At higher 
amplitudes, due to the very rapid increase in the period rate of change, 
deviations in the fifth decimal place take place. However, the numerical 
integration using 9 quadrature points still gives the best matches with the 
power series exact solution compared with other methods listed here. 

 

Figure 9. Period (in seconds) prediction by various formulas for amplitudes 
up to 179°. 
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Figure 10. Period (in seconds) prediction by various formulas for amplitudes 
up to 179°. 
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Table 4. The number of terms used in the power series in equation (11) 

Angle 
(deg) 

No. of 
terms for 
accuracy 

= 
1.0E-04 

No. of 
terms for 
accuracy 

= 
1.0E-05 

No. of
terms for 
accuracy 

= 
1.0E-06

No. of
terms for 
accuracy 

= 
1.0E-07

No. of
terms for 
accuracy 

= 
1.0E-08

No. of
terms for 
accuracy

= 
1.0E-09

No. of 
terms for 
accuracy 

= 
1.0E-10 

10 3 3 4 4 5 5 6 

20 4 4 5 5 6 7 7 

30 4 5 6 6 7 8 9 

40 5 6 7 8 9 10 11 

50 5 7 8 9 10 12 13 

60 6 8 9 11 12 14 15 

70 7 9 11 13 15 17 19 

80 8 11 13 15 18 20 23 

90 10 13 16 19 22 25 28 

100 12 16 20 24 28 32 36 

110 15 20 25 31 36 41 47 

120 19 26 33 41 48 56 63 

130 26 36 47 57 68 79 90 

140 37 53 69 86 103 120 138 

150 59 87 116 146 176 207 238 

160 111 172 237 304 372 442 512 

170 308 537 789 1053 1325 1602 1882 

179 2611 12391 30709 53624 78804 100000 100000 



Youssef I. Hafez 72 

Table 5. Period ( )0TT  prediction by various formulas with amplitudes up to 

179° 

Amplitude 
(deg) 

T2, 
equation 

(10) 

T7, 
equation 

(12) 

TKF, 
equation

(13) 

TM, 
equation

(14) 

T_log,
equation

(15) 

T7 
QPTS 

T9 
QPTS 

T exact, 
equation 

(9) 

10 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 

20 1.00761 1.00767 1.00768 1.00768 1.00767 1.00767 1.00767 1.00767 

30 1.01713 1.01741 1.01748 1.01744 1.01743 1.01741 1.01741 1.01741 

40 1.03046 1.03134 1.03159 1.03145 1.03142 1.03134 1.03134 1.03134 

50 1.04760 1.04978 1.05042 1.05008 1.04999 1.04978 1.04978 1.04978 

60 1.06854 1.07318 1.07457 1.07383 1.07364 1.07318 1.07318 1.07318 

70 1.09329 1.10214 1.10489 1.10343 1.10306 1.10214 1.10214 1.10214 

80 1.12185 1.13749 1.14254 1.13987 1.13917 1.13749 1.13749 1.13749 

90 1.15421 1.18033 1.18921 1.18452 1.18327 1.18034 1.18034 1.18034 

100 1.19038 1.23220 1.24728 1.23936 1.23719 1.23223 1.23223 1.23223 

110 1.23037 1.29520 1.32039 1.30724 1.30355 1.29534 1.29534 1.29534 

120 1.27415 1.37236 1.41421 1.39259 1.38629 1.37288 1.37288 1.37288 

130 1.32175 1.46803 1.53824 1.50258 1.49171 1.46982 1.46981 1.46982 

140 1.37315 1.58857 1.70991 1.64997 1.63057 1.59446 1.59445 1.59445 

150 1.42836 1.74344 1.96563 1.86047 1.82361 1.76210 1.76222 1.76220 

160 1.48739 1.94673 2.39974 2.19775 2.11862 2.00663 2.00747 2.00750 

170 1.55022 2.21949 3.38728 2.89898 2.67302 2.44815 2.43853 2.43936 

179 1.61001 2.55011 10.70480 6.99564 4.78312 3.41716 3.66321 3.90104 
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Table 6. Prediction of period (seconds) for pendulum ( )m0.1=L  with 

amplitudes from 170° to 179° 

Amplitude 
(deg)  

 

9-Gauss-points 
solution 

T-9-QPTS  

Power series solution
T (exact), equation (9)

% Difference 

 

170 4.8919 4.8935 -0.033 

171 5.0265 5.0267 –0004 

172 5.1789 5.1758 0.060 

173 5.3547 5.3451 0.180 

174 5.5618 5.5409 0.377 

175 5.8113 5.7728 0.667 

176 6.1178 6.0569 1.005 

177 6.4945 6.4236 1.103 

178 6.9334 6.9409 –0.109 

179 7.3487 7.8258 –6.097 

 

Figure 11. Motion profile for various amplitudes. 
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Figure 12. Velocity profiles for various amplitudes. 

Figure 11 shows the pendulum profile motion by numerically integrating 
equation (18) with 9 quadrature points for several amplitudes ranging from 
90° to 179°. The profiles for amplitudes from 90° up to 120° have similar 
shape with narrow trough (valley) region and short left and right edges. The 
profiles start to flatten at the left and right edges and the width of the valley 
region increases till it reaches its maximum width at 179°. The velocity 
profiles in Figure 12 exemplify these findings. The velocity profiles have the 
same nearly sine shape up to 120° amplitude. At the middle, a saddle point is 
clear at 179° amplitude which had started to grow at amplitude equal to 150°. 
Also, the nearly sine shape changes and the widths of the peaks and troughs 
are reduced in the velocity profiles for higher amplitudes such as at 170° and 
179°. 

Figure 13 exemplifies the flattening trend at amplitude = 179° in the 
energy profiles which was noted early in the profile motion and velocity 
profiles. The foregoing analysis suggests dividing further the high regime 
region into three sub-regions according to the rate of change of the      
pendulum variables in the high regime region. A mild high zone in which 

,12090 0 ≤θ<  a medium high zone in which 150120 0 ≤θ<  and a 

super high zone in which .180150 0 <θ<  Further research is needed in 

this area especially experimental work.  
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Figure 13. Total, potential and kinetic energies for amplitude = 179°. 

7. Conclusions 

It has been shown herein that computational methods such as numerical 
integration are very useful in analyzing physical phenomenon such as the 
motion of the nonlinear pendulum. The numerical integration approach    
with 9 Gaussian quadrature points proved successful in predicting the period, 
motion profile, velocity, potential energy and kinetic energy profiles for 
amplitudes in the low, medium and high regimes. The present study profile 
motion at amplitude equal to 90° is identical to the published results of the 
exact solution. The present study yields period predictions identical to values 
obtained from the power series solution calculated exactly for amplitudes up 
to 170°. In the high regime significant transformations of the profile motion, 
velocity, potential energy and kinetic energy profiles take place compared 
with the low and medium regimes. A regression based equation successfully 
predicts the acceleration of gravity for amplitudes in the medium regime. 
This equation can be used in physics laboratory experiments for more 
accurate determination of the gravitational acceleration by allowing longer 
periods to be measured. The presentation of the pendulum important 
variables such as period, profile motion, velocity, potential and kinetic 
energy not only for the low regime but also for the medium and high regimes 
adds to the understanding of the physics of the simple pendulum motion            
in its linear and nonlinear phases. It is hoped that this complete analysis            
of the nonlinear pendulum will benefit mathematics’ and physics’ college, 
university students and researchers too. 
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