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Abstract

In this paper, by relaxing the triangular condition in a non-
Archimedean fuzzy metric space further, a notion of an a-non-
Archimedean fuzzy metric space is introduced and some of its
properties are investigated. Existence of fixed point results of ¥ -
contraction self map in a complete a-non-Archimedean fuzzy space is
proved.

1. Introduction

In 1975, Kramosil and Michalek [7] introduced the celebrated notion
of a fuzzy metric space, which can be considered as a generalization of
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the statistical (probabilistic) metric space (see [17]). Obviously, their work
provides a fundamental basis for the construction of fixed point theory in

fuzzy metric spaces.

In 1988, Grabiec [3] defined the completeness of the fuzzy metric
space introduced by Kramosil and Michalek known as G-complete fuzzy
metric space in order to extend the Banach’s contraction theorem to G-
complete fuzzy metric spaces. Following Grabiec’s work, Fang [1] further
established some new fixed point theorems for contractive type mappings in
G-complete fuzzy metric spaces. Soon after, Mishra et al. [14] also obtained
several common fixed point theorems for asymptotically commuting maps in
the same space, which generalize several fixed point theorems in metric,

Menger, fuzzy and uniform spaces.

Besides these works based on the G-complete fuzzy metric space,
George and Veeramani [2] modified the definition of fuzzy metric space
introduced by Kramosil and Michalek and defined a Hausdorff and first
countable topology. Meanwhile, they introduced an alternative notion of the
Cauchy sequence introduced by Grabiec [3]. Since then, the notion of a
complete fuzzy metric space presented by George and Veeramani has
emerged as another characterization of completeness and fixed point
theorems have also been constructed on the basis of this metric space.

In 2013, Rano and Bag in [16] proved some fixed point results in
dislocated quasi-fuzzy metric space in a sense of Kramosil and Michalek in
[7]. Following Radu’s remark in [15], Mihet in [11] introduced the collection
of fuzzy sets in unit interval, / = [0, 1] to prove some fixed point theorems
in a non-Archimedean fuzzy metric space answering partially the questions
forwarded by Grogeri and Sapena in [4].

From the above analysis, we can see that there are many studies related
to fixed point theory based on the above two kinds of complete fuzzy metric
spaces (see [4, 6, 8, 10, 12, 18-24]).

The purpose of this work is to introduce a notation of an o-non-

Archimedean fuzzy space and to investigate fixed point results of ‘¥, -
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contraction (where ¥ = set of operators) self maps in it. More importantly,
we prove the existence of fixed point results of ‘¥, -contraction self maps

with respect to a one-parameter in a complete a-non-Archimedean fuzzy
metric space.

2. Preliminaries

In this section, we review briefly the existing results.

Throughout this paper, we use the following notations: N = the set of

positive integers; R = the set of real numbers; Ny = N U {0}; given a non-

empty set X and a T:X — X: T(x)=Tx, 7l = 7, 70 = Iy and
(n—1)times

=17 =7 meor=[01], If={f:1 1\

Definition 2.1 [17]. A binary operation *: [0, 1]x[0,1] — [0, 1] is a

t-norm if * satisfies the following conditions:

(1) ax(b*c)=(a*b)*c forall a, b, c €[0, 1];

(1)) a*b=>bxa forall a, b €0, 1];

(1) a*1=a forall a [0, 1];

(Ty) a*b<cx*d, whenever a <c and b <d, a, b, c,d €0, 1].
A t-norm is continuous if it is continuous with respect to both variables.

Definition 2.2 [7]. A 3-tuple (X, D, *) is said to be a fuzzy metric space
if X is an arbitrary non-empty set, * is a continuous #-norm and D is a fuzzy

seton X x X x [0, o) satisfying the following conditions:
(Dy) D(x, y,0)=0 forall x, y € X;
(Dy) D(x, y, t)=1 forall ¢ >0 ifand only if x = y;

(D3) D(x, y,t)=D(y, x, t) forall x, y e X and ¢ > 0;
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(Dg) D(x, y,t)* D(y, z, s) < D(x, z, t + s) for all x, y,ze X and
forall s, ¢t € (0, );

(Ds) D(x,y, .):(0,0) — (0,1] is left continuous for every fixed

x, yeX.

In 1994, George and Veeramani [2] slightly modified the notion of fuzzy

metric introduced by Kramosil and Michalek as following definition:

Definition 2.3. A 3-tuple (X, D, *) is said to be a fuzzy metric space if

X is an arbitrary non-empty set, * is a continuous #-norm and D is a fuzzy set

on X x X x (0, o) satisfying the following conditions:

(Dy) D(x, y,t)>0 forall x, y e X and forall ¢ > 0;

(Dy) D(x, y, t)=1 forall ¢ > 0 ifand only if x = y;

(D3) D(x, y, t)=D(y, x,t) forall x, y € X and ¢ > 0;

(Dg) D(x, y,t)*D(y, z, s) < D(x, z, t +s) for all x,y,ze X and
s, t € (0, o);

(Ds) D(x,y, .):(0,0)—(0,1] is continuous for every fixed
x, y e X.

The following notion of Cauchy sequence, convergent sequence, and
a complete fuzzy metric space are recorded from the work of George and

Veeramani [2].

Definition 2.4. A sequence {x,} in a fuzzy metric space (X, D, *) is

said to be
(i) Cauchy iff lim,, ,, D(x,, x,,, t) =1 for each ¢ > 0;
(ii) convergent to x € X iff lim, D(x,, x, t) =1 for each ¢ > 0.

Definition 2.5. A fuzzy metric space (X, D, *) is said to be complete iff

every Cauchy sequence is convergent in X.
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In 2008, Mihet [11] extended the notion of non-Archimedean
probabilistic metric space (see Hadzic and Pap [13]) into non-Archimedean
fuzzy metric space as following definition and proved some fixed point
results.

Definition 2.6. A 3-tuple (X, D, *) is said to be a non-Archimedean

fuzzy metric space if X is an arbitrary non-empty set, * is a continuous
t-norm and D is a fuzzy set on X x X x [0, o0) satisfying the following

conditions:

(Dy) D(x, y,0)=0 forall x, y € X;

(Dy) D(x, y,t)=1forall ¢ >0 iff x = y;

(D3) D(x, y,t)=M(y, x, t) forall x, ye X and ¢ > 0;

(Dg) D(x, y,t)*M(y, z, s) < D(x, z, max(t + 5)) for all x, y,ze X
and for ¢, s € (0, ©);

(Ds) D(x, y, .):(0,0) — [0, 1] is left continuous for every fixed
x, y e X.

3. An a-non-Archimedean Fuzzy Metric Space and
its Induced Topology

Now, we introduce a notion of a-non-Archimedean fuzzy metric space,
a weaken version of a non-Archimedean fuzzy metric space and discuss its
induced topology.

Definition 3.1. A 3-tuple (X, D, *) is said to be an a-non-Archimedean
Sfuzzy metric space if X # &, * is a continuous z-norm and D is a fuzzy set

on X x X x [0, o) satisfying the following conditions:
(Dy) D(x, y,t)=1 forall ¢t >0 iff x = y;

(Dy) D(x, y,t)=D(y, x, t) forall x, ye X and ¢ > 0;
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(D3) there exists o > 0 such that
(i) 1> D(x, y,a)>0 forall x, ye X, x # y;
(ii) D(x, y, o) * D(y, z, &) < D(x, z, o) forall x, y, z € X;

(Dg) D(x,y,_):(0,0)—[0,1] is left continuous for every fixed
x, yeX.
In Definition 3.1, if D satisfies one more condition,

(Ds) D(x, y,0)>0 forall x, y € X,
then we call (D, X, *) a relaxed o-non-Archimedean fuzzy metric space.

Example 3.2. Every stationary fuzzy metric space (X, D, *) (for a
stationary fuzzy metric space, refer [5]) with D(x, y, t) # 0 forall x, ye X
is an a-non-Archimedean fuzzy metric space.

Example 3.3. (X, D, #) is an a-non-Archimedean fuzzy metric space,

where a * b = ab, D, X and o are as in Table 3.1.

Table 3.1. a-non-Archimedean fuzzy metric spaces

X D(x, y, t) a

0 ift=0

1 | (X, d) is any metric space { t otherwise 1
t+d(x, y)

2 X = (0, ) %ﬁ: 0,1
0 ifr=0

3 X = (0, o) {min(x, ») otherwise | %€ (0, o)
max(x, y)
Il ift>0and x =y

4 X0 t if0<¢t<1 a e (0,1)
1 ifr>1
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Definition 3.4. Let (X, D, *) be an o-non-Archimedean fuzzy metric
space. An open ball centered at x € X and radius r € (0, 1) is defined as

B(x, r,a)={y e X : D(x, y, &) > 1 —r}.

Definition 3.5. Let (X, D, *) be an a-non-Archimedean fuzzy metric
space. A subset W of X is said to be open set in (X, D, *) if for each x € W,
there exists an 7 € (0, 1[ such that B(x, r, ) = W.

Proposition 3.6. Let (X, D, *) be an a-non-Archimedean fuzzy metric

space. Every open ball is an open set.

Proof. Consider an open ball B(x, r, ¢) with center x € X, radius
re(0,1). Now, yeB(x,r, o) implies s=D(x,y,a)>1-r. Let
u € (0, 1) be such that s > 1 —u > 1 — r. Hence, there exists v € (0, 1) such
that s*v>1-u. We claim that B(y,1-v,a)c B(x,r, o). If ze€
B(y, 1 —v, a), then D(y, z, ) > v. Therefore,

D(x,z,0) 2 D(x, y,0)* D(y, z,0) 2 s*v>21l—-u>1-r
and so ze B(x,r,a) and B(y, 1 —v, a) < B(x, r, o). O
The family of subsets of X given by
t={4 c X : x e A iff there exists r € (0, 1) such that B(x, r, a) = 4}

is a topology on X induced by an a-non-Archimedean fuzzy metric space.

Proposition 3.7. Every a-non-Archimedean fuzzy metric space (X, D, *)

is Hausdorff.

Proof. If x, y € X with x # y, then D(x, y, a) = r € (0, 1).

Let » <s <1 and u € (0, 1) be such that u *u > 5. Consider the open

balls B(x, 1 —u, o) and B(y, 1 — u, ).

We claim that B(x, 1 —u, o) N B(y, | —u, a) = <.
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For if we assume that z € B(x, | —u, a) () B(y, 1 — u, a), then we get a

contradiction
r>D(x,z,a)*D(y, z,0) > u*u>s>r.

Therefore, B(x, 1 —u, o) N B(y, 1 —u, o) = &. O

Definition 3.8. A sequence {x,} in an a-non-Archimedean fuzzy metric
space (X, D, *) is convergent to x € X if given r € (0, 1), there exists

ng € N such that x,, € B(x, r, o) forall n > ny.

Proposition 3.9. 4 sequence {x,} in an o-non-Archimedean fuzzy metric
space (X, D, *) is convergent to x € X if and only if lim, D(x,,, x, o) = 1.
Proof. If lim, x,, = x, then for r € (0, 1), there exists ny € N such that
x, € B(x, r, a) for all n > ny. It follows that D(x,, x, a) >1—r and
hence lim, D(x,, x, a) = 1. Conversely, if lim, D(x,, x, o) =1, then for
r € (0, 1), there exists ny € N such that D(x,,, x, t) > 1 —r forall n > ny.

Thus, x, € B(x, r, t) forall n > nj and hence lim,, x,, = x. O

Proposition 3.10. Let {x,} be a sequence in an o-non-Archimedean
fuzzy metric space (X, D, *). If {x,} is convergent in X, then its limit is
unique.

Proof. Suppose x, y € X with x # y and lim, x,, = x. Since (X, D, *)
is a Hausdorff space, there exist ry, so € (0, 1) such that B(x, ry, o)
B(y, 59, a) = &. Since lim,, x,, = x, there exists n(ry) € N such that x,, €
B(x, ry, o) for all n > n(ry). Consequently, x, ¢ B(y, sg, o) for all n >
n(ry). Thus, lim, x, # y. Therefore, the limit of sequence (x,) (if exists)

is unique. O

Definition 3.11. A sequence {x,} in a-non-Archimedean fuzzy metric
space (X, D, *) is a Cauchy sequence, if for each r € (0, 1), there exists

ny(r) € N such that x,, € B(x,,, r, a) forall n, m > ny(r).
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An a-non-Archimedean fuzzy metric space (X, D, *) is said to be

complete if every Cauchy sequence is convergent.

Definition 3.12. Let (X, D, *) be an a-non-Archimedean fuzzy metric
space. A mapping 7 : X — X is a continuous mapping if for every sequence

x, + such that lim, x, = x implies lim, Tx, = Tx.
n n n p n n

Proposition 3.13. Let X = (0, ©), a*b=ab for all a,be|0,1]. If

min(x, y)+¢

, then
max(x, y)+ ¢

D: X xXx[0,0)—[0,1] be defined by D(x, y, t)=
(X, D, *) is a complete a-non-Archimedean fuzzy metric space.

Proof. Clearly, Definition 3.1 (Dj, D, and Dy) holds. It is
straightforward to verify that 1> D(x, y,0)>0, x,ye X, x=#y and
D(x, y, 0) > D(x, z, 0) * D(z, y, 0) for all x, y e X. So, (X, D, *) is a
0-non-Archimedean fuzzy metric space. Now, we need to show that
(X, D, *) is a complete 0-non-Archimedean fuzzy metric space. If {x,} is a
Cauchy sequence in (X, D, *), then given r € (0, 1), there exists ny e N
such that

D(x,,, x,;, 0) > 1—r forall n, m > ny. (3.1

min(x,,, x,,)

>1- \v
max(x,, X,,) oo Vi,

But D(x,, x,,, 0) >1—r for all n,m>ny =

|xn_xm|

> —n "~ ml_
== max(xn, xm)

<r, Vn,m2ny = lim, ,|x, —x,|=0. Thus, {x,}

is a Cauchy sequence in (¥ = [0, «), |-|), where |-| is a usual metric on R

restricted to ¥ = [0, ). Since (Y, |-|) is complete, lim, x, = x € Y.

Claim. x #0. For if x=0, then (since {x,} < (0, o)) there

exists a decreasing sub-sequence {xnj} of {x,} such lim,, . x, =0 and

D(xnj, Xp» 0)>1=r, Vnj;, n; 2mn 2ny, where ng is as in (3.1). In

0

particular (fixing n; ), D(xn/,, gy 0)>1-r, Vnj, n 2n

S .
o = No- Since
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{xnj} is decreasing, 1imnj Xy, = 0 and D(xnj, X o 0)>1-r, Yn;, n 2

Xy .
n;, 2 ng, we get a contradiction 0 = limn j( / } >1—r. Hence, the claim.

nio
Thus, every Cauchy sequence {x,} in (x, D, *) is convergent in X.

Therefore, (X, D, *) is a complete 0-non-Archimedean fuzzy metric space.[]

Remark 3.14. (X, D, *) in Proposition 3.13 is 1-non-Archimedean fuzzy

metric space but not complete 1-Archimedean fuzzy space.

4. Fixed Point Results of ‘¥, -contraction Self Maps in

o-non-Archimedean Fuzzy Metric Spaces
In this section, we present some fixed point results of ‘¥, -contraction
self mapping in a-non-Archimedean fuzzy metric spaces.

First we define a collection of fuzzy sets in [/ =[0.1] comparison

mappings, similar to that of Mihet’s in [11].

Definition 4.1. Let y :[0,1] - [0,1] be a mapping satisfying the
following conditions:

(1) v is a non-decreasing and left continuous function;

(2) y(r) > 0 forall r > 0;

3) lim, y"l() = 1 forall » # 0.

Define W = {y e I! : y satisfies (1) to (3)}. We call every y e ¥ a
WY-mapping.

Example 4.2. Let k e(0,1) be arbitrarily fixed. A mapping

v : [0, 1] — [0, 1] defined by y(r) = m is a P-mapping.

Lemma43.If F € ¥, then F(1) =1 and F(r) > r forall r € (0, 1).
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Proof. If F ey and r € (0, 1] are arbitrary, then F(r) <1 (since
F([0,1]) = [0,1]) and F(r) < F(1) (since F is non-decreasing). Therefore,

F(r)sF)<l= F[z](r) < F[z](l) < F(1)<1. Repeating the same procedure,
we obtain that F["](r) < F()<1 for all n e N. Thus, 1= lim, F[”](r) <
F(1)<1. That is, F(1)=1. Similarly, if y(r) < r for some r € (0, 1),
then we get a contradiction 1 = lim,, w["](r) <r. Thus, F(r)>r for all
r e (0,1). O

Definition 4.4. Let (X, D, *) be a fuzzy metric space. A self mapping
T:X — X issaid to be

(1) a ¥, -contraction if there exists an o € (0, ) and a v € ¥ such

that

D(Tx, Ty, o) > y(D(x, y, a)), Vx,y e X; (4.1)

(2) a weak W, -contraction if there exists an o € (0, ©) and a y € ¥

such that
DTy, Tx, o) = w(D(Tx, x, @), Vx e X; (4.2)
(3) a Y-contraction if there exists ¢y € ¥ such that
D(Tx, Ty, t) > y(D(x, y, t)), Vx, y € X and foreach r >0; (4.3)
(4) a weak Y-contraction if there exists ¢y € ¥ such that
D(T[z]x, Tx, t) > y(D(Tx, x, t)), Vx € X foreach ¢ > 0. (4.4)

Definition 4.5. A sequence {x,} in fuzzy metric space (X, D, *) is said
to be

(1) a W-contraction sequence in X if there exists y € ¥ such that

D(x,11> Xp42> 1) = W(D(x,, X,41, 1)) forall n e Ny, ¢t >0; (4.5)
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(2) a W, -contraction sequence in X if there exist an o € (0, ) and a

v € ¥ such that
D(x,,41> X142, 00) = Ww(D(x,, x,41, @) forall n e Ny, £ >0. (4.6)

Lemma 4.6. Let (X, D, *) be an a-non-Archimedean fuzzy metric space.
If {x,} © X is a ¥, -contraction sequence in X with respect to y € P, then

{x,,} is a Cauchy sequence.

Proof. If {x,} is a ¥, -contraction sequence with respect to y € P,
then (4.6) holds and

D(x, x5, o) = y(D(xp, x1, &)

D(xy, x3, @) > w(D(xy, %3, @) > wH(D(xg, 1, @)

D41 512 @) = WD (g, 31, ). 4.7
From (4.7) and the property of v € ¥, we have

lim,, D(x,,,1, X,42, &) = lim,, \y[”](D(xO, xp, o)) =1.
Similarly, lim, D(x,,,2, x,43, p) = 1. Thatis,

lim D(x,,, x,,1, o) = 1. (4.8)
n

We claim {x,} is a Cauchy sequence.

If {x,} is not a Cauchy sequence, then given k € N and for each / € N

with [ > k, there exist m(l), n(l) € N such that
m(l) 2 n(l) 2 1 and D(x,(1), X,(7)» @) <1 =71 forsome r € (0, 1).
By (4.8), lim; D(x,(;), Xu(7)+1> @) = 1. From

L= 72 D(Xp(1)s Xu(1)> &) Z D(Xpu(1)s Xn(1)41> &) * D(Xp(1)115 Xn(1)> O),s
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we get
1= 7 2 limsup;{D(x,y(7), Xp(1)415 &) * D(Xp(1)415 Xn(r)s )}
2 limsup; D(X,,(7)> Xp(1)11> O)-
Similarly,
1= 7 2 limsup; D(Xy(1)415 Xn(1)> )
and
L= r 2 limsup; D(Xp(1)415 Xn(1)+15 O)-

Without loss of generality, assume that m(/) is odd and n(!) is even for all /

and 1 =7 > D), Xu(), p) forall L
Put
(1) = minm(1) : 1= 7 > D), %y P) m(0) is an 0dd number}.
Now, for &(/), we have
=7 = D(xg(1), Xu(1)> @) = D(xe(1)-25 Xn(1)> P)* D(Xg(1)-25 Xg(1)s )
2 D(Xg(1)-2> Xn(1)s &) * D(Xg()-2, Xg(1)-1> P) * D(xe(1)-1> Xe(1)> @)
2 (1= r) * D(xg(1)-25 Xe(1)-1> &) * D(xe(1)-1> Xe(1) )
—>1l-ral—w

Thus,

hlmD(xs(l)f Xn(1)> f)=1-r. (4.9)
Using Definition 3.1, we have
D(xg(1)> Xp(1)> @)

2 D(Xg(1)41> Xn(1)s &) * D(Xg(1)415 Xg(1)» ©)
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2 D(Xg(1)415 Xn(1)+15 &) * D(Vu(r)s15 Xn(1)> &) * D(xe(1)115 Xe(7)> )
2 W(D(xg(1)s Xn (1) &) * D(Xp(1)415 Xn(1)s &) * D(Xg(1)415 Xg(1)s O)-

By letting / — o in (4.10) and using (4.8), (4.9), continuity of * and the

properties of y € ¥, we get a contradiction 1—r > y(1—r)>1-r. Hence,

x, { 1s a Cauchy sequence. O
X0} y seq

Lemma 4.7. Let (X, D, *) be an a-non-Archimedean fuzzy metric space
and let T be a (weak) Y, -contraction mapping with respect to y € Y.
For each xy € X, a sequence {x, :x, =T ["]xo} is a Cauchy sequence in

(X, D, *).

Proof. (I) Assume that T"is a ‘¥, -contraction mapping with respect to a
v e V. Let xy € X be arbitrary and let {x, : n € Ny} be as stated in the
lemma. By (4.1), D(Tx, Ty, o) > w(D(x, y, a)) for all x, y € X. Hence, for

all » € N, we have
D(Xp115 Xpi2s @) = D(T[n”]xo, T['Hz]xo, )
= D(1(t"xy), 7(11"* ), @)
> w(D(T["]xo, T["+1]x0, a))
= w(D(xy, X415 @)).
Therefore, {x, : n € Ny} is a P, -contraction sequence in (X, D, *).
Hence, by Lemma 4.6, {x,, : n € Ny} is a Cauchy sequence.

(II) Assume that 7' is a weak ‘¥ -contraction mapping with respect to a
v e V. Let xy € X be arbitrary and let {x, : n € Ny} be as stated in the
lemma. By (4.2), D(T[z]x, Tx, a) = y(D(Tx, x, a)) for all x € X. Hence,

for all n € N, we have
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D(%y42, Xpi1. ) = DT g, Ty )
= D(rPhrl"y), 7(1!")x,). @)
> (DT (1"xo), TV, @)
= W(D(xyi15 Xy, ).
Therefore, {x, : n € Ny} is a P, -contraction sequence in (X, D, *).
Hence, by Lemma 4.6, {x,, : n € Ny} is a Cauchy sequence. O

Theorem 4.8. Let (X, D, *) be a complete o-non-Archimedean fuzzy
metric space. If T : X — X is a W, -contraction mapping with respect to

v € W, then T has a unique fixed point.
Proof. Let xy € X be arbitrary and let {x, : x, =T [”]xo, n e N}. By
Lemma 4.7, {x, :x, = T["]xo, neN} is a Cauchy sequence in (X, D, *).

Since (X, D, *) is a complete o-non-Archimedean fuzzy metric space,

lim, x,, =z € X.

Now, we claim z € Fix(T)={y € X : Ty = y}. Indeed, since (X, D, *)
is an o-non-Archimedean fuzzy metric space and 7 is a ‘¥ -contraction

mapping, we have
D(z, Tz, o) > D(z, Tx,, o) * D(Tx,, Tz, o)
> D(z, Tx,, o) * y(D(x,, z, o))
= D(z, x,41, o) * y(D(xy, 2, ).
By continuity of * and left continuity of y, we conclude that
D(z, Tz, o) = lim, {D(z, x,,,1, o) * y(D(x,, z, o))}

=1= D(z, Iz, a) = 1.



82 Gebru Gebray and B. Krishna Reddy

Since D(x, y, a) # 1 for all x # y by Definition 3.1 (Ds(i)), we conclude
that 7z = z.

Finally, we shall show uniqueness of a fixed point of T.

Suppose z,we Fix(T). If w # z, then by Definition 3.1 (Ds(i)),
1 > D(w, z, a) > 0. Therefore, by Definition 4.1(1) and Lemma 4.3, we get

a contradiction

D(w, z, a) = D(Tz, Tw, o) > y(D(z, w, a)) > D(w, z, o).
Therefore, T has a unique fixed point. O

Corollary 4.9. Let (X, D, *) be a complete non-Archimedean fuzzy
metric space such that 1> D(x, y, a) > 0 for some o € (0, ©) and for
x,yeX,x#y. If T: X — X is a Y-contraction mapping with respect
to y € Y, then T has a unique fixed point.

Proof. Let o € (0, ) be as stated in the theorem. Since D(x, y, t) is
non-Archimedean, D(x, y, t) > D(x, z, t)* D(z, y,t) forall x, y,ze X
and for all ¢ > 0. Consequently, D(x, y, a) > D(x, z, a) * D(x, y, o) for
all x, y, z e X. Hence, (X, D, *) is a complete o-non-Archimedean space.

Therefore, the result follows by Theorem 4.8. O

By relaxing the contractive conditions imposed by Gregori and Sapena
[4], we obtain the following corollary:

Corollary 4.10. Let (X, D, *) be a complete fuzzy metric space and let
T:X — X be a mapping. If there exist o € (0, ©) and k € (0, 1) such
that

0<D(x,y,a)<1 forall x,ye X, x#y, (4.11)

D(x, y, o) > D(x, z, o) * D(z, y, o), Vx, y,ze X, (4.12)
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1 1
— 1< - - @ _
DI, o) = k( P ERR) 1} Vr,y,ze X,  (413)

then T has a unique fixed point.

Proof. Since a complete fuzzy metric space satisfying (4.11) and (4.12)
is an a-non-Archimedean fuzzy metric space, it suffices to prove that 7' is a

Y, -contraction mapping. Observe that (4.13) can be rewritten as

D(x, y, a)

>
Vx, ye X, D(Tx, Ty, a) > k+(0-k)D(x, y, a)’

(4.14)

Now, define y : [0, 1] — [0, 1] by y(r) = , where k € (0, 1)

_r
k+(1-k)r
is as in (4.14). Thus, (4.14) becomes that Vx, y € X,
D(Tx, Ty, o) > y(D(x, y, au)).
Hence, T'is a ¥, -contraction mapping with respect to y € ¥. Therefore, by

Theorem 4.8, T has a unique fixed point. O

Corollary 4.11. Let (X, D, *) be a complete fuzzy metric space and let
T:X — X be a W-contraction mapping. If there exists o € (0, o) such
that

1>D(x,y,a)>0, Vx,yelX, x=#y
and
D(x, y, o) > D(x, y, @) * D(z, y, o)
forall x, y, z € X, then T has a unique fixed point.
Proof. A complete fuzzy metric space (X, D, *) with
1>D(x,y,a)>0, Vx,yelX, x#y
and

D(x, y, @) 2 D(x, y, ) * D(z, y, a)
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for all x, y, z € X is a complete a-non-Archimedean fuzzy metric space.

Hence, the result follows by Theorem 4.8. g

Theorem 4.12. If (X, D, *) is a complete a-non-Archimedean fuzzy
metric space, then every continuous weak ¥ -contraction self mapping has

a fixed point.

Proof. Let T be a continuous weak ‘P, -contraction self mapping of
X with respect to y. If xy € X is an arbitrary point, then a sequence
{x, :x,=T [n]xo, n e N} is a Cauchy sequence (by Lemma 4.7). Since
(X, D, *) is a complete o-non-Archimedean fuzzy metric space, lim,, x,, =

ze X.

Now, we claim z e Fix(T)={y € X : Ty = y}. Indeed, since (X, D, *)
is an a-non-Archimedean fuzzy metric space and 7 is continuous for all

n € Ny, we have
D(z, Tz, t) > D(z, x,,1, &) * D(x,,41, Tz, o)
= D(z, x,,1, @) * D(Tx,, Tz, o).
That is, D(z, Tz, o) > lim,{D(z, x,,,1, &) * D(Tx,,, Tz, o)} = 1.
Thus, Tz = z. L]

Now we provide examples that support our results.

Example 4.13. Let X =(0,0), a*b=ab, Va, bel0,1] and

) _ min(x, y)+¢
D: X x X x[0,0)— (0, 1] be defined by D(x, y, t) = max(x )
mapping 7 : X — X defined by 7x = Vx hasa unique fixed point.

Proof. By Proposition 3.13, (X, D, *) is a complete 0-non-Archimedean

fuzzy metric space. So, it suffices to show that 7T"is a ¥, -contraction mapping

for some y € V. Define vy :[0,1] > [0,1] by w(¢) = vt. Now, for all



Fixed Point Results of W, -contraction Self Maps ... 85

x, y € X, we have

B min(«/;, \/;) _ Jmin(x, ) [min(x, y)
DT 7, 0) = max(vVx, \[y)  Jmax(x, y) \/max(x, )

= \V(D(x’ Vs O))

Therefore, T'is a ‘¥ -contraction self mapping of X. Hence, the result follows

by Theorem 4.8. O

Example 4.14. Let X =[0,1] and a *b = ab for all a, b € [0, 1]. If

D: X x X x(0,0)— (0,1] is defined by D(x, y, t) = m, then

(X, D, *) is a complete fuzzy metric space and a mapping 7 : X — X

defined by
% ifxe[O, ﬂ
Tx = %—x ifxe(%,%}
0 ifxe(%,l}

has a unique fixed point.

Proof. Clearly that (X, D, *) is a complete a-non-Archimedean fuzzy

4k
3+k

metric space (with o =1). Let (k)= , ke[0,1]. Then vy is a

4"k
+ (4" -3k

k # 0. Clearly, y is increasing and y(r) > 0 for each r # 0. Therefore, y
is a W-mapping.

W-mapping. Indeed, \V[” ](k) =— = lim,, \V["](k) =1 for all
3

We can easily verify that D(T Rl 1, 1) > yw(D(Tx, x, 1)) for each
x € X. Therefore, T is a continuous weak ‘¥, -contraction mapping with

respect to . So, the result follows by Theorem 4.12. O
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5. Conclusion

In this work, we introduce the notion of o-non-Archimedean fuzzy
metric by relaxing the triangular inequality of a non-Archimedean fuzzy
metric space.

The well known fuzzy metric spaces such as (X, Dy, *) (standard fuzzy

min(x, y)+1¢

and
max(x, y)+1

metric spaces), (X, D, *) with X = (0, o), D(x, y, )=

a*b = ab, every stationary fuzzy metric spaces (X, D, *) with D(x, y,.)
# 0 for all x, y € X and every non-Archimedean fuzzy metric spaces with
1> D(x, y, o) >0 for some a € (0, ) and forall x, y € X, x # y belong
to a-non-Archimedean fuzzy metric spaces.

Introduction of an a-non-Archimedean fuzzy metric spaces enables us
to induce a topology on a given non-empty set X, using a “one-parameter”
in fuzzy settings. In turn, a convergent sequence, a Cauchy sequence and
continuity of a self map in a-non-Archimedean fuzzy space are precisely

defined as usual. Consequently, some fixed point results of a ‘¥, -contraction

self map in a-non-Archimedean fuzzy metric spaces are obtained. Since

Wy, -contraction self mapping deals with respect to one-parameter, contrary

to other W-contraction self mapping in fuzzy settings, which deal with all

parameters, our results are helpful.
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