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Abstract 

Core-collapse supernova (Type II, for example, Cassiopeia A) 
implosion and the subsequent supernova explosion due to core bounce 
were studied analytically by solving the continuity, Euler, Poisson and 
energy equations by taking the star as an “ideal gas system”. Outward 
shock propagation and inward accretion shock due to the supernova 
implosion were calculated by solving the continuity and momentum 
equations for the shell layer outside of the core with the Kirkwood-
Bethe hypothesis. The collapse time of the core-mass of 1.5M  

having radius of a 3000km to a protoneutron star with radius of 108km 
is calculated to be approximately 1.2s. The heat transport during the 
evolution turns out to depend on the macroscopic parameters such as 
gravitational potential, the mass and the collapsing and expanding 
velocity of the supernova which indicates that the heat transfer from/to 
a system is determined by the evolution process for an ideal gas 
system, and vice versa. In detail, the heat escaped from the star during 
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the collapse is about ergs109.5 51×  and the heat absorption during the 

expansion after the bounce is about ergs1052  which are comparable to 

the values obtained by detailed computation. 

1. Introduction 

It is known that the core-collapse supernova explosions enriched the 
galaxy with various elements such as oxygen, iron, calcium and silicon and 
influenced the birth of new stars and that the core-collapse supernova might 
be the source of the γ-ray burst [1]. It is also known that a supernova (Type 

II, for example, Cassiopeia A) may occur when the iron core ( )M5.1  of a 

massive progenitor star ( )M20~15  with radius of km108  collapses into 

nuclear densities. At such extreme density, the core bounces to generate a 
strong shock front and leads to launching an explosion [2]. It is well     
known that before the bounce shock, it stalls into an accretion shock so          
that neutrino-heating mechanism has been proposed [2] to revive the      
stalled shock into explosion. Based on such scenario [1], simulations of 
hydrodynamical equations coupled with neutron transport were performed to 
unveil the supernova explosion by many researchers [3-8]. An artist view of 
the scenario for the supernova explosion given in Burrows [1] is shown in 
Figure 1. 

 

(a)              (b)       (c)     (d) 

Figure 1. Artist views of evolution process for Cassiopeia A [22]: implosion 
(a), collapse (b) and subsequent core bounce (c) and explosion (d). 
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Radiation hydrodynamics code coupled with neutron transport [9] and 
sophisticated two-dimensional, time dependent, multi-group and multi-angle 
radiation hydrodynamics numerical scheme [4] were developed for the       
core-collapse supernova simulation. Buras et al. [6] used mass, momentum 
and energy equations in spherical coordinates and azimuthal symmetry in 
their hydrodynamic simulations for the core-collapse supernovae. Newtonian 
gravity term and neutrino interaction term for momentum transfer were 
included in the momentum equation. Instead of the heat flow term in the 
energy equation, neutron source terms for energy exchange were included. 

Murphy and Burrows [7] used continuity, Euler and energy equations in 
their simulation. Newtonian gravity term was included in the momentum 
equation. However, the term representing heat flow in the energy equation 
was replaced as the neutrino heating and cooling terms which are dependent 
on the electron neutrino temperature and the neutron and proton fractions. 
The closure for these hydrodynamic equations was obtained with the 
equation of state by Shen et al. [10]. 

However, the core-collapse supernova mechanism has never been studied 
by hydrodynamic equations with keeping the heat flow term in the energy 
equation, which may provide simple and quantitative theory of the supernova 
explosion. In this study, core-collapse supernova explosion was investigated 
by hydrodynamic equations based on the analytical method used for 
explosives detonation [11] with considering the star as an “ideal gas system”. 
Heat flow from the collapsing star and heat gain during the expansion 
process after explosion were obtained analytically and estimated. Also, the 
outgoing shock wave and the accretion shock due to the implosion of the 
core and the outgoing shock due to the explosion of the protoneutron star 
were studied analytically with the Kirkwood-Bethe hypothesis. 

2. Analytical Solutions for the Hydrodynamical Equations 

Exact analytic solutions of the hydrodynamical equations (continuity, 
Euler and Newtonian gravitational equations) first proposed by Sir James 
Jeans (1902) as theory of galaxy formation, were obtained to demonstrate the 
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stellar stability, spherical oscillation and gravitational collapse of Newtonian 
stars such as Sun, Jupiter and Saturn by Jun and Kwak [12]. Their previous 
studies also found that a “bound state” exists for a star with γ (specific heat 
ratio) 34>  but there is no stable “bound” state when .34<γ  This means 

that a star with 34>γ  starts to contract from its initial radius, ,maxR  until 

it reaches a minimum radius, ,minR  and then it oscillates. On the other hand, 

a star with 34<γ  will collapse. Brief summary of the previous works is as 

follows. 

The equation of continuity, the Euler equation for an irrotational fluid 
and Newtonian gravitational equation are given below, respectively, 

( ) ,0=ρ⋅∇+
∂
ρ∂ ut  (1) 

,1 φ∇−∇
ρ

−=∇⋅+
∂
∂ Puut

u  (2) 

,42 ρπ=φ∇ G  (3) 

where ρ is the density, P is the pressure, u  is the fluid velocity, ( )tr,φ  is 

gravitational potential and G is the gravitational constant. 

From the continuity equation, the following linear velocity and quadratic 
density profiles can be obtained as a lowest-order approximation. The fully 
derivations of these equations can be found in the literature [13, 14]: 

,RrRu &=  (4) 

 ( )
( ) ( )

,, 5

2

3 tR
ar

tR
btr +=ρ  (5) 

where R is the radius of star, R&  is the velocity of star and “a” and “b”            
are constants which will be identified later. The meaning of the linear 
velocity profile given in equation (4) is that a star collapses or expands 
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homologously, in other words, every mass point during the collapse or 
expansion may be traced back to a single point, the center of star. 

With the density profile given in equation (5) and the velocity u in (4), 
the gravitational potential ( )tr,φ  and the pressure ( )trP ,  can be obtained 

by solving the Poisson and Euler equations. These are in terms of ‘a’ and ‘b’ 
given as follows: 
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At the center of the star, the above equation can be arranged to the   
following after applying the boundary condition of, 0=P  and RGM−=φ  

at :Rr =  

 ( )
R

baG
R

GM
o

1
15

103 +π−−=φ  (8) 

and 

 ( ) ( ) .1
15

542
4

2
4

22

20
R

babaG
R
RbatP ++π+⎟

⎠
⎞⎜

⎝
⎛ +=

&&
 (9) 

To determine the values of “a” and “b” in equation (5), an equation of 
state for the gas inside the star is required. Excluding the viscous dissipation 
term, the energy equation with internal and enthalpy representation can be 
written as follows [13, 15]: 

 ,quPDt
DTCv ⋅∇−⋅∇−=ρ  (10) 

.qDt
DP

Dt
DTCp ⋅∇−=ρ  (11) 
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In the above equations, T is the temperature and vC  and pC  are the specific 

heats at constant-volume and constant-pressure, respectively, and q  is the 

heat flux. 

From equations (10) and (11), one can obtain the following equation by 
eliminating the term :DtDT  

 ( ) ,31 R
RP

Dt
DPq

&γ−−=⋅∇−γ  (12) 

where γ is the specific heat ratio. 

The above equation indicates that the heat transport inside the star can be 
obtained if one knows the evolution of the star without detailed mechanism 
of heat transfer, which can be possible only for the “ideal gas system”. On 

the other hand, eliminating the term, ,q⋅∇  in equations (10) and (11), one 

can obtain the temperature at the center of star in terms of the pressure at the 
center and radius: 

 ( ) ( ) ( ),3 tRtPtTbR oog =  (13) 

where gR  is the gas constant and the subscript “o” denotes the property at 

the center. 

Assuming that the “polytrope” only holds true at the center, the 
following equation can be applied: 

 .00
γκρ=P  (14) 

The assumption of the polytrope at the center is equivalent to the assumption 

that the center is neither a heat source nor a heat sink, i.e., 0=⋅∇ q  at the 

center. This assumption, of course, is not valid when nuclear reaction occurs 
inside the star. 

With the velocity, density and pressure profiles obtained given in 
equations (4), (5) and (7), one can solve the energy conservation given in 
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equations (10) and (11) with the boundary condition equation (14). These are 

,815Mba −=−=  (15) 
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where 

 .15
4
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&&

 (17) 

With the assumption of polytrope at the center and the explicit value of ‘a’ 
and ‘b’, the profiles for pressure, temperature, density and gravitational 
potential in the star can be obtained [12]. These are 

( ) ,111
15
32

32
15, 4

2

2

22

43 RR
r

R
rGM

RM
MtrP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−κ′π

π
= −γ  (18) 

( ) ,111
15
32

4
1, 2

22

43 RR
r

R
rGM

RMRtrT
g ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−κ′π= −γ  (19) 

( ) ,118
15, 32

2

RR
rMtr ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

π
=ρ  (20) 

where ( ) .815 κπ=κ′ γM  

It is noted that the above profiles for the pressure, temperature and 
density satisfy the mass, momentum and energy conservation equations and 
the equation of state for ideal gas law. The requirement that the pressure and 
temperature should be greater than zero everywhere results in the following 
constraint for :κ′  

 .15
32 43 −γ≥κ′π GMRM  (21) 

Such ideal gas model of Newtonian stars provides the upper bound value 
of Chandrasekhar mass for white dwarfs and the central densities, pressures 
and temperatures of the stars such as Sun, Jupiter and Saturn [16]. 
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3. Core-collapse Implosion: Early Supernova 

With the polytrope assumption at the center of star, the equation for the 
pressure can be reduced to the following equation of motion for the star: 

 ( ) .21
15
32

2232

2

R
GM

RMtR
dt
d −κ′π= −γ  (22) 

Thus, the continuity, Euler, Poisson and energy equations with the polytrope 
assumption only at the center can be reduced to equation (22), which can be 
solved using the standard “energy” method if equation (22) is converted into 
the following form: 

 ( ) ,2
1 2 ε=+ RVR&  (23) 

where ε is a constant and the potential ( )RV  is given by equation (24): 

 ( ) ( ) .21
145

32
33 R

GM
RMRV −

−γ
κ′π= −γ  (24) 

The solution of equation (22) and hence equation (23) can then be given by 
the elementary integral shown in equation (25): 

 
( )[ ]∫ ±=

−ε

R

R
t

RV
dR

max
,

2
 (25) 

where + and – correspond to the case of expansion and contraction, 
respectively. 

From equation (24), it is clear that there is a bound state for 34>γ  but 

there is no stable bound state for .34<γ  For collapsing star, the potential 

should be less than zero so that the constant κ′  satisfies the following 
constraint: 

 ( ) .1615
32 4343 −γ−γ −γ≤κ′π≤ GMRMGMR  (26) 

With the upper bound value of ( ) ,0, max =κ′ RV  the equation of motion for 

the collapsing star, equation (22) can be rewritten as 
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 ( ) ( ) .234 22

2

R
GMtR

dt
d γ−−=  (27) 

One can immediately obtain the following solutions for equation (27): 

,2
sin
kt ψ+ψ=  (28) 

 ( ),cos12
1

max ψ+= RR  (29) 

where 

 ( ) maxmax2 RRk ε−=  (30) 

and 

 ( ) ( ) .234 maxmax RGMR γ−−=ε  (31) 

Note that the solutions given in equations (28), (29), (30) and (31) 
coincide with those of Oppenheimer-Snyder’s [17] equations of gravitational 
collapse. This coincidence stems from their oversimplified assumption of 
uniform density and zero pressure even though they started with the general 
relativistic equations. Their general relativistic equation for the equation of 
motion for star is given by 

 .22

2

R
GM

dt
Rd −=  (32) 

Comparing equation (32) with equation (22), equation (32) has no inner 
pressure force acting against the gravitational collapse so that the star 
governed by equation (32) will collapse infinitely. 

4. Supernova Explosions 

The collapse of the core continues until the density of the core becomes 
the nuclear density. At the nuclear density, the core may explode if the inner 
pressure force term is greater than the gravitational force term in equation 
(22). This condition may be written as 
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 .
15

322
33

minmin −γ
κ′π≤

MRR
GM  (33) 

With the upper bound value of ,2 minRGM  the potential energy becomes 

 ( ) ( )
( )

( )
( ) .2

13
341

15
32

13
34

min33
min

min R
GM

RMRV
−γ
γ−=κ′π

−γ
γ−= −γ  (34) 

The potential energy given above is the total energy deposition during           
the core-collapse [2]. The equation of motion of star corresponding to this 
potential energy is given by 

 ( ) ( ) .1
15
3234 232

2

−γ
κ′πγ−=

RMtR
dt
d  (35) 

The RHS in equation (33) is always positive if γ is less than 34  so that 

equation (35) is an equation of motion for an expanding star. Consequently, 
the potential given in equation (34) may be considered as energy per unit 
mass, which is needed for the explosion of a protoneutron star. 

The solution of equation (35) can be obtained using the aforementioned 
energy method. The solution for the case of ,67=γ  which provides an 

explicit form of analytical solution for an expanding star, is given by 

,cosh4
min θ= RR  (36) 

 
( )

.2
32sinh8

4sinh
2 min

min ⎟
⎠
⎞⎜

⎝
⎛ θ+θ+θ=

RV
Rt  (37) 

The explosion velocity of the protoneutron star can be obtained from 
equations (36) and (37). That is 

 ( ) ( )
( ) .tanh2

13
34tanh2

min
min θ

−γ
γ−=θ= R

GMRVdt
dR  (38) 

The explosion velocity whose asymptotic limit is min2 RGM  generates 

strong outgoing shock. 
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5. Heat Transport Equation for the Core-collapse 
Supernova Explosions 

The heat flow from a sphere of radius R in a star during the expansion          
as well as contraction can be obtained from equation (10) with the obtained 
pressure, temperature and density profiles given in equations (18), (19) and 
(20), respectively, which is given by 

 ( )
( ) .18

15
14

34
52

22

2

2

R
R

R
r

R
rMGMq

&r
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

π−γ
γ−=⋅∇−  (39) 

The above equation which is consequence of equation (12) vanishes at 0=r  
as is assumed. During collapsing phase of the star with ,34<γ  the RHS in 

equation (39) becomes negative so that the heat flows radially outward. Thus, 
the heat flow from the whole volume of star at given time, which may be 
transported by radiation, is given by 

 ( ) ( )
( )∫ −γ

γ−=π⋅∇−
R

R
RM

R
GMdrrq

0
2 .1

34048.04
&r  (40) 

The above equation reveals that the heat flow rate is linearly dependent on 
the collapsing rate of the star when the core-mass and the specific heat ratio 
are given. The heat may radiate away by the neutrino flux, which may leave 
the star without interaction. The heat gain during the expansion phase may 
occur by the absorption of neutrinos [1]. 

To solve the heat transport equation for the supernova, given in equation 
(10), is very hard task [3-8] because one can hardly know the processes 
inside the supernova during the core-collapsing explosions. However, we  
can calculate the time rate change of heat flow from the core-collapsing 
supernova through equation (40). 

6. Shock Wave Propagations 

The rapidly collapsing of the iron core of the progenitor star may emit 
shock waves outward and inward simultaneously. The heavier mantle having 
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a specific heat ratio less than ,34  just outside the iron core, generates 

inward shock. On the other hand, the lighter layer of helium and hydrogen 
generates outgoing shock wave during the implosion. It has been confirmed 
experimentally and theoretically that the collapsing micro bubble wall with 

acceleration of 212 sm10  generates outgoing shock waves [18]. An outgoing 

strong shock wave is also formed due to the explosion of the protoneutron 
star. 

The velocity and the pressure fields in gas medium, caused by the 
detached shock waves can be obtained using the Kirkwood-Bethe hypothesis. 
This hypothesis assumes that the invariant quantity Y propagates in the 
medium with the characteristics velocity uc +  [19]: 

 ( ) .0=⎥⎦
⎤

⎢⎣
⎡

∂
∂++

∂
∂ Yruct  (41) 

The invariant Y is defined as follows: 

 ,22

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= UHRuhrY  (42) 

where H and U are the enthalpy and velocity values at the wall of the 
collapsing star. 

A relationship between enthalpy to the local sound velocity and pressure 
is obtained by the following relationship for the isentropic relation: 

 ∫
∞ ρ

=
p

p

dph .  (43) 

Thus, the continuity equation for a spherical coordinate can be written as 

 .21
2 r

u
r
u

Dt
Dh

c
+

∂
∂=−  (44) 

The shock characteristics can be obtained using equation (42) and the 
continuity equation for fluid [19]. These characteristics for gas medium [11] 
are given as 
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The values of Y, which can be obtained from the instantaneous motion of          
the core-collapse supernova are necessary to solve the aforementioned shock 
characteristics. 

In gas medium, the compression during the development of the shock 
wave was assumed to be adiabatic, that is, the following relation holds: 

 .constp m =ργ  (48) 

Sound velocity C and the enthalpy H at the star wall are given as follows 
[11]: 
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where mγ  is the specific heat ratio and ∞c  is the sound speed for the gas 

medium of the shell layer outside the core-mass. 

The mass flow rate accompanying the shock may be calculated by the 
following equation: 

 .4 2

chardt
drrm ⎟

⎠
⎞⎜

⎝
⎛ρπ= ∞&  (51) 
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7. Calculation Results and Discussion 

Figure 2 shows the time dependent radius and the collapse velocity of 
iron core having a mass of .M5.1  In this calculation, initial radius and the 

specific heat ratio for the iron core were taken as 3000km [1] and 1.2, 
respectively, and the density and temperature of the medium outside the          

core were taken as 36 mkg10  and ,K106  respectively. The central density 

of 310 mkg10  and central temperature of ( )keV509~K106 10×  at which          

Fe-He transition can occur were taken for calculation. The initial pressure 
estimated by the Wheeler equation of state for the progenitor star is about 

Pa1023  [2]. However, an initial pressure value of Pa102.1 24×  for the star 
was taken to satisfy the inequality given in equation (26) in this study. 

 

Figure 2. Time dependent radius and collapse velocity of iron core. 

If the density of the mantle layer outside the iron core is less than 
3mkg00001.0  and the specific heat ratio of the medium is greater than 1.6, 

then there is no accretion flow to the iron core. Time dependent radius and 
collapse velocity of the iron core for the case without the accretion flow are 
almost same as those for the case with the accretion flow as shown in     
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Figure 2. It takes 1.2s for the iron core to collapse to a protoneutron star 
having radius of 108km at which the collapse velocity reaches –14300km/s 
as shown in Figure 2. However, the absolute magnitude of the peak velocity 
is less than those (~50000km/s) obtained by various numerical models [6]. 

For the case without accretion flow, the particle velocity in the shock 
drops rapidly near the point where the velocity has its minimum value, as 
shown in Figure 3. This point may be taken as the turning point at which 
bounce of the protoneutron star starts at which the radius of star is about 
108km. For the case of lower density and higher specific heat ratio for the 
medium gas, the outgoing shock which blows materials in the shell layer of 
the progenitor star into space propagates with velocity of 60000km/s as 
shown in Figure 3. In fact, the shock propagation which blows the materials 
in the shell layer into the space during the implosion of the iron core was 
observed for the case of Cassiopeia A as shown in Figure 1(a). 

 

Figure 3. Time dependent particle and shock velocities obtained for the case 
without the accretion mass flow. 
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Table 1. Collapse time and heat from the star depending on the specific heat 
ratio with initial iron core-radius of 3000km. The center properties are 
obtained at the radius of 108km for the protoneutron star. The numerical 
values in parentheses are the case with the accretion mass flow 

Specific heat 
ratio (γ) 

Collapse time 
(s) 

Heat from star 
(joules) 

Center density 
(kg/m3) 

Center pressure
(Pa) 

Center 
temperature 

(K) 

1.1 1.05 451060.2 ×  161068.3 ×  281057.5 ×  101004.1 ×  

1.2 1.20 441089.5 ×  161086.3 ×  291060.1 ×  101083.2 ×  

 (1.20) ( )441021.6 × ( )161052.4 × ( )291093.1 × ( )101083.2 ×  

1.3 1.59 431052.7 ×  161006.4 ×  291063.4 ×  101079.7 ×  

In Table 1, the collapse time and the heat from the iron core during the 
collapse for several specific heat ratios of the iron core are shown for the 
cases without the accretion flow. The collapse time and the heat flow are 
dependent on the specific heat ratio of the iron core. Shorter collapse time 
and much heat flow from the star are obtained for smaller value of the 
specific heat ratio. At a radius of 108km of protoneutron star, the central 
density, temperature and pressure are shown in Table 1. The central density 
and pressure of the iron core increase by 4~6 orders of magnitude during         

the collapse. The maximum density obtained at bounce is 317 cmkg106.3 ×  

with a soft nuclear equation of state and is 316 cmkg107.2 ×  with a hard 

equation of state in one-dimensional calculation [20]. While our calculation 

result with ideal equation of state for the gas, which is about 316 cmkg103 ×  

as shown in Table 1, is lower by one order of magnitude. On the other hand, 
the pressure, temperature and density profiles inside the iron core at the post 
bounce are uniform although numerical results [6] show several orders of 
magnitude differences in density between the center and the surface of the 
iron core. 

The temperature slightly decreases or increases depending on the specific 
heat ratio value, which may be due to the heat flow from the iron core. The 

maximum temperatures obtained in this study, which are order of K1010  are 



Core-collapse Supernova Explosions: An Analytical … 263 

lower than those obtained by various numerical models ( )K1011  by an order 

of magnitude [6]. For the case with accretion flow, the central density, 
temperature and pressure are the same as those obtained for the case without 
the accretion flow as shown in parentheses in Table 1. Certainly, the 
accretion flow exists during the implosion of the iron core due to the heavy 
mantle layer of iron core. 

 
Figure 4. Heat flow rate during collapsing (left) and explosion (right) phase 
of iron core. 

The calculated total amount of heat flow from the iron core is as much as 

ergs109.5 51×  during the collapse period of 1.2s. At the final stage of the 

collapse, the calculate heat flow rate from the star is about s.ergs106.3 52×  

This magnitude is higher than the result obtained by Liebendoerfer et al. [5] 
by one order of magnitude. The amount of the heat flow rate from the star is 
almost equal to the neutrino energy issued from the collapse, which is about 

ergs1051  [8]. As can be seen in Figure 4, the calculated energy input rate           

to the star at earlier post-bounce is approximately s,ergs101.6 53×  which 

corresponds to the energy of electron-type neutrinos emerged during the 
expansion phase [8]. This value obtained by our calculation is higher than 
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those obtained by numerical calculation by an order of magnitude [8]. The 
calculated total amount of energy input during the expansion phase is about 

ergs.1052  The heat flow into the expanding protoneutron star may occur by 

the absorption of neutrinos [1]. Without any detailed information for the          
heat flow mechanism due to neutrino transport, the hydrodynamic equations 
including the energy equation predict the magnitude of the heat flow rate 
during the evolution of star remarkably. 

One can imagine that the heavy mantle outside the iron core moves 
inwardly during the implosion of the iron core. The time dependent accretion 
shock velocity and the corresponding mass flow rate are shown in Figure 5. 
The accretion shock moves outward at first and propagates inwardly at 35ms 
after the implosion. The absolute magnitude of the accretion mass flow rate 
which is certainly dependent on the medium density has its maximum at 

595ms after the implosion and reduces to skg108.1 23×  at 1200ms after the 
implosion. The time dependent velocity of the accretion shock is found to be 
always greater than the collapse velocity of the iron core as can be confirmed 
from Figures 2 and 5, which indicates that the accretion shock just follows 
the movement of the collapsing iron core. 

 
Figure 5. Accretion shock velocity and the corresponding mass flow rate. 

With a specific heat value of 67  and the minimum radius of 
protoneutron star, 108km, the asymptotic explosion velocity calculated from 
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equation (38) is about 60400km/s provided that the core-mass of M5.1  

during infall is fully involved in explosion process. The corresponding 

energy needed for the explosion is calculated to be about ergs.101.1 53×  
Equation (38) indicates that the magnitude of the explosion velocity depends 
on the core-mass involved in the explosion process. In fact, a larger trapped 
lepton fraction during infall results in a larger inner core-mass, which, in 
turn, produces a stronger bounce shock [21]. 

Time dependent radius and the explosion velocity of the protoneutron 
star are given in Figure 6. The velocity reaches its asymptotic limit of 
60400km/s after 400ms and the star expands continuously because the heat 
flow into the star during expansion as can be confirmed from equation (39). 
The shock speed after the post explosion, which is slightly less than the 
explosion velocity as can be seen in Figure 6 is comparable to the shock 
speed of 30000km/s obtained by three-dimensional numerical simulation [8] 
if only 25% ( )M37.0  of the core-mass during infall ( )M5.1  is involved 

in the explosion process. It is noted that a mass less than 38% ( )M58.0  of 

the infalling mass should be involved in the explosion to satisfy the condition 
given in equation (33) if one uses the center properties given in Table 1. 

 

Figure 6. Time dependent radius and explosion velocity of the protoneutron 
star. 
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In Figure 7, the outward mass flow rates accompanying the shock after 
the explosion are also shown. It takes about 200~300ms for the outward mass 

flow rate to compete with the mass accretion rate of skg108.1 23×  at the 

end of the collapse. The outgoing shock may stall during this stage [2]. 
Recent numerical simulations indicate that three-dimensional core explodes 
approximately at 250ms after the bounce [8]. The interaction between the 
outgoing shock and the accretion shock needs another extensive study. 

 

Figure 7. Outgoing shock velocity due to the explosion of the protoneutron 
star and mass flow rate accompanying the shock. 

8. Conclusions 

A simple hydrodynamic theory on the core-collapse supernovae by 
taking the star as an ideal gas system was present in this study. The core-
collapsing velocity and the subsequent explosion velocity of the protoneutron 
star were also obtained. Explicit form of the heat transport from the 
collapsing star and the expanding star was obtained hydrodynamically. The 

heat flow from the iron core of ergs1051  during the collapse, which is related 

to the neutrinos issued from the collapse, and the heat flow of ergs1052  into 

the expanding star, which is related to the electron-type neutrinos emerged 
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during the expansion phase, was obtained. These results suggest that some 
results obtained from the analytical hydrodynamics study for the core-
collapse supernova may be interpretable by micro physics. Our results 
indicate that hydrodynamic equations could reveal the core-collapse 
supernova explosion remarkably without any detailed ingredients. Also, our 
study reveals that the heat transfer across the system boundary determines 
the evolution of the ideal gas system. On the other hand, one can calculate 
the heat transfer rate through the system boundary if one knows the evolution 
of the system [14, 23]. 
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