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Abstract

Let M be a real hypersurface with almost contact metric structure
(¢, g, &, m) in a complex space form My(c), c = 0. In this paper,

we prove that £:A = 0 holds on M, then M is a Hopf hypersurface in
M,(c), where A and L denote the shape operator and the Lie

derivative with respect to the structure vector field &, respectively. We
characterize such Hopf hypersurfaces of M (c).
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1. Introduction

A complex n-dimensional Kahlerian manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted by
Mp(c). As is well-known, a complete and simply connected complex space

form is complex analytically isometric to a complex projective space P,(C),

a complex Euclidean space C" or a complex hyperbolic space H,(C),
accordingto ¢ >0, c=0 or c < 0.

In this paper, we consider a real hypersurface M in a complex space form
M,(c), ¢ # 0. Then M has an almost contact metric structure (¢, g, &, n)

induced from the Kéhler metric and complex structure J on Mp(c). The
structure vector field & is said to be principal if A = a& is satisfied, where
A is the shape operator of M and o = n(A£). In this case, it is known that o
is locally constant [4] and that M is called a Hopf hypersurface.

Takagi [11] completely classified homogeneous real hypersurfaces in
such hypersurfaces as six model spaces A, Ay, B, C, D and E. Berndt [1]
classified all homogeneous Hopf hypersurfaces in H,(C) as four model
spaces which are said to be Ay, A, A, and B. A real hypersurface of A, or
A, in P,(C) or Ay, A, Ay in H,(C), then M is said to be a type A for
simplicity.

As a typical characterization of real hypersurfaces of type A, the

following is due to Okumura [9] for ¢ > 0 and Montiel and Romero [7] for
c<0.

Theorem 1 [7, 9]. Let M be a real hypersurface of M(c), ¢ =0,
n > 2. It satisfies dA — Ap = 0 on M if and only if M is locally congruent to
one of the model spaces of type A.

We denote by L. the Lie derivative with respect to &. As for Lie

derivative, one of the interesting problems in the study of real hypersurfaces
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M in M,(c) is to investigate a geometric characterization of these model
spaces. Some characterizations of real hypersurfaces in M,(c) are

determined by Lie derivative conditions of operators of real hypersurfaces
and many important results on them have been obtained by many differential
geometers (see [3, 4, 6, 10], etc.).

As for Lie derivative of shape operator, Ki et al. [3] showed the
following.

Theorem 2 [3]. Let M be a real hypersurface of P,(C), n>3. If it
satisfies

LeA=0, (1.1)

where A denotes the shape operator, then M is locally a tube of radius r over
one of the following Kéhler submanifolds:

(A) ahyperplane P,_1C, where 0 < r < m/2,
(Ay) atotally geodesic B,C (1 <k <n-—2), where 0 <r < r/2.

The holomorphic distribution Ty of a real hypersurface M in M (c) is
defined by

To(P) = {X € Tp(M)[g(X, &), =0}, (12)
where Tp(M) is the tangent space of Mat p € M.

On the other hand, Ki and Suh [2] studied real hypersurfaces M with
To-Lie derivative of complex space form M (c).

Theorem 3 [2]. Let M be a real hypersurface of M(c), ¢ #0, n>3.
Then

g((LeA)X, Y) =0 (1.3)

for any vector fields X and Y in the distribution Ty, then M is of type A.
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With respect to Lie derivative of Ricci operator and Jacobi operator,
Kimura and Maeda [6] and Pérez et al. [10] have proved the following.
Theorem 4 [6]. Let M be a real hypersurface of P,(C). Then M satisfies

LS =0 if and only if & is a principal curvature vector, in addition except

for null set on which the focal map ¢, degenerates, M lies on a tube of
radius r over one of the following Kéhler submanifolds:

(a) totally geodesic B (C)(1<k <n-1), where 0 <r < %

(b) complex quadric Q,,_3, where 0 < r < % and cot?2r = n - 2,

(©) PL(C) x Pip_1)/2(C), where 0 < r < % cot?2r =1/(n - 2) and n(= 5)
is odd,

T

(d) complex Grassmann G, 5(C), where 0 <r < 7 cot?2r = 3/5 and

n=9,

T

2
g cot“2r

(e) Hermitian symmetric space SO(10)/U (5), where 0<r <
=5/9 and n =15,

(f) k-dimensional Ké&hler submanifold N on which the rank of each
shape operator is not greater than 2 with non-zero principal curvatures
not equal to ++/(2k —1)/(2n — 2k —1) and cot?r = (2k — 1)/(2n — 2k —1),
where k =1, 2, ..., n—1.

Theorem 5 [10]. Let M be a real hypersurface of P,(C), n >3 such

that the structure Jacobi operator R is invariant under the structure vector
field &, that is, L¢R: = 0. Then either M is locally congruent to a tube of
radius m/4 over a complex submanifold in P,(C) or to either a geodesic

hypersphere or a tube over totally geodesic Pk(C), 0<k <m=-1 with

radius r = m/4.
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The purpose of this paper is to generalize Theorem 3 and then to give
characterization of real hypersurfaces in a complex space form M(c). That

is, we shall prove the following theorems:

Theorem A. Let M be a real hypersurface of M,(c), ¢ = 0. If it
satisfies (1.1), then M is a Hopf hypersurface in M (c).

Theorem B. Let M be a real hypersurface of M,(c), ¢ # 0. Then it

satisfies LA =0 on M if and only if M is a locally congruent to one of the
model spaces of type A.

In the forthcoming papers, we will give another characterization of a real
hypersurface in a non-flat complex space form M (c), whose the structure

Lie (or Jacobi) operator and the shape operator and the structure tensor ¢
satisfy the anti-commutativity (or commutativity) rule when composed in
some order, and in the opposite order, respectively.

All manifolds in the present paper are assumed to be connected and of

class C* and the real hypersurfaces supposed to be orientable.
2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M5(c),
and N be a unit normal vector field of M.

By V, we denote the Levi-Civita connection with respect to the Fubini-
Study metric tensor g of M (c).

Then the Gauss and Weingarten formulas are given, respectively, by
VY =VyY +g(AX, YN, VyN =—AX

for any vector fields X and Y tangent to M, where g denotes the Riemannian
metric tensor of M induced from g and A is the shape operator of M in

M (c).
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For any vector field X on M, we put
X =¢X +n(X)N, JIN =-¢,

where J is the almost complex structure of M, (c). Then we see that M

induces an almost contact metric structure (¢, g, &, n), thatis,

$*X ==X +n(X)&, ¢£=0, n(E)=1
g(@X, oY) = g(X, Y)—n(X)n(Y), n(X)=9(X, €) (2.1)
for any vector fields X and Y on M.

Since the almost complex structure J is parallel, we can verify from the
Gauss and Weingarten formulas the following:

V& = 0AX, (2.2)
(Vx9)Y =n(Y)AX - g(AX, Y)E. (2.3)

Since the ambient manifold is of constant holomorphic sectional
curvature ¢, we have the following Gauss and Codazzi equations,
respectively:

R(X, Y)Z = Z19(Y, Z)X = g(X, Z)Y + g(6Y, Z)oX — g(6X, Z)¢Y

—29(¢X, Y)oZ} + g(AY, Z)AX — g(AX, Z)AY,  (2.4)

(VXA = (VyA)X = 2 (X)eY —n(Y)¢X - 296X, Y)E}  (25)

for any vector fields X, Y and Z on M, where R denotes the Riemannian
curvature tensor of M and Vy A denotes the covariant derivative of the

shape operator A with respect to X.
Let W be a unit vector field on M with the same direction of the vector

field —¢V £ and let u be the length of the vector field —¢V & if it does not

vanish and zero (constant function) if it vanishes. Then it is easily seen from
(1.1) that
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AE = o + uW, (2.6)
where o = n(AE). We notice here that W is orthogonal to &.
We put
Q= {peMiun(p) = 0}. 2.7)
Then Q is an open subset of M.

3. Proof of the Theorems

In this section, we shall prove Theorems A and B. Now we prepare
without proof the following:

Lemma 3.1 [4, 6]. If & is a principal curvature vector, then the
corresponding principal curvature o is locally constant.

Lemma 3.2 [6]. Assume that & is a principal curvature vector and the
corresponding principal to o.. Then

A¢A—%(A¢+¢A)—% - 0. (3.1)

Proof of Theorem A. Suppose that L£:A =0 for any vector field X.
Then we see that
(LeA)X = [E, AX] - AlE, X] = (V:A)X - gAZX + APAX.

Since Lie derivative of shape operator is zero, we obtain

(VEA)X = gAZX — AGAX. (3.2)
By the virtue of VA is symmetric, we get

(0A% — 2A0A + A%p)X = 0. (3.3)
If we put X = & into (3.3) and using u = 0, then we have

OAW — 2APW + adW = 0. (3.4)
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If we take inner product of W and ¢W, then we have
g(AQW, W) =0 and o +y — 2g(AYW, ¢W) =0, (3.5)
by virtue of p = 0 and where y = g(AW, W).

Putting X =W and ¢W into (3.3) and using the first equation of (2.1),
we obtain

PAAW — 2A0AW + AZHW = 0, (3.6)
PAZOW — 2APAGW — A2W = 0. (3.7)
If we substitute (3.7) into (3.6) and making use of (2.6), then we have
2(QAGAOW + APAW ) = n(AZOW ). (3.8)
Differentiating the smooth function o = g(Ag, &) along any vector field
X on Q and using (2.2), (2.5) and (2.6), we have
Xou = g((VEA)E, X) - 2ug(AQW, X). (3.9)
Since we have (V:A)E = Vi(ag +puW) - Ad(ag +pW), we see from
(3.9) that the gradient vector field Vo, of o is given by
Vo= pVeW — 3pAQW + (Ea)€ + (E)W + opdW. (3.10)
On the other hand, putting X =& into (3.2) and making use of (2.6),

then we have
(VEJA)F1 = uOAW — pAOW + apdW. (3.11)
If we substitute (3.11) into (3.9), then we have
Vo = poAW — 3pAdW + apdW. (3.12)
If we compare (3.10) and (3.12), then we obtain
HVEW = udAW — (Eo)€ — (Ep)W.

Taking inner product of this equation with & and W, respectively, then
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we get

Ea=0 and Eu=0 (3.13)
on Q and hence the initial equation is reduced to
VW = AW, (3.14)

Since A is symmetric, we can choose a local orthogonal frame field
{Xo =& Xg, s Xo(n-g)} On Msuch that AX; =2;X; for 1<i<2(n-1).

The vector field VW can be expressed as

2n-1
VW = ag +bW +cgW + D aX;. (3.15)
i=4

If we take inner product of (3.15) with  and W, then we have
a=0 and b=0. (3.16)
It follows from (3.14), (3.15) and (3.16) that

2n-1
QAW = COW + D aX;. (3.17)
i=4
If we apply ¢ to (3.17) and using the first equation of (2.1), then we get

2n-1
AW = pg + W = D" adX;. (3.18)
i=4

If we substitute (3.18) into (3.4), then we can verify that

2n-1
(o +7)OW + > aXj — 2A9W = 0.
i=4

If we take inner product of the above equation with X;, then we have

a; = 0 and hence (3.18) is reduced to

AW = pg + yW. (3.19)
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Also, from above equation, we can verify that

2A0W = (o + ) OW. (3.20)
Substituting (3.19) and (3.20) into (3.6), then we obtain

4u® + (o - y)? = 0. (3.21)

If we differentiate = g(Ag, W) along any vector field X and take
account of (2.5), (2.6), (3.19) and (3.21), then we obtain Vu = (VAW +

%(az - y2 + %)¢W and hence

c
Vi= @g s @W ke Sa-n gl @2
On the other hand, if we differentiate p = g(AW, §), then we have
Vi = VW + (Wa)& + (W)W + %{az Foy—2y2 4 ClW. (3.23)

If we compare (3.22) and (3.23) and using the first equation (3.5), then
we obtain

Eu=Wa and &y =Wy, (3.24)

C
PV W = {uz —oy+ 9% - Z}¢W. (3.25)

As a similar argument as the above, we can verify that the gradient
vector field of the smooth function y = g(AW, W) is given by

Vy = —(A—y1)VyW + (Wp)E + (WY)W + p(o + 2y)oW.  (3.26)

If we apply the smooth function p to (3.26) and substituting (3.25) into
(3.26), then we obtain

uWy = p(Wp)E€ + p(Wy)W + %{uz(a +7)+ %(a - v)}d)W- (3.27)
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From equation (3.22), we have
4uvu + (o —7)(Va = Vy) = 0. (3.28)

If we apply the smooth function p to (3.28) and take inner product of
oW, then we have

AP (OW ) + p(or — 7) (GW ) o — (§W)y) = 0. (3.29)

If we take inner product of (3.12), (3.22) and (3.27) with ¢W and
substituting (3.29), then we can find

3

a? + (0 -y + >

0. (3.30)
By equations (3.22) and (3.30), we have ¢ =0 on Q and it is a
contradiction.

Thus, the set Q ={p € M |u(p) = 0} is empty and hence M is a Hopf
hypersurface. O

Proof of Theorem B. By Theorem A, the real hypersurface M satisfying
LA =0 is aHopf hypersurface in Mp(c), thatis, AE = a&. Therefore, our

assumption LA = 0 is given
(OA% — 2A0A + A%p)X = 0. (3.31)

For any vector field X on M such that AX = AX, it follows from (3.1)
that

[x - %j AGX = %(al ; %)q)x. (3.32)

We can choose an orthonormal frame field {Xq =&, X1, X5, ..., Xp(n-1)}

on M such that AX; = A;X; for 1<i < 2(n-1).

If A = % for 1<i < p <2(n-1), then we see from (3.32) that ¢X; is

also a principal direction, say A¢X; = ujdX;.
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From (3.31), we have A; = p; and hence ApX; = ¢AX; for1<i < p.

% and ka% for 1<i<p and p+1<j<2(n-1),

respectively, then it follows from (3.31) that

If 7\,i¢

AZ9X | — 21 jAQX | + 250X = 0. (3.33)

Taking inner product of (3.33) with X;, we obtain (}; —kj)z-
g(¢Xj, Xj) =0 for 1<i < p. Since A; # A, we obtain g(¢Xj, Xj)=0

forl<i<p.
Thus, the vector field $X; is expressed by a linear combination of X j’s

only, which implies A¢X; =%<|>Xj = 0AXj. If A =% for 1< j<
2(n —1), then it is easily seen that ApX; = $AX for all j.

Therefore, we have $A — Ap =0 on M. The statement of Theorem B
follows immediately Theorem 1. O
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