Volume 98, Number 7, 2015, Pages 883-895

Published Online: November 2015 http://dx.doi.org/10.17654/FJMSDec2015_883_895

ISSN: 0972-0871

LIE DERIVATIVE OF SHAPE OPERATOR ON REAL HYPERSURFACES IN A COMPLEX SPACE FORM

Dong Ho Lim and Woon Ha Sohn

Department of Mathematics Education Sehan University Chonnam 526-702 Republic of Korea

e-mail: dhlim@sehan.ac.kr

Department of Mathematics Catholic University of Daegu Daegu 712-702 Republic of Korea e-mail: kumogawa@cu.ac.kr

Abstract

Let M be a real hypersurface with almost contact metric structure (ϕ, g, ξ, η) in a complex space form $M_n(c)$, $c \neq 0$. In this paper, we prove that $\mathcal{L}_{\xi}A = 0$ holds on M, then M is a Hopf hypersurface in $M_n(c)$, where A and \mathcal{L}_{ξ} denote the shape operator and the Lie derivative with respect to the structure vector field ξ , respectively. We characterize such Hopf hypersurfaces of $M_n(c)$.

Received: May 8, 2015; Revised: July 21, 2015; Accepted: August 3, 2015

2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C15.

Keywords and phrases: real hypersurface, Lie derivative, shape operator, Hopf hypersurface, model spaces of type *A*.

This paper was supported by the Sehan University Research Fund in 2015.

Communicated by K. K. Azad

1. Introduction

A complex *n*-dimensional Kählerian manifold of constant holomorphic sectional curvature c is called a *complex space form*, which is denoted by $M_n(c)$. As is well-known, a complete and simply connected complex space form is complex analytically isometric to a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according to c > 0, c = 0 or c < 0.

In this paper, we consider a real hypersurface M in a complex space form $M_n(c)$, $c \neq 0$. Then M has an almost contact metric structure (ϕ, g, ξ, η) induced from the Kähler metric and complex structure J on $M_n(c)$. The structure vector field ξ is said to be *principal* if $A\xi = \alpha \xi$ is satisfied, where A is the shape operator of M and $\alpha = \eta(A\xi)$. In this case, it is known that α is locally constant [4] and that M is called a *Hopf hypersurface*.

Takagi [11] completely classified homogeneous real hypersurfaces in such hypersurfaces as six model spaces A_1 , A_2 , B, C, D and E. Berndt [1] classified all homogeneous Hopf hypersurfaces in $H_n(\mathbb{C})$ as four model spaces which are said to be A_0 , A_1 , A_2 and B. A real hypersurface of A_1 or A_2 in $P_n(\mathbb{C})$ or A_0 , A_1 , A_2 in $H_n(\mathbb{C})$, then M is said to be a *type* A for simplicity.

As a typical characterization of real hypersurfaces of type A, the following is due to Okumura [9] for c > 0 and Montiel and Romero [7] for c < 0.

Theorem 1 [7, 9]. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. It satisfies $\phi A - A\phi = 0$ on M if and only if M is locally congruent to one of the model spaces of type A.

We denote by \mathcal{L}_{ξ} the Lie derivative with respect to ξ . As for Lie derivative, one of the interesting problems in the study of real hypersurfaces

M in $M_n(c)$ is to investigate a geometric characterization of these model spaces. Some characterizations of real hypersurfaces in $M_n(c)$ are determined by Lie derivative conditions of operators of real hypersurfaces and many important results on them have been obtained by many differential geometers (see [3, 4, 6, 10], etc.).

As for Lie derivative of shape operator, Ki et al. [3] showed the following.

Theorem 2 [3]. Let M be a real hypersurface of $P_n(\mathbb{C})$, $n \geq 3$. If it satisfies

$$\mathcal{L}_{\xi}A = 0, \tag{1.1}$$

where A denotes the shape operator, then M is locally a tube of radius r over one of the following Kähler submanifolds:

(A₁) a hyperplane $P_{n-1}C$, where $0 < r < \pi/2$,

$$(A_2)$$
 a totally geodesic P_kC $(1 < k < n-2)$, where $0 < r < \pi/2$.

The holomorphic distribution T_0 of a real hypersurface M in $M_n(c)$ is defined by

$$T_0(P) = \{ X \in T_P(M) | g(X, \xi)_p = 0 \}, \tag{1.2}$$

where $T_P(M)$ is the tangent space of M at $p \in M$.

On the other hand, Ki and Suh [2] studied real hypersurfaces M with T_0 -Lie derivative of complex space form $M_n(c)$.

Theorem 3 [2]. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$. Then

$$g((L_{\xi}A)X,Y)=0 \tag{1.3}$$

for any vector fields X and Y in the distribution T_0 , then M is of type A.

With respect to Lie derivative of Ricci operator and Jacobi operator, Kimura and Maeda [6] and Pérez et al. [10] have proved the following.

Theorem 4 [6]. Let M be a real hypersurface of $P_n(\mathbb{C})$. Then M satisfies $\mathcal{L}_{\xi}S = 0$ if and only if ξ is a principal curvature vector, in addition except for null set on which the focal map ϕ_r degenerates, M lies on a tube of radius r over one of the following Kähler submanifolds:

- (a) totally geodesic $P_k(C)(1 \le k \le n-1)$, where $0 < r < \frac{\pi}{2}$,
- (b) complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$ and $\cot^2 2r = n 2$,
- (c) $P_1(C) \times P_{(n-1)/2}(C)$, where $0 < r < \frac{\pi}{4}$, $\cot^2 2r = 1/(n-2)$ and $n \ge 5$ is odd,
- (d) complex Grassmann $G_{2,5}(C)$, where $0 < r < \frac{\pi}{4}$, $\cot^2 2r = 3/5$ and n = 9,
- (e) Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$, $\cot^2 2r = 5/9$ and n = 15,
- (f) k-dimensional Kähler submanifold \tilde{N} on which the rank of each shape operator is not greater than 2 with non-zero principal curvatures not equal to $\pm \sqrt{(2k-1)/(2n-2k-1)}$ and $\cot^2 r = (2k-1)/(2n-2k-1)$, where k=1, 2, ..., n-1.

Theorem 5 [10]. Let M be a real hypersurface of $P_n(\mathbb{C})$, $n \geq 3$ such that the structure Jacobi operator R_{ξ} is invariant under the structure vector field ξ , that is, $\mathcal{L}_{\xi}R_{\xi}=0$. Then either M is locally congruent to a tube of radius $\pi/4$ over a complex submanifold in $P_n(\mathbb{C})$ or to either a geodesic hypersphere or a tube over totally geodesic $P^k(C)$, 0 < k < m-1 with radius $r \neq \pi/4$.

The purpose of this paper is to generalize Theorem 3 and then to give characterization of real hypersurfaces in a complex space form $M_n(c)$. That is, we shall prove the following theorems:

Theorem A. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. If it satisfies (1.1), then M is a Hopf hypersurface in $M_n(c)$.

Theorem B. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. Then it satisfies $\mathcal{L}_{\xi}A = 0$ on M if and only if M is a locally congruent to one of the model spaces of type A.

In the forthcoming papers, we will give another characterization of a real hypersurface in a non-flat complex space form $M_n(c)$, whose the structure Lie (or Jacobi) operator and the shape operator and the structure tensor ϕ satisfy the anti-commutativity (or commutativity) rule when composed in some order, and in the opposite order, respectively.

All manifolds in the present paper are assumed to be connected and of class C^{∞} and the real hypersurfaces supposed to be orientable.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_2(c)$, and N be a unit normal vector field of M.

By $\widetilde{\nabla}$, we denote the Levi-Civita connection with respect to the Fubini-Study metric tensor \widetilde{g} of $M_n(c)$.

Then the Gauss and Weingarten formulas are given, respectively, by

$$\widetilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \widetilde{\nabla}_X N = -AX$$

for any vector fields X and Y tangent to M, where g denotes the Riemannian metric tensor of M induced from \tilde{g} and A is the shape operator of M in $M_n(c)$.

For any vector field *X* on *M*, we put

$$JX = \phi X + \eta(X)N, \quad JN = -\xi,$$

where J is the almost complex structure of $M_n(c)$. Then we see that M induces an almost contact metric structure (ϕ, g, ξ, η) , that is,

$$\phi^{2}X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\xi) = 1,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi) \tag{2.1}$$

for any vector fields *X* and *Y* on *M*.

Since the almost complex structure J is parallel, we can verify from the Gauss and Weingarten formulas the following:

$$\nabla_X \xi = \phi A X, \tag{2.2}$$

$$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi. \tag{2.3}$$

Since the ambient manifold is of constant holomorphic sectional curvature c, we have the following Gauss and Codazzi equations, respectively:

$$R(X, Y)Z = \frac{c}{4} \{ g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z \} + g(AY, Z)AX - g(AX, Z)AY,$$
(2.4)

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \}$$
 (2.5)

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X.

Let W be a unit vector field on M with the same direction of the vector field $-\phi\nabla_{\xi}\xi$ and let μ be the length of the vector field $-\phi\nabla_{\xi}\xi$ if it does not vanish and zero (constant function) if it vanishes. Then it is easily seen from (1.1) that

Lie Derivative of Shape Operator on Real Hypersurfaces ... 889

$$A\xi = \alpha\xi + \mu W, \tag{2.6}$$

where $\alpha = \eta(A\xi)$. We notice here that W is orthogonal to ξ .

We put

$$\Omega = \{ p \in M \mid \mu(p) \neq 0 \}. \tag{2.7}$$

Then Ω is an open subset of M.

3. Proof of the Theorems

In this section, we shall prove Theorems A and B. Now we prepare without proof the following:

Lemma 3.1 [4, 6]. If ξ is a principal curvature vector, then the corresponding principal curvature α is locally constant.

Lemma 3.2 [6]. Assume that ξ is a principal curvature vector and the corresponding principal to α . Then

$$A\phi A - \frac{\alpha}{2}(A\phi + \phi A) - \frac{c}{4} = 0. \tag{3.1}$$

Proof of Theorem A. Suppose that $\mathcal{L}_{\xi}A=0$ for any vector field X. Then we see that

$$(\mathcal{L}_{\xi}A)X = [\xi, AX] - A[\xi, X] = (\nabla_{\xi}A)X - \phi A^2X + A\phi AX.$$

Since Lie derivative of shape operator is zero, we obtain

$$(\nabla_{\xi} A)X = \phi A^2 X - A\phi AX. \tag{3.2}$$

By the virtue of $\nabla_{\xi} A$ is symmetric, we get

$$(\phi A^2 - 2A\phi A + A^2\phi)X = 0. (3.3)$$

If we put $X = \xi$ into (3.3) and using $\mu \neq 0$, then we have

$$\phi AW - 2A\phi W + \alpha\phi W = 0. \tag{3.4}$$

If we take inner product of W and ϕW , then we have

$$g(A\phi W, W) = 0$$
 and $\alpha + \gamma - 2g(A\phi W, \phi W) = 0,$ (3.5)

by virtue of $\mu \neq 0$ and where $\gamma = g(AW, W)$.

Putting X = W and ϕW into (3.3) and using the first equation of (2.1), we obtain

$$\phi A^2 W - 2A\phi AW + A^2 \phi W = 0, \tag{3.6}$$

$$\phi A^2 \phi W - 2A\phi A\phi W - A^2 W = 0. \tag{3.7}$$

If we substitute (3.7) into (3.6) and making use of (2.6), then we have

$$2(\phi A \phi A \phi W + A \phi A W) = \eta (A^2 \phi W) \xi. \tag{3.8}$$

Differentiating the smooth function $\alpha = g(A\xi, \xi)$ along any vector field X on Ω and using (2.2), (2.5) and (2.6), we have

$$X\alpha = g((\nabla_{\xi}A)\xi, X) - 2\mu g(A\phi W, X). \tag{3.9}$$

Since we have $(\nabla_{\xi} A)\xi = \nabla_{\xi}(\alpha \xi + \mu W) - A\phi(\alpha \xi + \mu W)$, we see from (3.9) that the gradient vector field $\nabla \alpha$ of α is given by

$$\nabla \alpha = \mu \nabla_{\xi} W - 3\mu A \phi W + (\xi \alpha) \xi + (\xi \mu) W + \alpha \mu \phi W. \tag{3.10}$$

On the other hand, putting $X = \xi$ into (3.2) and making use of (2.6), then we have

$$(\nabla_{\xi} A)\xi = \mu \phi A W - \mu A \phi W + \alpha \mu \phi W. \tag{3.11}$$

If we substitute (3.11) into (3.9), then we have

$$\nabla \alpha = \mu \phi A W - 3\mu A \phi W + \alpha \mu \phi W. \tag{3.12}$$

If we compare (3.10) and (3.12), then we obtain

$$\mu \nabla \xi W = \mu \phi A W - (\xi \alpha) \xi - (\xi \mu) W.$$

Taking inner product of this equation with ξ and W, respectively, then

we get

$$\xi \alpha = 0 \quad \text{and} \quad \xi \mu = 0 \tag{3.13}$$

on Ω and hence the initial equation is reduced to

$$\nabla_{\xi}W = \phi A W. \tag{3.14}$$

Since A is symmetric, we can choose a local orthogonal frame field $\{X_0 = \xi, X_1, ..., X_{2(n-1)}\}$ on M such that $AX_i = \lambda_i X_i$ for $1 \le i \le 2(n-1)$.

The vector field $\nabla_{\xi}W$ can be expressed as

$$\nabla_{\xi} W = a\xi + bW + c\phi W + \sum_{i=4}^{2n-1} a_i X_i.$$
 (3.15)

If we take inner product of (3.15) with ξ and W, then we have

$$a = 0$$
 and $b = 0$. (3.16)

It follows from (3.14), (3.15) and (3.16) that

$$\phi AW = c\phi W + \sum_{i=4}^{2n-1} a_i X_i. \tag{3.17}$$

If we apply ϕ to (3.17) and using the first equation of (2.1), then we get

$$AW = \mu \xi + \gamma W - \sum_{i=4}^{2n-1} a_i \phi X_i.$$
 (3.18)

If we substitute (3.18) into (3.4), then we can verify that

$$(\alpha + \gamma)\phi W + \sum_{i=4}^{2n-1} a_i X_i - 2A\phi W = 0.$$

If we take inner product of the above equation with X_i , then we have $a_i = 0$ and hence (3.18) is reduced to

$$AW = \mu \xi + \gamma W. \tag{3.19}$$

Also, from above equation, we can verify that

$$2A\phi W = (\alpha + \gamma)\phi W. \tag{3.20}$$

Substituting (3.19) and (3.20) into (3.6), then we obtain

$$4\mu^2 + (\alpha - \gamma)^2 = 0. \tag{3.21}$$

If we differentiate $\mu = g(A\xi, W)$ along any vector field X and take account of (2.5), (2.6), (3.19) and (3.21), then we obtain $\nabla \mu = (\nabla_{\xi} A)W + \frac{1}{2} \left(\alpha^2 - \gamma^2 + \frac{c}{2}\right) \phi W$ and hence

$$\nabla \mu = (\xi \mu) \xi + (\xi \gamma) W + \left\{ \mu^2 + \frac{\alpha}{2} (\alpha - \gamma) + \frac{c}{4} \right\} \phi W. \tag{3.22}$$

On the other hand, if we differentiate $\mu = g(AW, \xi)$, then we have

$$\nabla \mu = \mu \nabla_W W + (W\alpha)\xi + (W\mu)W + \frac{1}{2} \{\alpha^2 + \alpha\gamma - 2\gamma^2 + c\}\phi W. \quad (3.23)$$

If we compare (3.22) and (3.23) and using the first equation (3.5), then we obtain

$$\xi \mu = W \alpha \text{ and } \xi \gamma = W \mu,$$
 (3.24)

$$\mu \nabla_W W = \left\{ \mu^2 - \alpha \gamma + \gamma^2 - \frac{c}{4} \right\} \phi W. \tag{3.25}$$

As a similar argument as the above, we can verify that the gradient vector field of the smooth function $\gamma = g(AW, W)$ is given by

$$\nabla \gamma = -(A - \gamma I)\nabla_W W + (W\mu)\xi + (W\gamma)W + \mu(\alpha + 2\gamma)\phi W. \tag{3.26}$$

If we apply the smooth function μ to (3.26) and substituting (3.25) into (3.26), then we obtain

$$\mu W \gamma = \mu(W\mu)\xi + \mu(W\gamma)W + \frac{1}{2} \left\{ \mu^2(\alpha + \gamma) + \frac{c}{4}(\alpha - \gamma) \right\} \phi W. \quad (3.27)$$

From equation (3.22), we have

$$4\mu\nabla\mu + (\alpha - \gamma)(\nabla\alpha - \nabla\gamma) = 0. \tag{3.28}$$

If we apply the smooth function μ to (3.28) and take inner product of ϕW , then we have

$$4\mu^{2}(\phi W)\mu + \mu(\alpha - \gamma)((\phi W)\alpha - (\phi W)\gamma) = 0. \tag{3.29}$$

If we take inner product of (3.12), (3.22) and (3.27) with ϕW and substituting (3.29), then we can find

$$4\mu^2 + (\alpha - \gamma)^2 + \frac{3c}{2} = 0. \tag{3.30}$$

By equations (3.22) and (3.30), we have c = 0 on Ω and it is a contradiction.

Thus, the set $\Omega = \{ p \in M \mid \mu(p) \neq 0 \}$ is empty and hence M is a Hopf hypersurface.

Proof of Theorem B. By Theorem A, the real hypersurface M satisfying $\mathcal{L}_{\xi}A=0$ is a Hopf hypersurface in $M_n(c)$, that is, $A\xi=\alpha\xi$. Therefore, our assumption $\mathcal{L}_{\xi}A=0$ is given

$$(\phi A^2 - 2A\phi A + A^2\phi)X = 0. (3.31)$$

For any vector field X on M such that $AX = \lambda X$, it follows from (3.1) that

$$\left(\lambda - \frac{\alpha}{2}\right) A \phi X = \frac{1}{2} \left(\alpha \lambda + \frac{\alpha}{2}\right) \phi X. \tag{3.32}$$

We can choose an orthonormal frame field $\{X_0 = \xi, X_1, X_2, ..., X_{2(n-1)}\}$ on M such that $AX_i = \lambda_i X_i$ for $1 \le i \le 2(n-1)$.

If $\lambda_i \neq \frac{\alpha}{2}$ for $1 \leq i \leq p \leq 2(n-1)$, then we see from (3.32) that ϕX_i is also a principal direction, say $A\phi X_i = \mu_i \phi X_i$.

From (3.31), we have $\lambda_i = \mu_i$ and hence $A \phi X_i = \phi A X_i$ for $1 \le i \le p$.

If $\lambda_i \neq \frac{\alpha}{2}$ and $\lambda_j = \frac{\alpha}{2}$ for $1 \leq i \leq p$ and $p+1 \leq j \leq 2(n-1)$, respectively, then it follows from (3.31) that

$$A^{2}\phi X_{i} - 2\lambda_{i}A\phi X_{i} + \lambda_{i}^{2}\phi X_{i} = 0.$$
 (3.33)

Taking inner product of (3.33) with X_i , we obtain $(\lambda_i - \lambda_j)^2 \cdot g(\phi X_j, X_i) = 0$ for $1 \le i \le p$. Since $\lambda_i \ne \lambda_j$, we obtain $g(\phi X_j, X_i) = 0$ for $1 \le i \le p$.

Thus, the vector field ϕX_j is expressed by a linear combination of X_j 's only, which implies $A\phi X_j = \frac{\alpha}{2}\phi X_j = \phi AX_j$. If $\lambda_j = \frac{\alpha}{2}$ for $1 \le j \le 2(n-1)$, then it is easily seen that $A\phi X_j = \phi AX_j$ for all j.

Therefore, we have $\phi A - A\phi = 0$ on M. The statement of Theorem B follows immediately Theorem 1.

References

- [1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
- [2] U.-H. Ki and Y. J. Suh, Characterizations of some real hypersurfaces in a complex space form in terms of Lie derivative, J. Korean Math. Soc. 32 (1995), 161-170.
- [3] U.-H. Ki, S. J. Kim and S. B. Lee, Some characterizations of real hypersurface of type *A*, Kyungpook Math. J. 31 (1991), 205-221.
- [4] U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, J. Okayama Univ. 32 (1990), 207-221.
- [5] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J. 10 (1992), 33-34.
- [6] M. Kimura and S. Maeda, Lie derivatives on real hypersurfaces in a complex projective space, Czechoslovak Math. J. 45 (1995), 135-148.

- [7] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), 245-261.
- [8] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, Cambridge Univ. Press, 1998, pp. 233-305.
- [9] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [10] J. D. Pérez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ -parallel, Differential Geom. Appl. 22 (2005), 181-188.
- [11] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.