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Abstract 

Let M be a real hypersurface with almost contact metric structure 
( )ηξφ ,,, g  in a complex space form ( ),cMn  .0≠c  In this paper, 

we prove that 0=ξAL  holds on M, then M is a Hopf hypersurface in 

( ),cMn  where A and ξL  denote the shape operator and the Lie 

derivative with respect to the structure vector field ξ, respectively. We 
characterize such Hopf hypersurfaces of ( ).cMn  
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1. Introduction 

A complex n-dimensional Kählerian manifold of constant holomorphic 
sectional curvature c is called a complex space form, which is denoted by 

( ).cMn  As is well-known, a complete and simply connected complex space 

form is complex analytically isometric to a complex projective space ( ),CnP  

a complex Euclidean space nC  or a complex hyperbolic space ( ),CnH  

according to ,0>c  0=c  or .0<c  

In this paper, we consider a real hypersurface M in a complex space form 
( ),cM n  .0≠c  Then M has an almost contact metric structure ( )ηξφ ,,, g  

induced from the Kähler metric and complex structure J on ( ).cM n  The 

structure vector field ξ is said to be principal if αξ=ξA  is satisfied, where 

A is the shape operator of M and ( ).ξη=α A  In this case, it is known that α 

is locally constant [4] and that M is called a Hopf hypersurface. 

Takagi [11] completely classified homogeneous real hypersurfaces in 
such hypersurfaces as six model spaces ,1A  ,2A  B, C, D and E. Berndt [1] 

classified all homogeneous Hopf hypersurfaces in ( )CnH  as four model 

spaces which are said to be ,0A  ,1A  2A  and B. A real hypersurface of 1A  or 

2A  in ( )CnP  or ,0A  ,1A  2A  in ( ),CnH  then M is said to be a type A for 

simplicity. 

As a typical characterization of real hypersurfaces of type A, the 
following is due to Okumura [9] for 0>c  and Montiel and Romero [7] for 

.0<c  

Theorem 1 [7, 9]. Let M be a real hypersurface of ( ),cM n  ,0≠c  

.2≥n  It satisfies 0=φ−φ AA  on M if and only if M is locally congruent to 

one of the model spaces of type A. 

We denote by ξL  the Lie derivative with respect to ξ. As for Lie 

derivative, one of the interesting problems in the study of real hypersurfaces 
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M in ( )cM n  is to investigate a geometric characterization of these model 

spaces. Some characterizations of real hypersurfaces in ( )cM n  are 

determined by Lie derivative conditions of operators of real hypersurfaces 
and many important results on them have been obtained by many differential 
geometers (see [3, 4, 6, 10], etc.). 

As for Lie derivative of shape operator, Ki et al. [3] showed the 
following. 

Theorem 2 [3]. Let M be a real hypersurface of ( ),CnP  .3≥n  If it 

satisfies 

 ,0=ξAL  (1.1) 

where A denotes the shape operator, then M is locally a tube of radius r over 
one of the following Kähler submanifolds: 

( )1A  a hyperplane ,1CPn−  where ,20 π<< r  

( )2A  a totally geodesic ( ),21 −<< nkCPk  where .20 π<< r  

The holomorphic distribution 0T  of a real hypersurface M in ( )cM n  is 

defined by 

 ( ) { ( ) ( ) },0,0 =ξ|∈= pP XgMTXPT  (1.2) 

where ( )MTP  is the tangent space of M at .Mp ∈  

On the other hand, Ki and Suh [2] studied real hypersurfaces M with       

0T -Lie derivative of complex space form ( ).cM n  

Theorem 3 [2]. Let M be a real hypersurface of ( ),cM n  ,0≠c  .3≥n  

Then 

 (( ) ) 0, =ξ YXALg  (1.3) 

for any vector fields X and Y in the distribution ,0T  then M is of type A. 
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With respect to Lie derivative of Ricci operator and Jacobi operator, 
Kimura and Maeda [6] and Pérez et al. [10] have proved the following. 

Theorem 4 [6]. Let M be a real hypersurface of ( ).CnP  Then M satisfies 

0=ξSL  if and only if ξ is a principal curvature vector, in addition except 

for null set on which the focal map rφ  degenerates, M lies on a tube of 

radius r over one of the following Kähler submanifolds: 

(a) totally geodesic ( ) ( ),11 −≤≤ nkCPk  where ,20 π<< r  

(b) complex quadric ,1−nQ  where 40 π<< r  and ,22cot2 −= nr  

(c) ( ) ( ) ( ),211 CPCP n−×  where ,40 π<< r  ( )212cot2 −= nr  and ( )5≥n  

is odd, 

(d) complex Grassmann ( ),5,2 CG  where ,40 π<< r  532cot2 =r  and 

,9=n  

(e) Hermitian symmetric space ( ) ( ),510 USO  where ,40 π<< r  r2cot2  

95=  and ,15=n  

(f ) k-dimensional Kähler submanifold N~  on which the rank of each 
shape operator is not greater than 2 with non-zero principal curvatures             

not equal to ( ) ( )12212 −−−± knk  and ( ) ( ),12212cot2 −−−= knkr  

where .1...,,2,1 −= nk  

Theorem 5 [10]. Let M be a real hypersurface of ( ),CnP  3≥n  such 

that the structure Jacobi operator ξR  is invariant under the structure vector 

field ξ, that is, .0=ξξRL  Then either M is locally congruent to a tube of 

radius 4π  over a complex submanifold in ( )CnP  or to either a geodesic 

hypersphere or a tube over totally geodesic ( ),CPk  10 −<< mk  with 

radius .4π≠r  
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The purpose of this paper is to generalize Theorem 3 and then to give 
characterization of real hypersurfaces in a complex space form ( ).cM n  That 

is, we shall prove the following theorems: 

Theorem A. Let M be a real hypersurface of ( ),cMn  .0≠c  If it 

satisfies (1.1), then M is a Hopf hypersurface in ( ).cM n  

Theorem B. Let M be a real hypersurface of ( ),cMn  .0≠c  Then it 

satisfies 0=ξAL  on M if and only if M is a locally congruent to one of the 

model spaces of type A. 

In the forthcoming papers, we will give another characterization of a real 
hypersurface in a non-flat complex space form ( ),cM n  whose the structure 

Lie (or Jacobi) operator and the shape operator and the structure tensor φ 
satisfy the anti-commutativity (or commutativity) rule when composed in 
some order, and in the opposite order, respectively. 

All manifolds in the present paper are assumed to be connected and of 

class ∞C  and the real hypersurfaces supposed to be orientable. 

2. Preliminaries 

Let M be a real hypersurface immersed in a complex space form ( ),2 cM  

and N be a unit normal vector field of M. 

By ,~
∇  we denote the Levi-Civita connection with respect to the Fubini-

Study metric tensor g~  of ( ).cM n  

Then the Gauss and Weingarten formulas are given, respectively, by 

( ) AXNNYAXgYY XXX −=∇+∇=∇
~,,~  

for any vector fields X and Y tangent to M, where g denotes the Riemannian 
metric tensor of M induced from g~  and A is the shape operator of M in 

( ).cM n  
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For any vector field X on M, we put 

( ) ,, ξ−=η+φ= JNNXXJX  

where J is the almost complex structure of ( ).cM n  Then we see that M 

induces an almost contact metric structure ( ),,,, ηξφ g  that is, 

( ) ( ) ,1,0,2 =ξη=φξξη+−=φ XXX  

( ) ( ) ( ) ( ) ( ) ( )ξ=ηηη−=φφ ,,,, XgXYXYXgYXg  (2.1) 

for any vector fields X and Y on M. 

Since the almost complex structure J is parallel, we can verify from the 
Gauss and Weingarten formulas the following: 

,AXX φ=ξ∇  (2.2) 

( ) ( ) ( ) ., ξ−η=φ∇ YAXgAXYYX  (2.3) 

Since the ambient manifold is of constant holomorphic sectional 
curvature c, we have the following Gauss and Codazzi equations, 
respectively: 

( ) ( ) ( ) ( ) ( ){ YZXgXZYgYZXgXZYgcZYXR φφ−φφ+−= ,,,,4,  

( ) } ( ) ( ) ,,,,2 AYZAXgAXZAYgZYXg −+φφ−  (2.4) 

( ) ( ) ( ) ( ) ( ){ }ξφ−φη−φη=∇−∇ YXgXYYXcXAYA YX ,24  (2.5) 

for any vector fields X, Y and Z on M, where R denotes the Riemannian 
curvature tensor of M and AX∇  denotes the covariant derivative of the 

shape operator A with respect to X. 

Let W be a unit vector field on M with the same direction of the vector 
field ξ∇φ− ξ  and let μ be the length of the vector field ξ∇φ− ξ  if it does not 

vanish and zero (constant function) if it vanishes. Then it is easily seen from 
(1.1) that 
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 ,WA μ+αξ=ξ  (2.6) 

where ( ).ξη=α A  We notice here that W is orthogonal to ξ. 

We put 

 ( ){ }.0≠μ|∈=Ω pMp  (2.7) 

Then Ω is an open subset of M. 

3. Proof of the Theorems 

In this section, we shall prove Theorems A and B. Now we prepare 
without proof the following: 

Lemma 3.1 [4, 6]. If ξ is a principal curvature vector, then the 
corresponding principal curvature α is locally constant. 

Lemma 3.2 [6]. Assume that ξ is a principal curvature vector and the 
corresponding principal to α. Then 

 ( ) .042 =−φ+φα−φ cAAAA  (3.1) 

Proof of Theorem A. Suppose that 0=ξAL  for any vector field X. 

Then we see that 

( ) [ ] [ ] ( ) .,, 2 AXAXAXAXAAXXA φ+φ−∇=ξ−ξ= ξξL  

Since Lie derivative of shape operator is zero, we obtain 

 ( ) .2 AXAXAXA φ−φ=∇ξ  (3.2) 

By the virtue of Aξ∇  is symmetric, we get 

 ( ) .02 22 =φ+φ−φ XAAAA  (3.3) 

If we put ξ=X  into (3.3) and using ,0≠μ  then we have 

 .02 =αφ+φ−φ WWAAW  (3.4) 
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If we take inner product of W and φW, then we have 

 ( ) 0, =φ WWAg   and  ( ) ,0,2 =φφ−γ+α WWAg  (3.5) 

by virtue of 0≠μ  and where ( )., WAWg=γ  

Putting WX =  and φW into (3.3) and using the first equation of (2.1), 
we obtain 

,02 22 =φ+φ−φ WAAWAWA  (3.6) 

.02 22 =−φφ−φφ WAWAAWA  (3.7) 

If we substitute (3.7) into (3.6) and making use of (2.6), then we have 

 ( ) ( ) .2 2 ξφη=φ+φφφ WAAWAWAA  (3.8) 

Differentiating the smooth function ( )ξξ=α ,Ag  along any vector field 

X on Ω and using (2.2), (2.5) and (2.6), we have 

 (( ) ) ( ).,2, XWAgXAgX φμ−ξ∇=α ξ  (3.9) 

Since we have ( ) ( ) ( ),WAWA μ+αξφ−μ+αξ∇=ξ∇ ξξ  we see from 

(3.9) that the gradient vector field α∇  of α is given by 

 ( ) ( ) .3 WWWAW αμφ+ξμ+ξξα+φμ−∇μ=α∇ ξ  (3.10) 

On the other hand, putting ξ=X  into (3.2) and making use of (2.6), 

then we have 

 ( ) .WWAAWA αμφ+φμ−μφ=ξ∇ξ  (3.11) 

If we substitute (3.11) into (3.9), then we have 

 .3 WWAAW αμφ+φμ−μφ=α∇  (3.12) 

If we compare (3.10) and (3.12), then we obtain 

( ) ( ) .WAWW ξμ−ξξα−μφ=ξ∇μ  

Taking inner product of this equation with ξ and W, respectively, then 
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we get 

 0=ξα   and  0=ξμ  (3.13) 

on Ω and hence the initial equation is reduced to 

 .AWW φ=∇ξ  (3.14) 

Since A is symmetric, we can choose a local orthogonal frame field 
{ ( )}1210 ...,,, −ξ= nXXX  on M such that iii XAX λ=  for ( ).121 −≤≤ ni  

The vector field Wξ∇  can be expressed as 

 ∑
−

=
ξ +φ++ξ=∇

12

4
.

n

i
ii XaWcbWaW  (3.15) 

If we take inner product of (3.15) with ξ and W, then we have 

 0=a   and  .0=b  (3.16) 

It follows from (3.14), (3.15) and (3.16) that 

 ∑
−

=

+φ=φ
12

4
.

n

i
ii XaWcAW  (3.17) 

If we apply φ to (3.17) and using the first equation of (2.1), then we get 

 ∑
−

=

φ−γ+μξ=
12

4
.

n

i
ii XaWAW  (3.18) 

If we substitute (3.18) into (3.4), then we can verify that 

( ) ∑
−

=

=φ−+φγ+α
12

4
.02

n

i
ii WAXaW  

If we take inner product of the above equation with ,iX  then we have 

0=ia  and hence (3.18) is reduced to 

 .WAW γ+μξ=  (3.19) 
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Also, from above equation, we can verify that 

 ( ) .2 WWA φγ+α=φ  (3.20) 

Substituting (3.19) and (3.20) into (3.6), then we obtain 

 ( ) .04 22 =γ−α+μ  (3.21) 

If we differentiate ( )WAg ,ξ=μ  along any vector field X and take 

account of (2.5), (2.6), (3.19) and (3.21), then we obtain ( ) +∇=μ∇ ξ WA  

Wc φ⎟
⎠
⎞⎜

⎝
⎛ +γ−α 22

1 22  and hence 

 ( ) ( ) ( ) .42
2 WcW φ

⎭⎬
⎫

⎩⎨
⎧ +γ−αα+μ+ξγ+ξξμ=μ∇  (3.22) 

On the other hand, if we differentiate ( ),, ξ=μ AWg  then we have 

 ( ) ( ) { } .22
1 22 WcWWWWW φ+γ−αγ+α+μ+ξα+∇μ=μ∇  (3.23) 

If we compare (3.22) and (3.23) and using the first equation (3.5), then 
we obtain 

α=ξμ W   and  ,μ=ξγ W  (3.24) 

.4
22 WcWW φ

⎭⎬
⎫

⎩⎨
⎧ −γ+αγ−μ=∇μ  (3.25) 

As a similar argument as the above, we can verify that the gradient 
vector field of the smooth function ( )WAWg ,=γ  is given by 

( ) ( ) ( ) ( ) .2 WWWWWIA W φγ+αμ+γ+ξμ+∇γ−−=γ∇  (3.26) 

If we apply the smooth function μ to (3.26) and substituting (3.25) into 
(3.26), then we obtain 

 ( ) ( ) ( ) ( ) .42
1 2 WcWWWW φ

⎭⎬
⎫

⎩⎨
⎧ γ−α+γ+αμ+γμ+ξμμ=γμ  (3.27) 
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From equation (3.22), we have 

 ( ) ( ) .04 =γ∇−α∇γ−α+μ∇μ  (3.28) 

If we apply the smooth function μ to (3.28) and take inner product of 
φW, then we have 

 ( ) ( ) ( ) ( )( ) .04 2 =γφ−αφγ−αμ+μφμ WWW  (3.29) 

If we take inner product of (3.12), (3.22) and (3.27) with φW and 
substituting (3.29), then we can find 

 ( ) .02
34 22 =+γ−α+μ c  (3.30) 

By equations (3.22) and (3.30), we have 0=c  on Ω and it is a 
contradiction. 

Thus, the set ( ){ }0≠μ|∈=Ω pMp  is empty and hence M is a Hopf 

hypersurface. ~ 

Proof of Theorem B. By Theorem A, the real hypersurface M satisfying 
0=ξAL  is a Hopf hypersurface in ( ),cM n  that is, .αξ=ξA  Therefore, our 

assumption 0=ξAL  is given 

 ( ) .02 22 =φ+φ−φ XAAAA  (3.31) 

For any vector field X on M such that ,XAX λ=  it follows from (3.1) 
that 

 .22
1

2 XXA φ⎟
⎠
⎞⎜

⎝
⎛ α+αλ=φ⎟

⎠
⎞⎜

⎝
⎛ α−λ  (3.32) 

We can choose an orthonormal frame field { ( )}12210 ...,,,, −ξ= nXXXX  

on M such that iii XAX λ=  for ( ).121 −≤≤ ni  

If 2
α≠λi  for ( ),121 −≤≤≤ npi  then we see from (3.32) that iXφ  is 

also a principal direction, say .iii XXA φμ=φ  



Dong Ho Lim and Woon Ha Sohn 894 

From (3.31), we have ii μ=λ  and hence ii AXXA φ=φ  for .1 pi ≤≤  

If 2
α≠λi  and 2

α=λ j  for pi ≤≤1  and ( ),121 −≤≤+ njp  

respectively, then it follows from (3.31) that 

 .02 22 =φλ+φλ−φ jjjjj XXAXA  (3.33) 

Taking inner product of (3.33) with ,iX  we obtain ( ) ⋅λ−λ 2
ji  

( ) 0, =φ ij XXg  for .1 pi ≤≤  Since ,ji λ≠λ  we obtain ( ) 0, =φ ij XXg  

for .1 pi ≤≤  

Thus, the vector field jXφ  is expressed by a linear combination of s’jX  

only, which implies .2 jjj AXXXA φ=φα=φ  If 2
α=λ j  for ≤≤ j1  

( ),12 −n  then it is easily seen that jj AXXA φ=φ  for all j. 

Therefore, we have 0=φ−φ AA  on M. The statement of Theorem B 

follows immediately Theorem 1. ~ 
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