
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2015 Pushpa Publishing House, Allahabad, India 
Published Online: November 2015 
http://dx.doi.org/10.17654/FJMSDec2015_819_830 
Volume 98, Number 7, 2015, Pages 819-830 ISSN: 0972-0871 

 

Received: April 2, 2015;  Revised: June 17, 2015;  Accepted: July 2, 2015 
2010 Mathematics Subject Classification: 65C60. 
Keywords and phrases: robust estimation, minimum vector variance, reweighted minimum 
vector variance, outliers’ detection. 
The research is financed by Ministry of Education Malaysia under Fundamental Research 
Grant Projects (FRGS) No. 12801. 
Communicated by K. K. Azad 

ENHANCING MINIMUM VECTOR VARIANCE 
ESTIMATORS USING REWEIGHTED SCHEME 

Hazlina Ali, Sharipah Soaad Syed Yahaya and Zurni Omar 

School of Quantitative Sciences 
UUM College of Arts and Sciences 
Universiti Utara Malaysia 
06010 UUM Sintok, Kedah 
Malaysia 
e-mail: hazlina@uum.edu.my 

sharipah@uum.edu.my 
zurni@uum.edu.my 

Abstract 

Minimum vector variance (MVV) is one of the latest contributions in 
the study of multivariate robust estimators. MVV estimators possess 
three important properties of a good robust estimator, namely, high 
breakdown point, affine equivariance and computational efficiency. 
However, highly robust affine equivariant estimators with the best 
breakdown point commonly have to compensate with low statistical 
efficiency. In order to cater this drawback, a reweighted minimum 
vector variance (RMVV) which is capable of increasing the efficiency 
while retaining the highest breakdown point is proposed in this paper. 
A simulation study was conducted to investigate the asymptotic 
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relative efficiency and finite-sample behavior of the estimators for 
several types of distributions. The numerical results revealed that the 
reweighed scheme is able to attain higher efficiency compared to 
MVV estimators. 

1. Introduction 

Several robust estimators of multivariate location and scatter have been 
proposed since Maronna’s pioneering paper on multivariate M-estimation 
(Maronna [1]). One of the latest contributions in the study of multivariate 
robust estimators is the minimum vector variance (MVV) proposed by 
Herwindiati [2]. She had proven that MVV estimators possess three major 
properties of a good robust estimators, i.e., high breakdown point (BP = 0.5), 
affine equivariance and computational efficiency. Apart from being on par 
with the popular minimum covariance determinant (MCD) for its robustness, 
this estimator has the edge over MCD in terms of computational efficiency 
(Herwindiati et al. [3] and Djauhari et al. [4]). In addition, MVV estimators 
are more effective in detecting outliers and in controlling Type I error 
compared with MCD (Ali and Yahaya [5]). Nevertheless, some drawbacks 
such as inconsistency under normal distribution and biased for small sample 
size were discovered by Ali et al. [6]. They improved the MVV estimators in 
terms of consistency under normal distribution and unbiasedness by 
multiplying the MVV scatter estimator with the consistency and correction 
factors, respectively. The improved MVV estimators were then applied in the 

Hotelling 2T  control chart and the numerical result showed that there was a 
great improvement in the control limit values while maintaining its good 
performance in terms of false alarm and probability of detection. 

However, highly robust affine equivariant estimators with the best 
breakdown point commonly suffer from low statistical efficiency. Therefore, 
to make MVV estimators more practical in statistical inference, MVV 
estimators should offer a reasonable efficiency under normal model and 
manageable asymptotic distribution. Thus, Ali et al. [7] had investigated the 
efficiency of MVV estimators based on the asymptotic relative efficiency 
(ARE). The result indicated that there was a conflict in the statistical 
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efficiency of MVV estimators for different breakdown points. To overcome 
this issue in MVV, in this paper, we propose to adopt the reweighted version 
as suggested by Rousseeuw and van Zomeren [8]. 

The outline of this paper is as follows: Section 2 proposes reweighted 
version of MVV estimators followed by the investigation on their asymptotic 
efficiency in Section 3. Section 4 presents the numerical results of the 
investigation on the finite-sample behavior of the estimator using simulation 
technique and finally, the conclusion is given in the last section. 

2. Improvement of Minimum Vector Variance 

As discussed in Ali et al. [7], the distribution of robust MSD based on 

MVV and MCD estimators is asymptotically equal to 2
pχ  distribution. They 

defined the reweighted minimum vector variance (RMVV) estimators of 
location and scatter as follows: 
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Scatter estimators are typically calibrated to be consistent for the normal 
distribution. Thus, the consistency and correction factors are needed to 
guarantee Fisher consistency for the reweighted estimator in order to 
improve its biasness for small sample behavior. The consistency factor 

( )mc∗  is defined as 
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However, the consistency factor is still not sufficient to make the RMVV 
estimator unbiased for small sample sizes. To overcome this drawback, the 

correction factor, α∗ϑ pnm ,,  was computed for several sample sizes n and 

dimension p via simulation approach. Then data sets ( ) pnjX ×∈ R  from 
standard normal distribution ( )IN p ,0  were generated. For each data set 

( ),jX  ,...,,1 rj =  we then calculated the RMVV estimators of location and 

scatter as given in equations (1) and (2) followed by ( ) ( ) .jraw
RMVVSmc∗  If the 

estimator is unbiased, then [ ( ) ] .p
raw
RMVV ISmc =∗E  Thus, the pth root of the 

determinant of ( ) raw
RMVVSmc∗  is expected to be equal to 1. The mean of the 

pth root of the determinant is given by 
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where ( ) raw
RMVVSmc∗  denotes the determinant of a square matrix 

( ) .raw
RMVVSmc∗  We then performed 1000=r  simulations for different 

sample sizes n and dimensions p, with value of .05.0=α  The correction 

factor for ( ) raw
RMVVSmc∗  is given as: 
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Next, we calculate the RMVV location and scatter as follows: 
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Finally, the square robust Mahalanobis distances were obtained by using the 
following formula: 
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The approximation of RMVV solution was based on the generalization of 
MVV algorithm as described in Ali and Yahaya [5] and Yahaya et al. [9]. 
The complete algorithm of RMVV had been discussed in Ali et al. [7]. Two 
typical choices of breakdown point (BP) were considered, i.e., 0.5 with 

( )[ ]21++= pnh  and 0.25 with ( ) .75.0 nh =  

3. Efficiency of Reweighted Minimum Vector Variance 

To gain more insight into the RMVV estimators and observe how 
reweighting affects their performance, we computed the asymptotic relative 
efficiency. The computation of asymptotic relative efficiency (ARE) was 

based on the definition given by Serfling [10]. For any parameter ,pR∈θ  

and two estimators ( )jθ̂  which are p-variate normal with mean θ  and non-
singular covariance matrices ( ) ,nFjΣ  where 2,1=j  and F is the 

corresponding distribution, the ARE of ( )2θ̂  to ( )1θ̂  is 
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The higher value in (8) indicates that the estimator is more efficient. Table 1 
shows the asymptotic relative efficiency (ARE) of the RMVV scatter 
estimators with different breakdown points of 0.25 and 0.5 with relative to 
the MVV estimator with breakdown point of 0.5 (MVV0.5) at normal model. 
They are denoted as RMVV0.25 and RMVV0.5, respectively, and computed 
using the following equation: 

 ( ) ( ) .,ARE 1
5.05.0

p
RMVVMVVMVVRMVV SSSS =  (9) 

Note that the ARE for RMVV0.25 is lower than RMVV0.5 which indicates that 
the latter is more efficient than the former for all p’s. Furthermore, the values 
for RMVV0.5 are consistent across all p’s, but not in the case of RMVV0.25. 
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We could observe that the ARE values for RMVV0.25 ascend with the 
increase in p’s, but the values are below 0.85. From Table 1, we can deduce 
that by reweighting MVV, we can achieve high efficiency while 
simultaneously maintaining highest breakdown point. To show the effect of 
BP on efficiency, let us refer to Table 2. The first row records the efficiency 
of MVV estimator while the second row records the efficiency of the 
reweighted version of the estimator, RMVV. Apparently, the MVV estimator 
is more efficient when BP = 0.25, however, after reweighting the estimator, 
the efficiency at BP = 0.5 improves and outdoes BP = 0.25. The result 
suggests that the RMVV0.5 estimators possess both high efficiency and high 
breakdown point, hence, making these estimators more appealing. 
Nevertheless, we should be aware that the gains in efficiency come at the 
price of a larger bias under contamination. The reason is that higher 
efficiency can only be obtained by increasing tuning parameters, which in 
turn affects the bias under contamination (Rousseeuw [11]). Our study then 
continued with the investigation on finite-sample robustness of RMVV 
estimators to support the above ARE results. For that purpose, a simulation 
study was conducted and discussed in the following section. 

Table 1. Asymptotic relative efficiency of the scatter matrix for the RMVV 
estimator with different breakdown points (BP = 0.25 and 0.5) w.r.t the MVV 
estimator with (BP = 0.5) at normal model 

 2=p  5=p  10=p  15=p  20=p  

RMVV0.25 w.r.t MVV0.5 0.6984 0.7490 0.8012 0.8293 0.8489 

RMVV0.5 w.r.t MVV0.5 1.0217 0.9984 1.0015 0.9975 0.9987 

Table 2. Asymptotic relative efficiency of the scatter matrix for the MVV 
and RMVV estimators with BP = 0.25 with relative to MVV and RMVV 
estimators with BP = 0.5, respectively 

 2=p  5=p  10=p  15=p  20=p  

MVV0.25 w.r.t MVV0.5 1.4073 1.3225 1.2439 1.2024 1.1760 

RMVV0.25 w.r.t RMVV0.5 0.9620 0.9922 0.9951 0.9997 0.9996 
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4. Finite-sample Robustness 

To study on the finite-sample robustness of the RMVV location 
estimator, we performed simulations on contaminated data sets based on 
shifted outliers. We consider this type of contamination due to the fact that, 
for distance based method, the shift outliers are the most difficult to detect 
(Rocke and Woodruff [12]). In each simulation, we generated 1000=L  data 
sets of ( )pIN ,0  with ,2=p  5 and 10 representing small, medium and 

slightly high numbers of dimensions with reasonable values of sample sizes 
of ,50=n  100, 200 and 500. We have considered a contaminated model by 
using a mixture of normal 

( ) ( ) ( ),,,01 1 pppp ININ με+ε−  

where ε is the proportion of outliers. We consider ε to be 0.1 or 0.2, while 1μ  

is the shift in the mean with value of 3 or 5. Manipulation on the mean shifts 
and percentage of outliers generate 4 different types of contaminated 
distributions which are categorized as mildly, moderately and extremely 
contaminated as follows: 

(1) ( ) ( ) ( ) ( )pppp ININ ,31.0,09.0 +  - mild contamination, 

(2) ( ) ( ) ( ) ( )pppp ININ ,32.0,08.0 +  - moderate contamination, 

(3) ( ) ( ) ( ) ( )pppp ININ ,51.0,09.0 +  - moderate contamination, 

(4) ( ) ( ) ( ) ( )pppp ININ ,52.0,08.0 +  - extreme contamination. 

To measure robustness, we used the mean squared error (MSE) and bias 
(Rousseeuw et al. [13]). Then MSE and bias of the mean (location) vectors 
are computed for each simulation, as in Roelant et al. [14], 
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where Ll ...,,1=  and ....,,1 pj =  

Tables 3-6 show the MSE and bias from mild, moderate and extreme 
contaminations for RMVV0.5, RMVV0.25 and MVV0.5 when ,2=p  5 and 10, 

respectively. In general, across the types of contaminations, there is a 
diminution in the value of MSE when p increases. For most conditions, the 
RMVV0.25 location estimator yields the lowest value of MSE, followed by 
RMVV0.5 and then MVV0.5. For larger sample sizes, the bias values for all 
estimators reduce closer to zero. 

As shown in Table 3, under mild contamination, RMVV0.25 produces the 
smallest bias value when 2=p  and ,50=n  but when n increases, RMVV0.5 

estimator outperforms RMVV0.25. Nonetheless, when p increases to 5 and 10, 
RMVV0.25 reverts back to be the better performer. This situation repeats for 
moderate contamination with mean shift 5 (see Table 4). Except for ,50=n  
all the other combinations of p and n for RMVV0.25 generate the smallest bias 
values. For the other moderate contamination in Table 5 where there are 20% 
outliers with mean shift 3, RMVV0.5 is more dominant in generating the 
smallest bias value when .2=p  However, the situation changes when p 

increases to 5, whereby RMVV0.25 seems to outperform RMVV0.5. As p 
increases to 10, RMVV0.25 maintains to be better than RMVV0.5, but as n 
increases to 200 and above, RMVV0.5 becomes less bias. Under the condition 
of extreme contamination as presented in Table 6, RMVV0.25 outperforms 
RMVV0.5 when 2=p  and 5, but when p increases to 10, RMVV0.5 is better 

in terms of bias. 
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Table 3. Location estimator: 10% outliers with mean shift 3 (mild 
contamination) 

n 50 100 200 500 

p = 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 3.0032 0.0114 3.1907 0.0032 3.4245 0.0034 3.6031 0.0017 
RMVV0.25 1.7446 0.0066 1.6572 0.0067 1.6788 0.0052 1.6964 0.0029 
MVV0.5 3.4706 0.0080 4.0558 0.0047 4.5698 0.0043 5.0813 0.0018 

p = 5         

RMVV0.5 2.0571 0.0056 2.0776 0.0038 2.0825 0.0098 2.0380 0.0044 
RMVV0.25 1.4971 0.0066 1.4342 0.0037 1.4038 0.0078 1.3780 0.0031 
MVV0.5 2.1349 0.0127 2.4213 0.0092 2.7794 0.0114 3.1466 0.0048 

p = 10         

RMVV0.5 1.8022 0.0126 1.8966 0.0151 1.8359 0.0136 1.7480 0.0089 
RMVV0.25 1.4394 0.0092 1.3617 0.0120 1.3560 0.0117 1.3441 0.0079 
MVV0.5 1.8042 0.0107 1.9474 0.0148 2.0003 0.0154 2.4890 0.0105 

 

 

Table 4. Location estimator: 10% outliers with mean shift 5 (moderate 
contamination) 

n 50 100 200 500 

p = 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 2.9739 0.0102 3.1905 0.0031 3.4192 0.0037 3.5983 0.0018 
RMVV0.25 1.7294 0.0024 1.6315 0.0033 1.6520 0.0017 1.6837 0.0009 
MVV0.5 3.4553 0.0072 4.0614 0.0044 4.5754 0.0043 5.0873 0.0019 

p = 5         

RMVV0.5 2.0643 0.0057 2.0525 0.0043 2.0807 0.0100 2.0394 0.0045 
RMVV0.25 1.4904 0.0065 1.4372 0.0042 1.4036 0.0077 1.3773 0.0031 
MVV0.5 2.1370 0.0133 2.4064 0.0073 2.7612 0.0114 2.9932 0.0047 

p = 10         

RMVV0.5 1.7936 0.0117 1.8934 0.0157 1.8708 0.0121 1.7473 0.0090 
RMVV0.25 1.4463 0.0120 1.3674 0.0130 1.3545 0.0112 1.3464 0.0080 
MVV0.5 1.7902 0.0107 1.9474 0.0148 2.1854 0.0129 2.4737 0.0117 
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Table 5. Location estimator: 20% outliers with mean shift 3 (moderate 
contamination) 

n 50 100 200 500 

p = 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 2.7968 0.0109 2.9460 0.0034 3.1887 0.0043 3.1918 0.0037 
RMVV0.25 1.6785 0.0168 1.6481 0.0188 1.7205 0.0177 1.7133 0.0145 
MVV0.5 3.1571 0.0142 3.6666 0.0011 4.2234 0.0043 4.4614 0.0044 

p = 5         

RMVV0.5 2.0241 0.0111 2.0430 0.0033 2.0979 0.0110 2.0288 0.0053 
RMVV0.25 1.4396 0.0058 1.3793 0.0030 1.3890 0.0071 1.4244 0.0036 
MVV0.5 2.0840 0.0109 2.3109 0.0060 2.6152 0.0143 2.8112 0.0147 

p = 10         

RMVV0.5 1.7607 0.0128 1.9035 0.0154 1.9249 0.0103 1.8271 0.0093 
RMVV0.25 1.4070 0.0114 1.3522 0.0132 1.3428 0.0111 1.4040 0.0095 
MVV0.5 1.7682 0.0140 1.9238 0.0166 2.1292 0.0120 2.4336 0.0129 

 

 

Table 6. Location estimator: 20% outliers with mean shift 5 (extreme 
contamination) 

n 50 100 200 500 

p = 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 2.7651 0.0056 2.9251 0.0017 3.1455 0.0046 3.1678 0.0037 
RMVV0.25 1.5730 0.0021 1.5113 0.0023 1.5761 0.0017 1.5600 0.0022 
MVV0.5 3.1161 0.0110 3.6765 0.0019 3.8672 0.0049 4.4345 0.0038 

p = 5         

RMVV0.5 2.0273 0.0129 2.0449 0.0026 2.0951 0.0108 2.1688 0.0037 
RMVV0.25 1.4407 0.0060 1.3797 0.0032 1.3915 0.0071 1.4221 0.0037 
MVV0.5 2.0922 0.0117 2.3082 0.0048 2.5998 0.0143 3.2375 0.0039 

p = 10         

RMVV0.5 1.7522 0.0104 1.9073 0.0151 1.9257 0.0108 1.8272 0.0093 
RMVV0.25 1.4154 0.0108 1.3397 0.0153 1.3439 0.0111 1.2739 0.0093 
MVV0.5 1.7605 0.0116 1.9352 0.0149 2.2967 0.0137 2.4251 0.0132 
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5. Conclusion 

The result of the investigation showed that the conflict between 
efficiency and breakdown point also occurred in MVV estimators. Hence, to 
maintain the highest breakdown value while simultaneously achieving high 
efficiency, this study developed a one-step reweighted version of minimum 
vector variance (MVV) estimator. The finding proved that reweighting leads 
to improvement in efficiency and at the same time maintaining the highest 
breakdown value as shown in the case of RMVV0.5 estimators, thus making 
these estimators more appealing. Even though RMVV0.25 has lower efficiency 
and breakdown point than RMVV0.5, the estimators perform better in terms 
of MSE and bias especially under mild and extreme contaminations. 
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