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Abstract 

The automatic construction of fuzzy system with a large number of 
input variables involves many difficulties such as large time 
complexity and getting stuck in a shallow and local minimum. As 
models to overcome them, the SIRMs (single input rule modules) and 
DIRMs (double input rule modules) models have been proposed. In 
some numerical simulations such as EX-OR and control problems, it 
has been shown that there exists the difference of the capability 
between DIRMs and SIRMs models. In this paper, we theoretically 
show the difference of the capability among SNIRMs (small number 
of input rule modules) models. As a result, there exists the difference 
of the capability among SNIRMs models. Further, in order to reduce 
the number of modules of the SNIRMs model effectively, we propose 
two types of learning algorithms. The one, called pruning algorithm 
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for learning, deletes some rule modules in the SNIRMs model. The 
other one, called generative algorithm for learning, incrementally adds 
some modules to the SNIRMs model. The simulation result shows that 
the SNIRMs models obtained by the proposed algorithms are superior 
in terms of accuracy compared to the conventional SIRMs model and 
in terms of the number of modules to the conventional SNIRMs 
model. 

I. Introduction 

Many studies on self-tuning fuzzy systems [1-5] have been made. The 
aim of these studies is to construct automatically fuzzy inference rules from 
input and output data. The steepest descend method is usually used [6-8]. 
Obvious drawbacks of the steepest descend method are its large 
computational complexity and getting stuck in a shallow and local minimum. 
Further, there is a problem that it is difficult to apply learning for fuzzy 
inference systems to the problem with a large number of inputs. In order to 
overcome them, some novel methods have been developed which (1) create 
fuzzy rules one by one starting from any number of rules [9], (2) delete fuzzy 
rules one by one starting from a sufficiently large number of rules [10], (3) 
use GA and PSO to determine the structure of the fuzzy model [7, 11],                     
(4) use a self-organization or a vector quantization technique to determine the 
initial assignment of fuzzy rules [12], and (5) use generalized objective 
functions [13]. However, there are little effective models of fuzzy inference 
systems dealing with a large number of input variables; in most of the 
conventional methods, fuzzy inference systems deal with a small number                      
of input variables. Further, there is a problem of trade-off between 
interpretability and accuracy [4, 15]. SIRMs model aims to obtain a better 
solution by using fuzzy inference systems composed of single input rule 
modules, where the output is determined as the weighted sum of all modules 
[16, 17]. However, it is known that SIRMs model does not always achieve 
good performance in nonlinear system. Therefore, we have proposed 
SNIRMs model as a generalized SIRMs model, in which each module is 
composed of small number of input variables [18-20]. In particular, DIRMs 
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model has been proposed as effective one of SNIRMs models. Then, there is 
a question how is the difference of the capability among SNIRMs model. We 
have already shown that the EX-OR with two variables and control problems 
can be implemented by DIRMs model but not by SIRMs model in numerical 
simulation [20]. However, we do not study about the difference of the 
capability among SNIRMs models. Further, though the SNIRMs model has 
simple structure, it needs more modules than the SIRMs model. 

In this paper, we show the difference of the capability among SNIRMs 
models theoretically. Further, in order to reduce the number of modules of 
the SNIRMs model effectively, we propose two types of learning algorithms. 
The one, called pruning algorithm for learning, delete some rule modules in 
the SNIRMs model. The other one, called generative algorithm for learning, 
incrementally adds some modules to the SNIRMs model. The simulation 
result shows that the SNIRMs models obtained by the proposed learning 
algorithms are superior in terms of accuracy compared to the conventional 
SIRMs model and in terms of the number of modules to the conventional 
SNIRMs model. 

II. Fuzzy Inference Model and its Learning 

The conventional fuzzy inference model using the steepest descend 

method is described [1-3]. Let { }jZ j ...,,1=  and { }jZ j ...,,1,0=∗  for the 

positive integer j. Let R be the set of real numbers. Let ( )mxx ...,,1=x  and 
ry  be input and output data, respectively, where R∈ix  for mZi ∈  and 

.R∈ry  Then the rule of simplified fuzzy inference model is expressed as 

:jR  if 1x  is jM1  andand L  mx  is ,mjM  then y is ,jw  (1) 

where nZj ∈  is a rule number, mZi ∈  is a variable number, ijM  is a 

membership function of the antecedent part, and jw  is the weight of the 

consequent part. 
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Figure 1. The Gaussian membership function. 

A membership value of the antecedent part jμ  for input x is expressed as 

( )∏
=

=μ
m

i
iijj xM

1
.  (2) 

Let ijc  and ijb  denote the center and the width values of ,ijM  respectively. 

If Gaussian membership function is used, then ijM  is expressed as follows 

(see Figure 1): 
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The output ∗y  of fuzzy inference is calculated by the following equation: 
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j j
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The objective function E is defined to evaluate the inference error 

between the desirable output ry  and the inference output .∗y  

( ) .2
1 2ryyE −= ∗  (5) 
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In order to minimize the objective function E, the parameters { ,ijc∈α  

}ijij wb ,  are updated based on the descent method as follows [1-3]: 

( ) ( ) ,1
α∂
∂−α=+α α
EKtt  (6) 

where t is iteration time and αK  is a constant. When the Gaussian 

membership function as shown in Figure 1 is used as the membership 
function, the following relation holds: 
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In this section, we describe the conventional learning algorithm. 

Let {( ) }P
r
p

p
m

p Zpyxx ∈|= ,...,,1D  be the set of learning data. The 

objective of learning is minimizing the following mean square error (MSE): 

( )∑
=

∗ −=
P

p

r
pp yyPE

1

2.1  (10) 

The conventional learning algorithm is shown below [1-3, 9]. 

Learning Algorithm A 

Step A1 [Initialization]. The threshold θ of inference error and the 
maximum number of learning time maxT  are given. The number of rules n is 

set to .0n  Let .1=t  

Step A2. The parameters ijij cb ,  and iw  are set to the initial values. 
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Step A3. Let .1=p  

Step A4. A data ( ) D∈r
p

p
m

p yxx ,...,,1  is given. 

Step A5. From equations (2) and (4), iμ  and ∗y  are computed. 

Step A6. Parameters ijij bc ,  and iw  are updated by equations (6), (7), 

(8) and (9). 

Step A7. If ,Pp =  then go to Step A8 and if ,Pp <  then go to Step 

A4 with .1+← pp  

Step A8. Let ( )tE  be inference error at step t calculated by equation 

(10). If ( ) θ>tE  and ,maxTt <  then go to Step A3 with 1+← tt  else if 

( ) θ≤tE  and ,maxTt ≤  then the algorithm terminates. 

Step A9. If maxTt >  and ( ) ,θ>tE  then go to Step A2 with 1+← nn  

and .1=t  

III. The SNIRMs and DIRMs Models 

The SNIRMs, SIRMs, DIRMs, and TIRMs (triple input rule modules) 

models are introduced [19]. Let m
kU  be the set of all ordered k-tuples of ,mZ  

that is 

{ }.if1 jillllU jik
m
k <<|= L  (11) 

Example 1. { },23,13,123
2 =U  { },3,2,13

1 =U  { },134,234,124,1234
3 =U  

{ },34,24,23,14,13,124
2 =U  { }.4,3,2,14

1 =U  

Then each rule of SNIRMs model for m
kU  is defined as follows: 

SNIRM- :1 kll L  

{ :1 kll
iR L  if 1lx  is 1l

iM  andand L  klx  is ,kl
iM  

then klly L1  is } .1
1 n

i
ll

i
kw =

L  (12) 
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The SNIRMs model composed of rule modules with k variables is called 
k-SNIRMs model. The cases of 1-SNIRMs, 2-SNIRMs, and 3-SNIRMs are 
also called SIRMs, DIRMs and TIRMs ones, respectively. 

Example 2. For 3
1U  and ,3

2U  the SIRMs and DIRMs models are obtained 

as follows: 

SIRM–1. { :1
iR  if 1x  is ,1

iM  then 1y  is } ,1
1 n

iiw =  

SIRM–2. { :2
iR  if 2x  is ,2

iM  then 2y  is } ,1
2 n

iiw =  

SIRM–3. { :3
iR  if 3x  is ,3

iM  then 3y  is } ,1
3 n

iiw =  

DIRM–12. { :12
iR  if 1x  is 1

iM  and 2x  is ,2
iM  then 12y  is } ,1

12 n
iiw =  

DIRM–13. { :13
iR  if 1x  is 1

iM  and 3x  is ,3
iM  then 13y  is } ,1

13 n
iiw =  

DIRM–23. { :23
iR  if 2x  is 2

iM  and 3x  is ,3
iM  then 23y  is } .1

23 n
iiw =  

Figure 2 shows the relation among the conventional, SIRMs and DIRMs 
models for .3=m  Example 2 shows DIRMs and SIRMs models for .3=m  

Let ( )mxxx ...,,1=  and ry  be input and output data, respectively. The 

fitness of the ith rule and the output of SNIRM- kll L1  are as follows: 

( ) ( ) ( ),2
2

1
11

k
kk

l
l
il

l
il

l
i

ll
i xMxMxM L
L =μ  (13) 

.

1

1
1

11

1 ∑
∑

=

=

μ

μ
= n

i
ll

i

n
i

ll
i

ll
io

ll k

kk

k

w
y

L

LL

L
 (14) 

In this model, in addition to the conventional parameters c, b and w, the 
importance degree h is introduced. Let Lh  be the importance degree of each 

module L, where .1 kllL L=  

∑
∈

∗ ⋅=
m
kUL

o
LL yhy .  (15) 
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Figure 2. The relation among the conventional, SIRMs and DIRMs models 
for .3=m  

As the same method as the equations (2) to (5), 
α∂
∂E ’s are calculated as 

follows: 
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It is known that the SIRMs model does not always achieve good 
performance in nonlinear problems [18-20]. On the other hand, when the 
number of input variables is large, Algorithm A requires a large time 
complexity and tends to easily get stuck into a shallow local minimum. The 
DIRMs and TIRMs models can achieve good performance in nonlinear 
problems compared to the SIRMs model and is simpler than the conventional 
model. 

Let D be the set of learning data. A learning algorithm for k-SNIRMs 
model is given as follows: 

Learning Algorithm ( )kB  

1 [Initialization]. The initial parameters, ,,,,,,, max1 c
LL

i
L
i

L
i KThwbc θ  

bK  and wK  for m
kUL ∈  are set. Let .1=t  

2. Let .1=p  

3 [Learning data]. An input and output data ( ) D∈r
p

p
m

p yxx ,...,,1  is 

given. 

4 [Output of fuzzy inference]. Membership value of each rule is 

calculated by equation (13). Inference output ∗
py  is calculated by equations 

(14) and (15). 

5 [Updating parameters]. Importance degree Lh  is updated by equation 

(16). Real number L
iw  is updated by equation (17). Parameters L

ic  and L
ib  

are updated by equations (18) and (19), respectively. 

6 [Termination]. If ,Pp =  then go to the next step. If ,Pp <  then 

1+← pp  and go to Step 3. 
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7. Inference error ( )tE  is calculated by equation (10). If ( ) ,1θ<tE  then 

learning is terminated. 

8. If ,maxTt ≠  then 1+← tt  and go to Step 2. Otherwise learning is 

terminated. 

Note that the numbers of rules for the conventional, DIRMs and SIRMs 

models are ( ),mHO  ( )22HmO  and ( ),mHO  respectively, where H is the 

number of fuzzy partitions. 

In order to reduce the number of rule for DIRMs model, we propose 
generative algorithm for learning (GAL) that incrementally adds m modules 
to the SIRMs model. The model is composed of SIRMs and DIRMs models. 
Let q be the target number of modules. The algorithm is as follows: 

Learning Algorithm ( )qC  (GAL for DIRMs model) 

Step 1. Algorithm B for 1=k  is performed. SIRMs model is performed. 
SIRMs model is constructed. Let 1=i  and .0=j  

Step 2. Select a variable 0x  with the i-th high importance degree in Step 

1 and add all new modules composed of two input variables including the 
variable 0x  to the system, where .1 mi ≤≤  

Step 3. In order to adjust the parameters of the system, Algorithm B is 
performed. If ,qj =  then the algorithm terminates. Otherwise go to Step 2 as 

1+= ii  and ( ).imjj −+=  

Further, we propose pruning algorithm for learning (PAL) that eliminates 
modules until reaching the target number of modules q. The algorithm is as 
follows: 

Learning Algorithm ( )qD  (PAL for DIRMs model) 

Step 1. Let i the number of modules of the constructive model and let 
.C2mi =  
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Step 2. Learning of the DIRMs model with i modules is performed using 
Algorithm B. 

Step 3. If there exists an input variable excluding in all modules for the 
constructed model, the algorithm terminates. 

Step 4. If ,qi =  then the algorithm terminates and the model with q 

modules is obtained. 

Step 5. Delete one module with the lowest importance degree from all 
rule modules of the DIRMS model. Let 1−= ii  and go to Step 2. 

The other methods are also considered with pruning algorithm such as 
the method using forgetting one [19]. In our simulations, there exists no 
difference between them. 

Here, we proposed the GAL and PAL for DIRMs model. The proposed 
methods are also applied to the cases of TIRMs and other SNIRMs models 
easily. 

IV. The Capability of SNIRMs Models and Numerical Simulations 

A. The capability of SNIRMs models 

Let us consider the capability of SNIRMs models using EX-OR problem 
with m variables. The EX-OR problem is defined as follows: 

,1 mxxy ⊕⊕= L  

where { },1,0,...,,1 ∈yxx m  and ⊕  means the exclusive OR operation [3]. 

Then, the following result holds: 

Proposition. The EX-OR problem with 1+k  variables cannot be 
implemented by k-SNIRMs model. 

Proof. Let us show the case of 2=k  without loss of generality. Assume 
that there exists DIRMs (2-SNIRMs) model implementing the EX-OR 
problem with 3 variables as shown in Table I. 
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Table I. EX-OR function with 3=m  

 

From the relation between the output of the model and Table I, the 
following relation holds: 
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Let each sum of equations (20), (24), (25) and (26), and equations (21), 
(22), (23) and (27) be denoted by A and B, respectively. Then, though the 
left hand sides of A and B are equal to each other, the right hand sides of A 
and B are not equal to each other. That is contradiction. As a result, there 
does not exist any DIRMs model that can implement EX-OR problem. 

Corollary [20]. The EX-OR problem with 2 variables cannot be 
implemented by any SIRMs model. 

Generally speaking, ( )1+k -SNIRMs model has higher ability than       

k-SNIRMs model. On the other hand, SIRMs model can perform AND and 
OR logical functions. We conjecture that SIRMs model has the property of 
linearly separable as in the case of perceptron model [3]. The result is not 
proved yet. 

In the following, let us show numerical simulations of logical functions 
as follows: 

,1 mxxy ∨∨= L  

,1 mxxy ∧∧= L  

where { }1,0,...,,1 ∈yxx m  and ∨ and ∧ mean OR and AND operators, 

respectively [3]. Let us implement OR, AND, and EX-OR operators. Table II 
shows the conditions for simulation. Table III shows the result of MSE for 
each model. It is shown that the EX-OR with 3=m  cannot be implemented 
by DIRMs model and the EX-OR with 2=m  cannot be implemented by 
SIRMs model. 
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Table II. The initial conditions for simulations of logical functions 

 

Table III. The result for simulation of logical functions 

 

Further, let us consider about the universal approximation capability of 
the k-SNIRMs models for continuous functions. Let us consider the 
following continuous function: 

( ) ,2, 212121 xxxxxxf −+=  

where ( ) [ ].1,0,,, 2121 ∈xxfxx  Remark that ( ) ( ) 01,10,0 == ff  and 

( ) ( ) .10,11,0 == ff  

When we simulate the function ( )21, xxf  by DIRMs and SIRMs models, 

the MSE for DIRMs model decreases as n increases, but the MSE for SIRMs 
model does not always continue to decrease. It seems that SIRMs model does 
not have universal approximation capability because there exits a continuous 
function that cannot be implemented with arbitrary accuracy by SIRMs 
model. To be precise, it must be proved theoretically. From the same 
consideration, it seems that k-SNIRMs models do not have universal 
approximation capability for continuous functions, where .11 −≤≤ mk  It 
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is clear that k-SNIRMs models do not satisfy Stone-Weierstrass theorem [3] 
though it is sufficient condition for universal approximation capability. It is 
well known that the conventional models have universal approximation 
capability for continuous functions [3]. 

B. Numerical simulations 

The numerical simulations for function approximation and pattern 
classification are performed. In the following, A, B, C, and D mean the 
conventional model by Algorithm A, the k-SNIRMs models by Algorithm B, 
the proposed methods by Algorithms C (GAL) and D (PAL), respectively. 

(1) Function approximation. From Proposition in 4.1, it is shown that 
there exists the difference of the capabilities among the SNIRMs models. The 
following simulation examines how is the difference in approximation of 
continuous functions. This simulation uses four systems specified by the 
following functions with 4-dimensional input space [ ] [ ] [ ]1,01,01,0 ××  

[ ].1,0×  

( ) ( ) ( ) ,12
6cos2sin4

21.37
1.042 43

22
21 +π+π

×++=
xxxxy  (28) 

( ) ( ) ( ) ,0.2
0.1sincos2sin 4321 +×π××π

=
xxxxy  (29) 

( ) ( ) ( ) ,52.446
6cos2sin4

42.74
1.042 43

22
21 +π+π

+++=
xxxxy  (30) 

( ) ( ) .68.4
077.023

42.74
1.042 5.04322

21 43 −++
++

=
−− xx eexxy  (31) 

The simulation condition is shown in Table IV. The numbers of learning 
and test data randomly selected are 512 and 6400, respectively. Table V 
shows the results on comparison among the conventional, TIRMs, DIRMs 
and SIRMs models, where “#” means “the number of”. Table VI shows the 
results on comparison among DIRMs, its generative and pruning algorithms. 
The result of simulation is the average value from ten trials. 
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The simulation results of function approximation show the following: 

(1) From Table V, the conventional and TIRMs models are superior in 
accuracy to SIRMs and DIRMs ones and need parameters so much. 

(2) From Table V, DIRMs model is superior in accuracy to SIRMs model 
and does not need parameters so much compared with SIRMs one. 

(3) From Table VI, the model for PAL is superior in accuracy to the 
model for PAL and the model for GAL is superior in accuracy to the SIRMs 
model, that is, GAL and PAL achieve the high accuracy without using many 
parameters. 

Table IV. The initial conditions for simulations of function approximation 

 

Table V. The result of simulation for function approximation by the 
conventional, SIRMs, DIRMs and TIRMs methods 
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Table VI. The results of simulation for function approximation by GAL and 
PAL 

 

Table VII. Data for pattern classification 

 

Table VIII. The initial conditions for simulation of pattern classification 

 

(2) Pattern classification. As the SNIRMs models such as SIRMs and 
DIRMs have few parameters, it is possible to implement the problems with a 
large number of input variables. Here, the proposed methods are applied to 
pattern classification shown in Table VII [21]. Wine and BCW data have 
comparatively high dimension of input, so it is difficult to implement by the 
conventional methods. The simulation condition is shown in Table VIII. 
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The rate of 2/3 for all data is used for learning and the rate of 1/3 is used 
for test. Table IX shows the result for simulations. In Table IX, error rate 
means the rate of the number of misclassified data for all data. The result of 
simulation is average value from ten trials. 

The results of pattern classification show the following: 

(1) It is shown that three benchmark problems are applied by all models 
excluding the case of Wine data for Algorithm B ( ).1=k  

(2) The models for GAL and PAL do not need so much parameters to 
implement the problems. 

(3) The proposed method can be implemented to the problems with 
comparatively high dimension of input. 

(4) The conventional model can be applied to Iris data and the error rate 
is about 4.0%, that is, the result is almost the same as the case of the obtained 
result in Table IX. 

Table IX. Simulation result of pattern classification 

 

V. Conclusions 

In the previous paper, DIRMs model as a generalized SIRMs model has 
been proposed and it is shown that DIRMs model is superior in accuracy to 
SIRMs model in numerical simulations. But, there are few results on the 
relation among SNIRs models. In this paper, it is clarified that there exists 
the difference of the capability among SNIRMs methods using logical 
functions. That is, there exists a problem that can be implemented by 
( )1+k -SNIRMs model but not by k-SNIRMs model theoretically. Further, 

in order to compare the approximating capability for continuous functions, 
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numerical simulations for four functions have been performed. As the results, 
it is shown that DIRMs and TIRMs models have high approximation 
capability, though they need fewer parameters than the conventional models 
and the models for GAL and PAL perform sufficient approximation 
capability compared with SIRMs models. Furthermore, it is shown that the 
problem with a large number of input variables can be implemented by 
DIRMs and SIRMs models, but it is difficult to implement by the 
conventional model. With the same problem, the models for GAL and PAL 
are superior in accuracy to SIRMs model. In the future work, we will 
consider the theoretical results on SNIRMs models. 
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