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Abstract

The automatic construction of fuzzy system with a large number of
input variables involves many difficulties such as large time
complexity and getting stuck in a shallow and local minimum. As
models to overcome them, the SIRMs (single input rule modules) and
DIRMs (double input rule modules) models have been proposed. In
some numerical simulations such as EX-OR and control problems, it
has been shown that there exists the difference of the capability
between DIRMs and SIRMs models. In this paper, we theoretically
show the difference of the capability among SNIRMs (small number
of input rule modules) models. As a result, there exists the difference
of the capability among SNIRMs models. Further, in order to reduce
the number of modules of the SNIRMs model effectively, we propose
two types of learning algorithms. The one, called pruning algorithm
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for learning, deletes some rule modules in the SNIRMs model. The
other one, called generative algorithm for learning, incrementally adds
some modules to the SNIRMs model. The simulation result shows that
the SNIRMs models obtained by the proposed algorithms are superior
in terms of accuracy compared to the conventional SIRMs model and
in terms of the number of modules to the conventional SNIRMs
model.

l. Introduction

Many studies on self-tuning fuzzy systems [1-5] have been made. The
aim of these studies is to construct automatically fuzzy inference rules from
input and output data. The steepest descend method is usually used [6-8].
Obvious drawbacks of the steepest descend method are its large
computational complexity and getting stuck in a shallow and local minimum.
Further, there is a problem that it is difficult to apply learning for fuzzy
inference systems to the problem with a large number of inputs. In order to
overcome them, some novel methods have been developed which (1) create
fuzzy rules one by one starting from any number of rules [9], (2) delete fuzzy
rules one by one starting from a sufficiently large number of rules [10], (3)
use GA and PSO to determine the structure of the fuzzy model [7, 11],
(4) use a self-organization or a vector quantization technique to determine the
initial assignment of fuzzy rules [12], and (5) use generalized objective
functions [13]. However, there are little effective models of fuzzy inference
systems dealing with a large number of input variables; in most of the
conventional methods, fuzzy inference systems deal with a small number
of input variables. Further, there is a problem of trade-off between
interpretability and accuracy [4, 15]. SIRMs model aims to obtain a better
solution by using fuzzy inference systems composed of single input rule
modules, where the output is determined as the weighted sum of all modules
[16, 17]. However, it is known that SIRMs model does not always achieve
good performance in nonlinear system. Therefore, we have proposed
SNIRMs model as a generalized SIRMs model, in which each module is
composed of small number of input variables [18-20]. In particular, DIRMs
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model has been proposed as effective one of SNIRMs models. Then, there is
a question how is the difference of the capability among SNIRMs model. We
have already shown that the EX-OR with two variables and control problems
can be implemented by DIRMs model but not by SIRMs model in numerical
simulation [20]. However, we do not study about the difference of the
capability among SNIRMs models. Further, though the SNIRMs model has
simple structure, it needs more modules than the SIRMs model.

In this paper, we show the difference of the capability among SNIRMs
models theoretically. Further, in order to reduce the number of modules of
the SNIRMs model effectively, we propose two types of learning algorithms.
The one, called pruning algorithm for learning, delete some rule modules in
the SNIRMs model. The other one, called generative algorithm for learning,
incrementally adds some modules to the SNIRMs model. The simulation
result shows that the SNIRMs models obtained by the proposed learning
algorithms are superior in terms of accuracy compared to the conventional
SIRMs model and in terms of the number of modules to the conventional
SNIRMs model.

Il. Fuzzy Inference Model and its Learning

The conventional fuzzy inference model using the steepest descend
method is described [1-3]. Let Z; = {1, .., j} and Z]—‘ =1{0,1, ..., j} for the
positive integer j. Let R be the set of real numbers. Let x = (X, ..., Xy,) and
y" be input and output data, respectively, where x; € R for i € Z,, and

y" e R. Then the rule of simplified fuzzy inference model is expressed as
Rj 1 if x is Myj and ---and Xp is My, thenyis wj, (1)

where j e Z, is a rule number, i e Zp is a variable number, Mj; is a
membership function of the antecedent part, and wj is the weight of the

consequent part.
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Figure 1. The Gaussian membership function.

A membership value of the antecedent part . for input x is expressed as

Hj :HMij(Xi)- )
i1

Let cjj and by; denote the center and the width values of Mj;, respectively.

If Gaussian membership function is used, then M;; is expressed as follows

A2
Mij = exp(_%[ij” CUJ J ©

The output y* of fuzzy inference is calculated by the following equation:

n
. Zjﬂ“l - Wj
y

== 0

Z?:l“j

The objective function E is defined to evaluate the inference error

(see Figure 1):

between the desirable output y" and the inference output y*.

1 * 2
E=507 -y )
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In order to minimize the objective function E, the parameters o e {cij,

bij wij} are updated based on the descent method as follows [1-3]:

OE
1= - Ky 52—
ot +1) = at) - Kg 5 ®)
where t is iteration time and K, is a constant. When the Gaussian

membership function as shown in Figure 1 is used as the membership
function, the following relation holds:

oE Hj * w Xj — Gjj

ac: =y wy -y Jbz = @)
1 Zj:luj ij

2

oE Hj * * (X'_C")

i e e ®)
) ijluj ij

OE  Hj or

e S 4] ©)

i .
Zj:l“l
In this section, we describe the conventional learning algorithm.

Let D ={(x", ... X}, Yp)Ip € Zp} be the set of learning data. The

objective of learning is minimizing the following mean square error (MSE):
1 P 2
E=5 (vp-vp) (10)
p=1

The conventional learning algorithm is shown below [1-3, 9].
Learning Algorithm A

Step Al [Initialization]. The threshold 6 of inference error and the
maximum number of learning time T,,,, are given. The number of rules n is

setto nyg. Lett =1.

Step A2. The parameters byj, ¢j; and w; are set to the initial values.
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Step A3. Let p =1.

Step Ad. Adata (x°, ..., X}, yp) € D is given.

Step A5. From equations (2) and (4), u; and y* are computed.

Step A6. Parameters cjj, by; and w; are updated by equations (6), (7),
(8) and (9).

Step A7. If p = P, then go to Step A8 and if p < P, then go to Step
Adwith p < p+1.

Step A8. Let E(t) be inference error at step t calculated by equation
(10). If E(t) > 06 and t < Tja, then go to Step A3 with t «— t +1 else if

E(t) <0 and t < Ty, then the algorithm terminates.

Step A9. If t > T,ax and E(t) > 0, then go to Step A2 with n <~ n+1
and t = 1.

I11. The SNIRMs and DIRMs Models

The SNIRMs, SIRMs, DIRMs, and TIRMs (triple input rule modules)

models are introduced [19]. Let U be the set of all ordered k-tuples of Z,,
that is

UR = I |l < 1 if i< ) (11)
Example 1. U3 ={12,13, 23}, U = {1, 2, 3}, UJ = {123,124, 234,134},
Ujs ={12,13,14, 23, 24, 34}, U ={1, 2, 3, 4}.
Then each rule of SNIRMs model for UJ" is defined as follows:
SNIRM-y -+l :

{Rllllk - if Xll is Mlll and --- and Xlk is Milka

then y, .., is will""k iy (12)

k
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The SNIRMs model composed of rule modules with k variables is called
k-SNIRMs model. The cases of 1-SNIRMs, 2-SNIRMs, and 3-SNIRMSs are
also called SIRMs, DIRMs and TIRMs ones, respectively.

Example 2. For Uf’ and Ug’, the SIRMs and DIRMs models are obtained
as follows:

SIRM-1. {Rl : if x, is M{, then y; is wi}l,,

2.6y i M2 20
SIRM-2. {R{" : if x5 is M{", then y, is wi };_,,

3.6y i m3 N
SIRM-3. (R}’ : if x3 is M{’, then y3 is wi'};_,,
DIRM-12. {Rilz: if X is Mil and X, is Miz, then yy, is vvilz}i”:l,
DIRM-13. {R® : if x is M{ and xg is M7, then y;3 is W},
DIRM-23. {R?: if X, is M{ and x3 is M7, then yp3 is w3},

Figure 2 shows the relation among the conventional, SIRMs and DIRMs
models for m = 3. Example 2 shows DIRMs and SIRMs models for m = 3.

Let X = (X, ..., Xyy) and y" be input and output data, respectively. The

fitness of the ith rule and the output of SNIRM-1I; --- 1, are as follows:

uit N = Mg M2 (%)M (x, ), (13)

LI RPN Ve 1%
Zi:lp“l Wi
Nl ’
Zi:l“'

In this model, in addition to the conventional parameters ¢, b and w, the
importance degree h is introduced. Let h_ be the importance degree of each

Yooty = (14)

module L, where L =l --- 1.

y = > h-yp. (15)

m
LeUk
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Figure 2. The relation among the conventional, SIRMs and DIRMs models
for m = 3.

As the same method as the equations (2) to (5), %’s are calculated as
follows:
%=(y*—yr)y‘ﬁy (16)
E - Mgy, (17)
o " b
i=1
OE wh —y? %] ~cn,
—— =" -y = o (18)

I’|j Zrzlur ( rlj)
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L \2
oE . wh —y?° (X”j ~Cy;)
L :(y _yr)hL . L L 3J (19)
ab Z” L (b:)
I’|J' rzlllr rlj

It is known that the SIRMs model does not always achieve good
performance in nonlinear problems [18-20]. On the other hand, when the
number of input variables is large, Algorithm A requires a large time
complexity and tends to easily get stuck into a shallow local minimum. The
DIRMs and TIRMs models can achieve good performance in nonlinear
problems compared to the SIRMs model and is simpler than the conventional
model.

Let D be the set of learning data. A learning algorithm for k-SNIRMs
model is given as follows:

Learning Algorithm B(k)

1 [Initialization]. The initial parameters, ci",bi",wi", hL,el,TmaX, Ke,
Kp and K, for L e Uy areset. Let t = 1.

2.Let p=1.

3 [Learning data]. An input and output data (x’,.., X}, yp)eD is
given.

4 [Output of fuzzy inference]. Membership value of each rule is
calculated by equation (13). Inference output yz is calculated by equations
(14) and (15).

5 [Updating parameters]. Importance degree h, is updated by equation

(16). Real number wi" is updated by equation (17). Parameters ci" and bi"
are updated by equations (18) and (19), respectively.

6 [Termination]. If p=P, then go to the next step. If p<P, then
p < p+1 andgo to Step 3.
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7. Inference error E(t) is calculated by equation (10). If E(t) <6y, then

learning is terminated.

8. If t#Thax, then t <~ t+1 and go to Step 2. Otherwise learning is

terminated.
Note that the numbers of rules for the conventional, DIRMs and SIRMs
models are O(H™), O(m?H?) and O(mH), respectively, where H is the

number of fuzzy partitions.

In order to reduce the number of rule for DIRMs model, we propose
generative algorithm for learning (GAL) that incrementally adds m modules
to the SIRMs model. The model is composed of SIRMs and DIRMs models.
Let g be the target number of modules. The algorithm is as follows:

Learning Algorithm C(q) (GAL for DIRMs model)

Step 1. Algorithm B for k =1 is performed. SIRMs model is performed.
SIRMs model is constructed. Let i =1 and j = 0.

Step 2. Select a variable xp with the i-th high importance degree in Step
1 and add all new modules composed of two input variables including the
variable xg to the system, where 1 <i < m.

Step 3. In order to adjust the parameters of the system, Algorithm B is
performed. If j = g, then the algorithm terminates. Otherwise go to Step 2 as
i=i+land j=j+(m-i).

Further, we propose pruning algorithm for learning (PAL) that eliminates

modules until reaching the target number of modules g. The algorithm is as
follows:

Learning Algorithm D(q) (PAL for DIRMs model)

Step 1. Let i the number of modules of the constructive model and let

i = Cp.
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Step 2. Learning of the DIRMs model with i modules is performed using
Algorithm B.

Step 3. If there exists an input variable excluding in all modules for the
constructed model, the algorithm terminates.

Step 4. If i =q, then the algorithm terminates and the model with g

modules is obtained.

Step 5. Delete one module with the lowest importance degree from all
rule modules of the DIRMS model. Let i =i —1 and go to Step 2.

The other methods are also considered with pruning algorithm such as
the method using forgetting one [19]. In our simulations, there exists no
difference between them.

Here, we proposed the GAL and PAL for DIRMs model. The proposed
methods are also applied to the cases of TIRMs and other SNIRMs models
easily.

IV. The Capability of SNIRMs Models and Numerical Simulations

A. The capability of SNIRMs models

Let us consider the capability of SNIRMs models using EX-OR problem
with m variables. The EX-OR problem is defined as follows:

y=%X @ @ Xy,
where X, ..., Xy, Y € {0, 1}, and @ means the exclusive OR operation [3].

Then, the following result holds:

Proposition. The EX-OR problem with k +1 variables cannot be
implemented by k-SNIRMs model.

Proof. Let us show the case of k = 2 without loss of generality. Assume
that there exists DIRMs (2-SNIRMs) model implementing the EX-OR
problem with 3 variables as shown in Table I.



166 Hirofumi Miyajima, Noritaka Shigei and Hiromi Miyajima
Table I. EX-OR function with m = 3

Lo | z2 [ o5 ||

Y
0
1
1
0
1
0
0
1

— QO = O = 22— ©

From the relation between the output of the model and Table I, the
following relation holds:

> MOMEOw? . > MEOME©)w?
> MiOME) S mioMi0)

i=1 i=1

> MEOMEO)wWE

T3 MEOMEO)
Y MoMEowm? S MM

STomlomie) > MEOMEW

+ h

< 0.5, (20)

n
> MAOMI@WE
+ h3 — >

S MM

i=1

05  (21)

i=1 i=1

ST oMoy Y MAOME)

" MEOIYM2(1)wi2 " L0 M3 (0 w3
Y MOMEa? S MO ME)w

n 2 3 23
thg izt MEOMI ) >05  (22)
> MEQME©)
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. Y Momiout 3 Mm@
ST oMoME) Y MAOME
Z MZD)ME D)W
> MEOMP@)
. Yo Moviow? 3T mtomPo)?
> MOME©) i > MomEo)
n 2 3 23
hy Z‘:ln MEOMIOW
> MFOMI0)
. Zi”_% MiOMEOw? . Z?_ﬁ MEOMA@w
> MIOME(©) ST miomiw
n 2 3 23
h Z”n AL
> MEOMIQ)
Z '\/Il(l)'\/lz(l)w12 Z MEDM 0w
Z MEL)MA (1) Z ME1)ME(0)
" M21M3(0) W
+%§;ﬁMNDMd®m <05
> MEME)
" Zin:lMil(l)Miz(l)WiLz o Z:‘:lmila)mﬁ(l)wi“
STomioMEy Y MEOMA
> MEOME @
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(23)

(24)

(25)

(26)

(27)
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Let each sum of equations (20), (24), (25) and (26), and equations (21),
(22), (23) and (27) be denoted by A and B, respectively. Then, though the
left hand sides of A and B are equal to each other, the right hand sides of A
and B are not equal to each other. That is contradiction. As a result, there
does not exist any DIRMs model that can implement EX-OR problem.

Corollary [20]. The EX-OR problem with 2 variables cannot be
implemented by any SIRMs model.

Generally speaking, (k +1)-SNIRMs model has higher ability than
k-SNIRMs model. On the other hand, SIRMs model can perform AND and
OR logical functions. We conjecture that SIRMs model has the property of
linearly separable as in the case of perceptron model [3]. The result is not
proved yet.

In the following, let us show numerical simulations of logical functions
as follows:

y:xl\/...\/xm,
y:Xl/\.../\Xm’

where Xq, ..., Xy, Y € {0,1} and v and A mean OR and AND operators,

respectively [3]. Let us implement OR, AND, and EX-OR operators. Table Il
shows the conditions for simulation. Table 111 shows the result of MSE for
each model. It is shown that the EX-OR with m = 3 cannot be implemented
by DIRMs model and the EX-OR with m = 2 cannot be implemented by
SIRMs model.
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Table I1. The initial conditions for simulations of logical functions

SIRMs DIRMs TIRMs
OR, AND | EX-OR | OR, AND | EX-OR | EX-OR
K. 0.0001 0.001 0.0001 0.001 0.001
Ky 0.0001 0.001 0.0001 0.001 0.001
K., 0.1 0.01 0.1 0.01 0.01
Ky, 0.5 0.05 0.5 0.05 0.05
Trax 100 100 1000 2000 10000
Initial c;; Equal intervals
Initial b, ; m x (the domain of input)
Initial w;; Random on [0,1]
Initial A Random on [0,1]

Table I11. The result for simulation of logical functions

SIRMs DIRMs TIRMs
OR(m = 2) 0.00 0.00
AND(m = 2) 0.00 0.00
EX-OR(m = 2) 0.25 0.00
EX-OR(m = 3) 0.17 0.00

Further, let us consider about the universal approximation capability of
the k-SNIRMs models for continuous functions. Let us consider the
following continuous function:

f(Xg, X2) = X + X9 — 2% X,

where Xq, X9, f(X, Xo) € [0, 1]. Remark that f(0,0)= f(1,1) =0 and
f(0,1) = f(1, 0) =1.

When we simulate the function f(x, X,) by DIRMs and SIRMs models,

the MSE for DIRMs model decreases as n increases, but the MSE for SIRMs
model does not always continue to decrease. It seems that SIRMs model does
not have universal approximation capability because there exits a continuous
function that cannot be implemented with arbitrary accuracy by SIRMs
model. To be precise, it must be proved theoretically. From the same
consideration, it seems that k-SNIRMs models do not have universal
approximation capability for continuous functions, where 1<k <m-1. It
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is clear that k-SNIRMs models do not satisfy Stone-Weierstrass theorem [3]
though it is sufficient condition for universal approximation capability. It is
well known that the conventional models have universal approximation
capability for continuous functions [3].

B. Numerical simulations

The numerical simulations for function approximation and pattern
classification are performed. In the following, A, B, C, and D mean the
conventional model by Algorithm A, the k-SNIRMs models by Algorithm B,
the proposed methods by Algorithms C (GAL) and D (PAL), respectively.

(1) Function approximation. From Proposition in 4.1, it is shown that
there exists the difference of the capabilities among the SNIRMs models. The
following simulation examines how is the difference in approximation of
continuous functions. This simulation uses four systems specified by the
following functions with 4-dimensional input space [0, 1]x [0, 1] x [0, 1]

x [0, 1].

(2% + 4%5 + 0.1) § 4sin(nxg) + 2¢0s(nx4) + 6

37.21 12 (28)
y = sin(2mxq ) x cos(xy ) x sin(nxg) x X4 + 1.0 , (29)
2.0
(2% + 4%5 + 0.1)2 . 4sin(nxg) + 2cos(nx4) + 6 (30)
B 74.42 446.52 '
2 2 3x3 ~4x4\-0.5
_ (2% +4x5 +0.1) N (3e™8 +2e77) 0.077 (31)

74.42 4.68

The simulation condition is shown in Table IVV. The numbers of learning
and test data randomly selected are 512 and 6400, respectively. Table V
shows the results on comparison among the conventional, TIRMs, DIRMs
and SIRMs models, where “#” means “the number of”. Table VI shows the
results on comparison among DIRMs, its generative and pruning algorithms.
The result of simulation is the average value from ten trials.
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The simulation results of function approximation show the following:

(1) From Table V, the conventional and TIRMs models are superior in
accuracy to SIRMs and DIRMs ones and need parameters so much.

(2) From Table V, DIRMs model is superior in accuracy to SIRMs model
and does not need parameters so much compared with SIRMs one.

(3) From Table VI, the model for PAL is superior in accuracy to the
model for PAL and the model for GAL is superior in accuracy to the SIRMs
model, that is, GAL and PAL achieve the high accuracy without using many
parameters.

Table IV. The initial conditions for simulations of function approximation

A Blk=1) | Blk=2) C D
K- 0.001 0.001 0.001 0.001 0.001
Ky 0.001 0.001 0.001 0.001 0.001
Ky 0.01 0.01 0.01 0.01 0.01
Ky 0.05 0.05 0.05 0.05
Trnax 50000 100 2000 10000 | 20000
Initial c;; Equal intervals
Initial b;; m x (the domain of input)
Initial w;; Random on [0.1]
Initial h.j Random on [0,1]

Table V. The result of simulation for function approximation by the
conventional, SIRMs, DIRMs and TIRMs methods

\ Learning Algorithm \ A | Blk=1) | Bk=2 | Bk=3 |
# Parameers 729 40 276 760
Eq.(28) MSE of (raining(x 10~7%) 0.0045 1.052 0.026 0.0036
MSE of test(x 10~7) 0.0189 1.199 0.050 0.0133
# Paramelters 729 40 276 760
Eq.(29) MSE of training(x 10~%) 0.011 0.258 2229 0.108
MSE of test(x10~7) 0.114 10.567 7456 1.582
# Parameters 729 40 276 760
Eq.(30) MSE of training(x 10~7%) 0.027 6.027 0.234 0.019
MSE of test(x10~%) 0.234 6.682 0.615 0.151
# Parameters 729 40 276 760
Eq.(31) MSE of training(x 10~%) 0.028 5.875 0.014 0.015
MSE of test(x 10~7) 0.163 7.190 0.030 0.064
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Table VI. The results of simulation for function approximation by GAL and
PAL
\ Learning Algorithm [ B(k=2) | Cg=3 | D=3 [ D=4 |
# Parameters 276 178 138 184
Eq.(28) MSE of training(x1077) 0.026 0.443 0.431 0.154
MSE of test(x107*) 0.050 0.686 0.835 0.275
# Parameters 276 178 138 184
Eq.(29) MSE of training(x10~*) 223 475 2.60 2.25
MSE of test(x1077) 7.46 741 6.48 7.30
# Parameters 276 178 138 184
Eq.(30) MSE of training(x10~*) 0.234 1.37 0.014 0.010
MSE of test(x107~) 0.615 1.98 0.020 0.016
# Paramelers 276 178 138 184
Eq.31) MSE of training(x1077) 0.014 146 132 049
MSE of test(x1077) 0.030 0.96 2.30 0.83

Table VII. Data for pattern classification

# input | # clusters | # data
Iris 4 3 150
Wine 13 3 178
BCW 9 2 683

Table VIII. The initial conditions for simulation of pattern classification

B(k=1) | B(k = 2) C D
K. 0.001 0.001 0.001 0.01
Ky 0.001 0.001 0.001 0.01
Ky 0.01 0.01 0.05 0.1
Ky, 0.05 0.05 0.05 0.1
Trmax 100 1000 500 20000
Initial c¢;; Equal intervals
Initial b;; 2(1&1‘31) X (the domain of input)
Initial w;; Random on [0,1]
Initial /1 Random on [0.1]

(2) Pattern classification. As the SNIRMs models such as SIRMs and
DIRMs have few parameters, it is possible to implement the problems with a
large number of input variables. Here, the proposed methods are applied to
pattern classification shown in Table VII [21]. Wine and BCW data have
comparatively high dimension of input, so it is difficult to implement by the
conventional methods. The simulation condition is shown in Table VIII.
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The rate of 2/3 for all data is used for learning and the rate of 1/3 is used
for test. Table IX shows the result for simulations. In Table IX, error rate
means the rate of the number of misclassified data for all data. The result of
simulation is average value from ten trials.

The results of pattern classification show the following:

(1) It is shown that three benchmark problems are applied by all models
excluding the case of Wine data for Algorithm B (k = 1).

(2) The models for GAL and PAL do not need so much parameters to
implement the problems.

(3) The proposed method can be implemented to the problems with
comparatively high dimension of input.

(4) The conventional model can be applied to Iris data and the error rate
is about 4.0%, that is, the result is almost the same as the case of the obtained
result in Table IX.

Table IX. Simulation result of pattern classification

‘ Learning Algorithm [ Btk=1) [ Bkh=2 ] C [ D |

# Parameters 40 276 178(q = 3) 138(q = 3)
Iris Error Rate of training(x 10~2) 4.80 2.80 0.93 0.67
Error Rate of test(x 10~2) 5.17 1.199 3.54 4.67

# Parameters 130 3588 694(q = 12) 1196(¢ = 26)

Wine Error Rate of training(x 10~2) 6.00 0.00 222 3.92
Error Rate of test(x 10~2) 27.8 12.2 12.8 9.04

# Parameters 90 1656 458(g = 8) 368(q = 8)
BCW Error Rate of training(x 10~2) 1.28 0.67 2.16 322
Error Rate of test(x10™=) 3.90 4.50 3.87 5.14

V. Conclusions

In the previous paper, DIRMs model as a generalized SIRMs model has
been proposed and it is shown that DIRMs model is superior in accuracy to
SIRMs model in numerical simulations. But, there are few results on the
relation among SNIRs models. In this paper, it is clarified that there exists
the difference of the capability among SNIRMs methods using logical
functions. That is, there exists a problem that can be implemented by
(k +1)-SNIRMs model but not by k-SNIRMs model theoretically. Further,

in order to compare the approximating capability for continuous functions,
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numerical simulations for four functions have been performed. As the results,
it is shown that DIRMs and TIRMs models have high approximation
capability, though they need fewer parameters than the conventional models
and the models for GAL and PAL perform sufficient approximation
capability compared with SIRMs models. Furthermore, it is shown that the
problem with a large number of input variables can be implemented by
DIRMs and SIRMs models, but it is difficult to implement by the
conventional model. With the same problem, the models for GAL and PAL
are superior in accuracy to SIRMs model. In the future work, we will
consider the theoretical results on SNIRMs models.
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