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Abstract

For a poset P = (X, <p), the strict-double-bound graph of P is the

graph sDB(P) on V(sDB(P)) = X for which vertices u and v of
sDB(P) are adjacent if and only if u = v and there exist elements

X, y € X distinct from u and v such that x <p u <p y and X <p v
<p . The strict-double-bound number ¢(G) of a graph G is defined
as min{n; sDB(P) = G U K,, for some poset P}. We obtain that
4Ky —E(Kp)=l2vmT(2<m<n-1),
((Ky — E(Kp-pan)) =[2Vm-11+1(2<m<n-2)

and {(Kp —E(Kyp))=3(1<m<n-2)
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1. Introduction

In this paper, we deal with K, - E(K,), K, — E(K,-pan) and
K, — E(K} ;). As we note below, previous work had considered the two

types of graphs. One is a typical graph of Graph Theory such as a path, a
cycle, a wheel and so on. The other is a complete graph without some edges.
In the latter case, we considered complete graphs from a point of view of the
number of removing edges. In this paper, we deal with complete graphs

without the edges of some typical graphs such as K, K, -pan and Kj_,.

In this paper, we consider finite graphs without loops and multiple edges.
For a graph G and a subgraph H of G, the graph G — E(H) is the graph
with the vertex set V(G — E(H)) = V(G) and the edge set E(G — E(H)) =
E(G)- E(H).

The union GU I of two graphs G and [ is the graph with the vertex
set V(GUI)=V(G)UV(I) and the edge set E(GUI)=E(G)U E(I).
The sum G+ 1 of two graphs G and [ is the graph with the vertex
set V(G+1)=V(G)UV(I) and the edge set E(G +1)= E(G)U E(I)U
{uv, u e V(G), v e V(I)}.

For a graph G and S c V(G), (S),, is the induced subgraph of S. The
graph K, is a graph with n vertices and no edges.

A clique in a graph G is the vertex set of a maximal complete subgraph
of G. A family Q = {Qy, 05, ..., Q;} is an edge clique cover of G if each Q;
is a clique of G, and for each uv € E(G), there exists Q; € Q such that
u,ve Q.

For a poset P, let Max(P) be the set of all maximal elements of P and

Min(P) be the set of all minimal elements of P. For a poset P and elements

u and v, ul||v denotes that u is incomparable with v.
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McMorris and Zaslavsky [5] introduced concepts of some classes of
bound graphs, that is, upper bound graphs, double bound graphs, strict
double graphs and so on. Scott [8] dealt with double bound graphs in terms
of forbidden subgraphs. Langley et al. [4] considered interval strict upper
bound graphs and chordal strict upper bound graphs. From the point of view
of algorithms, Cheston and Jap [1] dealt with upper bound graphs.

We consider strict-double-bound graphs and strict-double-bound
numbers. For a poset P = (X, <p), the strict-double-bound graph (sDB-
graph) of P is the graph sDB(P) on V(sDB(P)) = X for which vertices u
and v of sDB(P) are adjacent if and only if u # v and there exist elements
x, y € X distinct from u and v such that x <p u <p y and x <p v <p y.

We say that a graph G is a strict-double-bound graph if there exists a
poset whose strict-double-bound graph is isomorphic to G. McMorris and
Zaslavsky [5] introduced a concept of strict-double-bound graphs. Note that
maximal elements and minimal elements of a poset P are isolated vertices

of sDB(P). So a connected graph with p > 2 vertices is not a strict-double-

bound graph. Scott [9] showed as follows: any graph that is the disjoint union
of a non-trivial component and enough number of isolated vertices is a strict-
double-bound graph.

Thus, we introduced the strict-double-bound number of a graph in
[7]. The strict-double-bound number ((G) of a graph G is defined as

min{n; sSDB(P) = G U K, for some poset P}.

Scott [9] obtained the following result, using a concept of transitive

double competition numbers.

Theorem 1.1 (Scott [9]). For a non-trivial connected graph G and a
minimal edge clique cover Q of G, [ 2] Q| 1< ¢(G) <| Q| +1.

We obtain the following result.

Proposition 1.2. Let G be a connected graph with p > 2 vertices and P

be a poset with sDB(P) = G U E{;(G)- Then | Max(P) U Min(P)| = ¢(G).
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Proof. Since maximal elements and minimal elements of P are isolated
vertices of sDB(P), |Max(P)UMin(P)|<((G) and V(G) < V(P)—Max(P)
U Min(P). We assume that | Max(P) U Min(P)| < {(G). Then there exists
an isolated vertex x ¢ Max(P)U Min(P) of sDB(P). For an edge uv of
G, if u, v <p x, then there exists a maximal element o # x such that
u, v<p a, because x ¢ Max(P), and if x <p u, v, then there exists a
minimal element B # x such that B <p u, v, because x ¢ Min(P). We
construct the poset P — x such that V(P —x) =V (P)—{x} and u <p_, v
if u <p v. Then sDB(P -x)= G U I?Q(G)—ls which is a contradiction. I

By Theorem 1.1, {(K,) =2 for n>2. Ogawa et al. [7] and Konishi
et al. [3] gave strict-double-bound numbers of K ,, £, C, and W,.

Ogawa et al. [7] also gave an upper bound of strict-double-bound numbers of
non-trivial trees. These results discuss some graphs with small number of
edges. In [6], Ogawa et al. discussed some graphs with large number of
edges, that is, complete graphs missing one, two or three edges. In [2],
Kanada et al. dealt with strict-double-bound numbers of complete graphs
missing four edges. In this paper, we consider complete graphs without
the edges of some typical graphs, that is, K, — E(K,,), K, — E(K,,-pan)
and K, — E(K} ,,).

We use the following result. This result is a key result of this paper.

Using this theorem, we estimate strict-double-bound numbers of complete

graphs without edges of some typical graphs.

Theorem 1.3 (Konishi et al. [3]). For a graph G with p > 2 vertices
and no isolated vertices, ((K, + G) = ((G) for n > 1.

We also knew the following results.

Theorem 1.4 (Ogawa et al. [7]). Let G be a graph. If G has a minimal

edge clique cover Q ={Qy, Oy, ..., Q;} such that there exists a non-maximal
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complete subgraph H # & satisfying
() 0; N Q; =V(H) for each pair Q;, Q; € Q and
(2) O; -V(H) # D forall Q; € Q,

then ¢(G) =12] 0] 1.

Proposition 1.5 (Ogawa et al. [7]). For a star graph K, , (n > 2),
C(Kl,n) = rZ\/Z—l
2. Star Graphs and Complete Graphs

First, we deal with K, -pan. The graph K,,-pan (m > 2) is a graph as
follows: V(K,,-pan) = {w, vi, vy, ..., vy} U {u},  E(K,,-pan) = {{v;, v;};
1<i<j<m-13U{v;, wh1<i<m—1}U{{w, u}} (see Figure 1).

Figure 1. K5-pan and K, -pan.

Then Q = {{w, v{, ..., v;_1}» {W, u}} is an edge clique cover of K, -pan

satisfying the condition of Theorem 1.4. So we have the following result by
Theorem 1.4.

Proposition 2.1. For a K,,-pan (m > 2), {(K,,-pan) = 3.
Using this result and Theorem 1.3, we have the next result.
Proposition 2.2. (K, — E(K}, ,,)) = 3, where | <m < n - 2.

Proof. Since m +2 < n and K, — E(K} ) = K,,,1-pan,

Ky, - E(Kl,m) = Kn—(m+2) + (Km+2 - E(Kl,m)) = Kn—(m+2) + Ky -pan.
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By Proposition 2.1, (K4 -pan) = 3. Thus, (K, - E(K; ,)) =3 by
Theorem 1.3. g
We also obtain the next result.
Proposition 2.3. {(K,, — E(K,,)) =[2vVm |, where 2 <m < n—1.

Proof. Since m +1<n and K, — E(K,,) = K .,
K, - E(K,) = Kn—(m+1) +(Kypy1 — E(Ky,)) = Kn—(m+1) + Ky

We know that {(K) ,,) = [24/m | by Proposition 1.5. Thus, {(K,, — E(K,,))

=[2vm | by Theorem 1.3. g

3. K,, -pans

Next, we consider K, — E(K,,-pan). We obtain the following result.

Proposition 3.1. For a graph G with p > 2 vertices and no isolated

vertices, ((GUK,,)+ K,) < &(G) + m, where n, m > 1.

Proof. For a graph G, let P; be a poset such that sDB(F;) =
GU I?Q(G)- For the poset Pg, we construct the poset P5 such that (1)
V(PG)=V(Fs) and (2) u <p. v if (a) u, v € V(F;) and u <p_ v or (b)
u € Min(P;) and v € Max(Pg ). Then sDB(FPj;) = sDB(FPg).

For the poset PG, we construct the poset Py such that (1) V(Py) =
V(FG)U iy, wa, vy wy b U {ay, 00, s ey fUV(K,) and (2-1) u <p, v
if () u,veV(F;) and u <p. v, (b) u € V(K,) and v € Max(Fg) or (c)
u € Min(F;) and u € V(K,), 2-2) u <), a; forall u € V(K,) and for
all i=1,2,...,m, (2-3) w; SPH o; foreachi=1,2,..,m, 2-4) u SPH w;

for some u € Min(P5) and all w;.
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Then sDB(Py) = ((GUK,,) + K,) U oy, oy, ..., oy} U Ke(Gy. Thus,
t(GUK,)+K,)<G)+m. O

(K1, m—1 UKp)+ Ky (m > 3) is a graph as follows: V(K ,-; UK;)+
Ky) = {u, vy s v JU W, 2, E((Ky ot UKD + Ky) = v, ufs 10 <
m—-1U{v;, z}; 1 <i <m=1}U{u, z}} U {{w, z}} (see Figure 2).

i (48] Ui —1
._\_ “aw
il Z

Figure 2. (K ,_; U K}) + K;.

Proposition 3.2. ((K, — E(K,,-pan)) = [2Vm —11+1, where 2 <m
<n-2.

Proof. Since m + 2 < n and K, 5 — E(K,,-pan) = (K| ,_; UK}) + K],
K, - E(Km -pan) = Kn—(m+2) + (Km+2 - E(Km —pan))
= Ky—(m+2) + (K1, m—1 U K}) + Ky).

By Proposition 3.1, C((Kj, ;-1 UK})+K;) < (K, 1) +1. By Proposition
1.5, &Ky m1) =12dm —11. Thus, (K}, UK)) +K)<[2dm =1 T+1.

Let P be a poset such that
SDB(P) = (K1, w1 U K1) + K1) U Kg((k; UK 4K )
| Max(P) U Min(P)| = &(K, 1 U K7) + Ky)

and S = {u, v, va, ..., Vj_1} < V(sDB(P)). Let Q be the subposet of P such
that
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V(Q)=SU{a e Max(P); 3x, y € S, x, y <p a}
U{B e Min(P); Ix, y € S, B <p x, y}
and for a, b € V(Q), a <g b if a <p b. Then sDB(Q) = K ,,_; U I?q and
[2Vm-11<q< C((Ky 1 UKy) + Ky), because L(K 1) = [2vm —11.

We consider the case ¢ =[2vm —11. Since u is adjacent to all v (i =

1, 2,.., m—1), each v; is not adjacent to other v; (j # i) and {(Kj ,,—1)

=[2¥m-11, u<p a forall 6 € Max(Q) and B <p u forall B € Min(Q).
Thus, there exists y € (Max(P)U Min(P)) — (Max(Q) U Min(Q)), because

w is not adjacent to u and (K ,_;UKj)+ K] is connected. Hence,
C(Kymq UK+ K))2g+1=12Jm—11+1. In the case ¢ >[2vVm—11,
(KLt UKD+ K 2g22dm—11+1.

Therefore,
C(Kp, mog UK+ Ky) =12Vm =1 1+1
and
4K, — E(K,,-pan)) = [2d/m -1 1+1
by Theorem 1.3. 0
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