Advances and Applications in Discrete Mathematics
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: October 2015
http://dx.doi.org/10.17654/AADMOct2015_125_133
Volume 16, Number 2, 2015, Pages 125-133

ON STRICT-DOUBLE-BOUND NUMBERS OF COMPLETE GRAPHS WITHOUT EDGES OF STARS AND PANS

Keisuke Kanada, Kanosa Kushima, Kenjiro Ogawa, Satoshi Tagusari and Morimasa Tsuchiya*
Department of Mathematical Sciences
Tokai University
Hiratsuka 259-1292, Japan
e-mail: morimasa@keyaki.cc.u-tokai.ac.jp

Abstract

For a poset $P=\left(X, s_{P}\right)$, the strict-double-bound graph of P is the graph $\operatorname{sDB}(P)$ on $V(\operatorname{sDB}(P))=X$ for which vertices u and v of $\operatorname{sDB}(P)$ are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_{P} u \leq_{P} y$ and $x \leq_{P} v$ $\leq_{P} y$. The strict-double-bound number $\zeta(G)$ of a graph G is defined as $\min \left\{n ; \operatorname{sDB}(P) \cong G \bigcup \bar{K}_{n}\right.$ for some poset $\left.P\right\}$. We obtain that

$$
\begin{aligned}
& \qquad \zeta\left(K_{n}-E\left(K_{m}\right)\right)=\lceil 2 \sqrt{m}\rceil(2 \leq m \leq n-1), \\
& \qquad \zeta\left(K_{n}-E\left(K_{m} \text {-pan }\right)\right)=\lceil 2 \sqrt{m-1}\rceil+1(2 \leq m \leq n-2) \\
& \text { and } \zeta\left(K_{n}-E\left(K_{1, m}\right)\right)=3(1 \leq m \leq n-2) .
\end{aligned}
$$

[^0]
1. Introduction

In this paper, we deal with $K_{n}-E\left(K_{m}\right), \quad K_{n}-E\left(K_{m}\right.$-pan $)$ and $K_{n}-E\left(K_{1, m}\right)$. As we note below, previous work had considered the two types of graphs. One is a typical graph of Graph Theory such as a path, a cycle, a wheel and so on. The other is a complete graph without some edges. In the latter case, we considered complete graphs from a point of view of the number of removing edges. In this paper, we deal with complete graphs without the edges of some typical graphs such as K_{m}, K_{m}-pan and $K_{1, m}$.

In this paper, we consider finite graphs without loops and multiple edges. For a graph G and a subgraph H of G, the graph $G-E(H)$ is the graph with the vertex set $V(G-E(H))=V(G)$ and the edge set $E(G-E(H))=$ $E(G)-E(H)$.

The union $G \cup I$ of two graphs G and I is the graph with the vertex set $V(G \cup I)=V(G) \cup V(I)$ and the edge set $E(G \bigcup I)=E(G) \cup E(I)$. The sum $G+I$ of two graphs G and I is the graph with the vertex set $V(G+I)=V(G) \cup V(I)$ and the edge set $E(G+I)=E(G) \cup E(I) \cup$ $\{u v ; u \in V(G), v \in V(I)\}$.

For a graph G and $S \subseteq V(G),\langle S\rangle_{V}$ is the induced subgraph of S. The graph \bar{K}_{n} is a graph with n vertices and no edges.

A clique in a graph G is the vertex set of a maximal complete subgraph of G. A family $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{l}\right\}$ is an edge clique cover of G if each Q_{i} is a clique of G, and for each $u v \in E(G)$, there exists $Q_{i} \in \mathcal{Q}$ such that $u, v \in Q_{i}$.

For a poset P, let $\operatorname{Max}(P)$ be the set of all maximal elements of P and $\operatorname{Min}(P)$ be the set of all minimal elements of P. For a poset P and elements u and $v, u \| v$ denotes that u is incomparable with v.

McMorris and Zaslavsky [5] introduced concepts of some classes of bound graphs, that is, upper bound graphs, double bound graphs, strict double graphs and so on. Scott [8] dealt with double bound graphs in terms of forbidden subgraphs. Langley et al. [4] considered interval strict upper bound graphs and chordal strict upper bound graphs. From the point of view of algorithms, Cheston and Jap [1] dealt with upper bound graphs.

We consider strict-double-bound graphs and strict-double-bound numbers. For a poset $P=\left(X, \leq_{P}\right)$, the strict-double-bound graph (sDBgraph) of P is the graph $\operatorname{sDB}(P)$ on $V(\mathrm{sDB}(P))=X$ for which vertices u and v of $\operatorname{sDB}(P)$ are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_{P} u \leq_{P} y$ and $x \leq_{P} v \leq_{P} y$. We say that a graph G is a strict-double-bound graph if there exists a poset whose strict-double-bound graph is isomorphic to G. McMorris and Zaslavsky [5] introduced a concept of strict-double-bound graphs. Note that maximal elements and minimal elements of a poset P are isolated vertices of $\operatorname{sDB}(P)$. So a connected graph with $p \geq 2$ vertices is not a strict-doublebound graph. Scott [9] showed as follows: any graph that is the disjoint union of a non-trivial component and enough number of isolated vertices is a strict-double-bound graph.

Thus, we introduced the strict-double-bound number of a graph in [7]. The strict-double-bound number $\zeta(G)$ of a graph G is defined as $\min \left\{n ; \operatorname{sDB}(P) \cong G \cup \bar{K}_{n}\right.$ for some poset $\left.P\right\}$.

Scott [9] obtained the following result, using a concept of transitive double competition numbers.

Theorem 1.1 (Scott [9]). For a non-trivial connected graph G and a minimal edge clique cover \mathcal{Q} of $G,\lceil 2 \sqrt{|\mathcal{Q}|}\rceil \leq \zeta(G) \leq|\mathcal{Q}|+1$.

We obtain the following result.
Proposition 1.2. Let G be a connected graph with $p \geq 2$ vertices and P be a poset with $\operatorname{sDB}(P) \cong G \cup \bar{K}_{\zeta(G)}$. Then $|\operatorname{Max}(P) \cup \operatorname{Min}(P)|=\zeta(G)$.

Proof. Since maximal elements and minimal elements of P are isolated vertices of $\operatorname{sDB}(P),|\operatorname{Max}(P) \cup \operatorname{Min}(P)| \leq \zeta(G)$ and $V(G) \subseteq V(P)-\operatorname{Max}(P)$ $\cup \operatorname{Min}(P)$. We assume that $|\operatorname{Max}(P) \cup \operatorname{Min}(P)|<\zeta(G)$. Then there exists an isolated vertex $x \notin \operatorname{Max}(P) \cup \operatorname{Min}(P)$ of $\operatorname{sDB}(P)$. For an edge $u v$ of G, if $u, v \leq_{P} x$, then there exists a maximal element $\alpha \neq x$ such that $u, v \leq_{P} \alpha$, because $x \notin \operatorname{Max}(P)$, and if $x \leq_{P} u, v$, then there exists a minimal element $\beta \neq x$ such that $\beta \leq_{P} u$, v, because $x \notin \operatorname{Min}(P)$. We construct the poset $P-x$ such that $V(P-x)=V(P)-\{x\}$ and $u \leq_{P-x} v$ if $u \leq_{P} v$. Then $\operatorname{sDB}(P-x) \cong G \cup \bar{K}_{\zeta(G)-1}$, which is a contradiction.

By Theorem 1.1, $\zeta\left(K_{n}\right)=2$ for $n \geq 2$. Ogawa et al. [7] and Konishi et al. [3] gave strict-double-bound numbers of $K_{1, n}, P_{n}, C_{n}$ and W_{n}. Ogawa et al. [7] also gave an upper bound of strict-double-bound numbers of non-trivial trees. These results discuss some graphs with small number of edges. In [6], Ogawa et al. discussed some graphs with large number of edges, that is, complete graphs missing one, two or three edges. In [2], Kanada et al. dealt with strict-double-bound numbers of complete graphs missing four edges. In this paper, we consider complete graphs without the edges of some typical graphs, that is, $K_{n}-E\left(K_{m}\right), K_{n}-E\left(K_{m}\right.$-pan $)$ and $K_{n}-E\left(K_{1, m}\right)$.

We use the following result. This result is a key result of this paper. Using this theorem, we estimate strict-double-bound numbers of complete graphs without edges of some typical graphs.

Theorem 1.3 (Konishi et al. [3]). For a graph G with $p \geq 2$ vertices and no isolated vertices, $\zeta\left(K_{n}+G\right)=\zeta(G)$ for $n \geq 1$.

We also knew the following results.
Theorem 1.4 (Ogawa et al. [7]). Let G be a graph. If G has a minimal edge clique cover $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{l}\right\}$ such that there exists a non-maximal
complete subgraph $H \neq \varnothing$ satisfying
(1) $Q_{i} \cap Q_{j}=V(H)$ for each pair $Q_{i}, Q_{j} \in \mathcal{Q}$ and
(2) $Q_{i}-V(H) \neq \varnothing$ for all $Q_{i} \in \mathcal{Q}$,
then $\zeta(G)=\lceil 2 \sqrt{|Q|}\rceil$.
Proposition 1.5 (Ogawa et al. [7]). For a star graph $K_{1, n}(n \geq 2)$, $\zeta\left(K_{1, n}\right)=\lceil 2 \sqrt{n}\rceil$.

2. Star Graphs and Complete Graphs

First, we deal with K_{m}-pan. The graph K_{m}-pan $(m \geq 2)$ is a graph as follows: $V\left(K_{m}\right.$-pan $)=\left\{w, v_{1}, v_{2}, \ldots, v_{m-1}\right\} \cup\{u\}, E\left(K_{m}\right.$-pan $)=\left\{\left\{v_{i}, v_{j}\right\}\right.$; $1 \leq i<j \leq m-1\} \bigcup\left\{\left\{v_{i}, w\right\} ; 1 \leq i \leq m-1\right\} \bigcup\{\{w, u\}\}$ (see Figure 1).

Figure 1. K_{3}-pan and K_{4}-pan.
Then $\mathcal{Q}=\left\{\left\{w, v_{1}, \ldots, v_{m-1}\right\},\{w, u\}\right\}$ is an edge clique cover of K_{m}-pan satisfying the condition of Theorem 1.4. So we have the following result by Theorem 1.4.

Proposition 2.1. For a K_{m}-pan $(m \geq 2), \zeta\left(K_{m}-\right.$ pan $)=3$.
Using this result and Theorem 1.3, we have the next result.
Proposition 2.2. $\zeta\left(K_{n}-E\left(K_{1, m}\right)\right)=3$, where $1 \leq m \leq n-2$.
Proof. Since $m+2 \leq n$ and $K_{m+2}-E\left(K_{1, m}\right)=K_{m+1}$-pan,
$K_{n}-E\left(K_{1, m}\right)=K_{n-(m+2)}+\left(K_{m+2}-E\left(K_{1, m}\right)\right)=K_{n-(m+2)}+K_{m+1}-$ pan.

By Proposition 2.1, $\zeta\left(K_{m+1}\right.$-pan $)=3$. Thus, $\zeta\left(K_{n}-E\left(K_{1, m}\right)\right)=3$ by Theorem 1.3.

We also obtain the next result.
Proposition 2.3. $\zeta\left(K_{n}-E\left(K_{m}\right)\right)=\lceil 2 \sqrt{m}\rceil$, where $2 \leq m \leq n-1$.
Proof. Since $m+1 \leq n$ and $K_{m+1}-E\left(K_{m}\right)=K_{1, m}$,

$$
K_{n}-E\left(K_{m}\right)=K_{n-(m+1)}+\left(K_{m+1}-E\left(K_{m}\right)\right)=K_{n-(m+1)}+K_{1, m} .
$$

We know that $\zeta\left(K_{1, m}\right)=\lceil 2 \sqrt{m}\rceil$ by Proposition 1.5. Thus, $\zeta\left(K_{n}-E\left(K_{m}\right)\right)$ $=\lceil 2 \sqrt{m}\rceil$ by Theorem 1.3.

3. K_{m}-pans

Next, we consider $K_{n}-E\left(K_{m}\right.$-pan $)$. We obtain the following result.
Proposition 3.1. For a graph G with $p \geq 2$ vertices and no isolated vertices, $\zeta\left(\left(G \cup \bar{K}_{m}\right)+K_{n}\right) \leq \zeta(G)+m$, where $n, m \geq 1$.

Proof. For a graph G, let P_{G} be a poset such that $\operatorname{sDB}\left(P_{G}\right) \cong$ $G \cup \bar{K}_{\zeta(G)}$. For the poset P_{G}, we construct the poset P_{G}^{\prime} such that (1) $V\left(P_{G}^{\prime}\right)=V\left(P_{G}\right)$ and (2) $u \leq_{P_{G}^{\prime}} v$ if (a) $u, v \in V\left(P_{G}\right)$ and $u \leq_{P_{G}} v$ or (b) $u \in \operatorname{Min}\left(P_{G}\right)$ and $v \in \operatorname{Max}\left(P_{G}\right)$. Then $\operatorname{sDB}\left(P_{G}^{\prime}\right)=\operatorname{sDB}\left(P_{G}\right)$.

For the poset P_{G}^{\prime}, we construct the poset P_{H} such that (1) $V\left(P_{H}\right)=$ $V\left(P_{G}^{\prime}\right) \cup\left\{w_{1}, w_{2}, \ldots, w_{m}\right\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\} \cup V\left(K_{n}\right)$ and (2-1) $u \leq_{P_{H}} v$ if (a) $u, v \in V\left(P_{G}^{\prime}\right)$ and $u \leq_{P_{G}^{\prime}} v$, (b) $u \in V\left(K_{n}\right)$ and $v \in \operatorname{Max}\left(P_{G}^{\prime}\right)$ or (c) $u \in \operatorname{Min}\left(P_{G}^{\prime}\right)$ and $u \in V\left(K_{n}\right),(2-2) u s_{p_{H}} \alpha_{i}$ for all $u \in V\left(K_{n}\right)$ and for all $i=1,2, \ldots, m$, (2-3) $w_{i} \leq_{P_{H}} \alpha_{i}$ for each $i=1,2, \ldots, m$, (2-4) $u \leq_{P_{H}} w_{i}$ for some $u \in \operatorname{Min}\left(P_{G}^{\prime}\right)$ and all w_{i}.

Then $\operatorname{sDB}\left(P_{H}\right) \cong\left(\left(G \cup \bar{K}_{m}\right)+K_{n}\right) \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\} \cup \bar{K}_{\zeta(G)}$. Thus, $\zeta\left(\left(G \cup \bar{K}_{m}\right)+K_{n}\right) \leq \zeta(G)+m$.
$\left(K_{1, m-1} \cup K_{1}\right)+K_{1}(m \geq 3)$ is a graph as follows: $V\left(\left(K_{1, m-1} \cup K_{1}\right)+\right.$ $\left.K_{1}\right)=\left\{u, v_{1}, \ldots, v_{m-1}\right\} \cup\{w, z\}, E\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right)=\left\{\left\{v_{i}, u\right\} ; 1 \leq i \leq\right.$ $m-1\} \cup\left\{\left\{v_{i}, z\right\} ; 1 \leq i \leq m-1\right\} \cup\{\{u, z\}\} \cup\{\{w, z\}\}$ (see Figure 2).

Figure 2. $\left(K_{1, m-1} \cup K_{1}\right)+K_{1}$.
Proposition 3.2. $\zeta\left(K_{n}-E\left(K_{m}\right.\right.$-pan $\left.)\right)=\lceil 2 \sqrt{m-1}\rceil+1$, where $2 \leq m$ $\leq n-2$.

Proof. Since $m+2 \leq n$ and $K_{m+2}-E\left(K_{m}\right.$-pan $)=\left(K_{1, m-1} \cup K_{1}\right)+K_{1}$,

$$
\begin{aligned}
K_{n}-E\left(K_{m} \text {-pan }\right) & =K_{n-(m+2)}+\left(K_{m+2}-E\left(K_{m} \text {-pan }\right)\right) \\
& =K_{n-(m+2)}+\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right) .
\end{aligned}
$$

By Proposition 3.1, $\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right) \leq \zeta\left(K_{1, m-1}\right)+1$. By Proposition 1.5, $\zeta\left(K_{1, m-1}\right)=\lceil 2 \sqrt{m-1}\rceil$. Thus, $\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right) \leq\lceil 2 \sqrt{m-1}\rceil+1$.

Let P be a poset such that

$$
\begin{aligned}
& \left.\operatorname{sDB}(P) \cong\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right) \cup \bar{K}_{\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right)}\right) \\
& |\operatorname{Max}(P) \cup \operatorname{Min}(P)|=\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right)
\end{aligned}
$$

and $S=\left\{u, v_{1}, v_{2}, \ldots, v_{m-1}\right\} \subseteq V(\operatorname{sDB}(P))$. Let Q be the subposet of P such that

$$
\begin{array}{r}
V(Q)=S \bigcup\left\{\alpha \in \operatorname{Max}(P) ; \exists x, y \in S, x, y \leq_{P} \alpha\right\} \\
\bigcup\left\{\beta \in \operatorname{Min}(P) ; \exists x, y \in S, \beta \leq_{P} x, y\right\}
\end{array}
$$

and for $a, b \in V(Q), a \leq_{Q} b$ if $a \leq_{P} b$. Then $\operatorname{sDB}(Q) \cong K_{1, m-1} \cup \bar{K}_{q}$ and $\lceil 2 \sqrt{m-1}\rceil \leq q \leq \zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right)$, because $\zeta\left(K_{1, m-1}\right)=\lceil 2 \sqrt{m-1}\rceil$.

We consider the case $q=\lceil 2 \sqrt{m-1}\rceil$. Since u is adjacent to all $v_{i}(i=$ $1,2, \ldots, m-1)$, each v_{i} is not adjacent to other $v_{j}(j \neq i)$ and $\zeta\left(K_{1, m-1}\right)$
$=\lceil 2 \sqrt{m-1}\rceil, u \leq_{P} \alpha$ for all $\sigma \in \operatorname{Max}(Q)$ and $\beta \leq_{P} u$ for all $\beta \in \operatorname{Min}(Q)$. Thus, there exists $\gamma \in(\operatorname{Max}(P) \cup \operatorname{Min}(P))-(\operatorname{Max}(Q) \cup \operatorname{Min}(Q))$, because w is not adjacent to u and $\left(K_{1, m-1} \cup K_{1}\right)+K_{1}$ is connected. Hence, $\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right) \geq q+1=\lceil 2 \sqrt{m-1}\rceil+1$. In the case $q>\lceil 2 \sqrt{m-1}\rceil$, $\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right) \geq q \geq\lceil 2 \sqrt{m-1}\rceil+1$.

Therefore,

$$
\zeta\left(\left(K_{1, m-1} \cup K_{1}\right)+K_{1}\right)=\lceil 2 \sqrt{m-1}\rceil+1
$$

and

$$
\zeta\left(K_{n}-E\left(K_{m} \text {-pan }\right)\right)=\lceil 2 \sqrt{m-1}\rceil+1
$$

by Theorem 1.3.

References

[1] G. A. Cheston and T. S. Jap, A survey of the algorithmic properties of simplicial, upper bound and middle graphs, J. Graph Algorithms Appl. 10 (2006), 159-190.
[2] K. Kanada, K. Kushima, K. Ogawa, S. Tagusari and M. Tsuchiya, On strict-double-bound numbers of complete graphs missing four edges, Bulletin of the ICA 68 (2013), 79-89.
[3] S. Konishi, K. Ogawa, S. Tagusari and M. Tsuchiya, Note on strict-double-bound numbers of paths, cycles, and wheels, JCMCC 83 (2012), 205-210.
[4] L. Langley, S. K. Merz, J. R. Lundgren and C. W. Rasmussen, Posets with interval or chordal strict upper and lower bound graphs, Congr. Numer. 125 (1997), 153-160.
[5] F. R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set, J. Combin. Inform. System Sci. 7 (1982), 134-138.
[6] K. Ogawa, R. Soejima, S. Tagusari and M. Tsuchiya, Note on strict-double-bound numbers of nearly complete graphs missing some edges, Discrete Math. 312 (2012), 584-587.
[7] K. Ogawa, S. Tagusari and M. Tsuchiya, Note on strict-double-bound graphs and numbers, AKCE Int. J. Graphs Comb. 11 (2014), 127-132.
[8] D. D. Scott, Posets with interval upper bound graphs, Order 3 (1986), 269-281.
[9] D. D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987), 269-280.

[^0]: Received: April 26, 2015; Accepted: June 27, 2015
 2010 Mathematics Subject Classification: 05C62.
 Keywords and phrases: strict-double-bound graph, strict-double-bound number, poset, star graph.
 *Corresponding author
 Communicated by K. K. Azad

