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Abstract 

For a poset ( ),, PXP ≤=  the strict-double-bound graph of P is the 

graph ( )PsDB  on ( )( ) XPV =sDB  for which vertices u and v of 

( )PsDB  are adjacent if and only if vu ≠  and there exist elements 

Xyx ∈,  distinct from u and v such that yux PP ≤≤  and vx P≤  

.yP≤  The strict-double-bound number ( )Gζ  of a graph G is defined 

as { ( ) }.posetsomefor~sDB;min PKGPn nU=  We obtain that 

( )( ) ( ),122 −≤≤⎤⎡=−ζ nmmKEK mn  

( )( ) ( )22112pan- −≤≤+⎤−⎡=−ζ nmmKEK mn  

and ( ( )) ( ).213,1 −≤≤=−ζ nmKEK mn  
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1. Introduction 

In this paper, we deal with ( ),mn KEK −  ( )pan-mn KEK −  and 

( ).,1 mn KEK −  As we note below, previous work had considered the two 

types of graphs. One is a typical graph of Graph Theory such as a path, a 
cycle, a wheel and so on. The other is a complete graph without some edges. 
In the latter case, we considered complete graphs from a point of view of the 
number of removing edges. In this paper, we deal with complete graphs 
without the edges of some typical graphs such as ,mK mK -pan and .,1 mK  

In this paper, we consider finite graphs without loops and multiple edges. 
For a graph G and a subgraph H of G, the graph ( )HEG −  is the graph      

with the vertex set ( )( ) ( )GVHEGV =−  and the edge set ( )( ) =− HEGE  

( ) ( ).HEGE −  

The union IG ∪  of two graphs G and I is the graph with the vertex          

set ( ) ( ) ( )IVGVIGV ∪∪ =  and the edge set ( ) ( ) ( ).IEGEIGE ∪∪ =  

The sum IG +  of two graphs G and I is the graph with the vertex              
set ( ) ( ) ( )IVGVIGV ∪=+  and the edge set ( ) ( ) ( ) ∪∪ IEGEIGE =+  

( ) ( ){ }.,; IVvGVuuv ∈∈  

For a graph G and ( ),GVS ⊆  VS  is the induced subgraph of S. The 

graph nK  is a graph with n vertices and no edges. 

A clique in a graph G is the vertex set of a maximal complete subgraph 
of G. A family { }lQQQ ...,,, 21=Q  is an edge clique cover of G if each iQ   

is a clique of G, and for each ( ),GEuv ∈  there exists Q∈iQ  such that 

., iQvu ∈  

For a poset P, let ( )PMax  be the set of all maximal elements of P and 

( )PMin  be the set of all minimal elements of P. For a poset P and elements 

u and v, vu ||  denotes that u is incomparable with v. 
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McMorris and Zaslavsky [5] introduced concepts of some classes of 
bound graphs, that is, upper bound graphs, double bound graphs, strict 
double graphs and so on. Scott [8] dealt with double bound graphs in terms 
of forbidden subgraphs. Langley et al. [4] considered interval strict upper 
bound graphs and chordal strict upper bound graphs. From the point of view 
of algorithms, Cheston and Jap [1] dealt with upper bound graphs. 

We consider strict-double-bound graphs and strict-double-bound 
numbers. For a poset ( ),, PXP ≤=  the strict-double-bound graph (sDB-

graph) of P is the graph ( )PsDB  on ( )( ) XPV =sDB  for which vertices u 

and v of ( )PsDB  are adjacent if and only if vu ≠  and there exist elements 

Xyx ∈,  distinct from u and v such that yux PP ≤≤  and .yvx PP ≤≤  

We say that a graph G is a strict-double-bound graph if there exists a      
poset whose strict-double-bound graph is isomorphic to G. McMorris and 
Zaslavsky [5] introduced a concept of strict-double-bound graphs. Note that 
maximal elements and minimal elements of a poset P are isolated vertices         
of ( ).sDB P  So a connected graph with 2≥p  vertices is not a strict-double-

bound graph. Scott [9] showed as follows: any graph that is the disjoint union 
of a non-trivial component and enough number of isolated vertices is a strict-
double-bound graph. 

Thus, we introduced the strict-double-bound number of a graph in         
[7]. The strict-double-bound number ( )Gζ  of a graph G is defined as 

{ ( ) }.posetsomefor~sDB;min PKGPn n∪=  

Scott [9] obtained the following result, using a concept of transitive 
double competition numbers. 

Theorem 1.1 (Scott [9]). For a non-trivial connected graph G and a 

minimal edge clique cover Q  of G, ( ) .12 +≤ζ≤ QQ G  

We obtain the following result. 

Proposition 1.2. Let G be a connected graph with 2≥p  vertices and P 

be a poset with ( ) ( ).~sDB GKGP ζ= ∪  Then ( ) ( ) ( ).MinMax GPP ζ=∪  
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Proof. Since maximal elements and minimal elements of P are isolated 
vertices of ( ),sDB P  ( ) ( ) ( )GPP ζ≤MinMax ∪  and ( ) ( ) ( )PPVGV Max−⊆  

( ).Min P∪  We assume that ( ) ( ) ( ).MinMax GPP ζ<∪  Then there exists 

an isolated vertex ( ) ( )PPx MinMax ∪∉  of ( ).sDB P  For an edge uv of         

G, if ,, xvu P≤  then there exists a maximal element x≠α  such that 

,, α≤Pvu  because ( ),Max Px ∉  and if ,, vux P≤  then there exists a 

minimal element x≠β  such that ,, vuP≤β  because ( ).Min Px ∉  We 

construct the poset xP −  such that ( ) ( ) { }xPVxPV −=−  and vu xP−≤  

if .vu P≤  Then ( ) ( ) ,~sDB 1−ζ=− GKGxP ∪  which is a contradiction.  

By Theorem 1.1, ( ) 2=ζ nK  for .2≥n  Ogawa et al. [7] and Konishi     

et al. [3] gave strict-double-bound numbers of ,,1 nK  ,nP  nC  and .nW  

Ogawa et al. [7] also gave an upper bound of strict-double-bound numbers of 
non-trivial trees. These results discuss some graphs with small number of 
edges. In [6], Ogawa et al. discussed some graphs with large number of 
edges, that is, complete graphs missing one, two or three edges. In [2], 
Kanada et al. dealt with strict-double-bound numbers of complete graphs 
missing four edges. In this paper, we consider complete graphs without      
the edges of some typical graphs, that is, ( ),mn KEK −  ( )pan-mn KEK −  

and ( ).,1 mn KEK −  

We use the following result. This result is a key result of this paper. 
Using this theorem, we estimate strict-double-bound numbers of complete 
graphs without edges of some typical graphs. 

Theorem 1.3 (Konishi et al. [3]). For a graph G with 2≥p  vertices 

and no isolated vertices, ( ) ( )GGKn ζ=+ζ  for .1≥n  

We also knew the following results. 

Theorem 1.4 (Ogawa et al. [7]). Let G be a graph. If G has a minimal 
edge clique cover { }lQQQ ...,,, 21=Q  such that there exists a non-maximal 
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complete subgraph ∅≠H  satisfying 

(1) ( )HVQQ ji =∩  for each pair Q∈ji QQ ,  and 

(2) ( ) ∅≠− HVQi  for all ,Q∈iQ  

then ( ) .2 =ζ QG  

Proposition 1.5 (Ogawa et al. [7]). For a star graph ( ),2,1 ≥nK n  

( ) .2,1 =ζ nK n  

2. Star Graphs and Complete Graphs 

First, we deal with mK -pan. The graph mK -pan ( )2≥m  is a graph as 

follows: ( ) { } { },...,,,,pan- 121 uvvvwKV mm ∪−=  ( ) {{ };,pan- jim vvKE =  

} {{ } } { }{ }uwmiwvmji i ,11;,11 ∪∪ −≤≤−≤<≤  (see Figure 1). 

 

Figure 1. 3K -pan and 4K -pan. 

Then { } { }{ }uwvvw m ,,...,,, 11 −=Q  is an edge clique cover of mK -pan 

satisfying the condition of Theorem 1.4. So we have the following result by 
Theorem 1.4. 

Proposition 2.1. For a ( ),2pan- ≥mKm  ( ) .3pan- =ζ mK  

Using this result and Theorem 1.3, we have the next result. 

Proposition 2.2. ( ( )) ,3,1 =−ζ mn KEK  where .21 −≤≤ nm  

Proof. Since nm ≤+ 2  and ( ) pan,-1,12 ++ =− mmm KKEK  

( ) ( ) ( ( )) ( ) pan.-12,122,1 ++−++− +=−+=− mmnmmmnmn KKKEKKKEK  
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By Proposition 2.1, ( ) .3pan-1 =ζ +mK  Thus, ( ( )) 3,1 =−ζ mn KEK  by 

Theorem 1.3.  

We also obtain the next result. 

Proposition 2.3. ( ( )) ,2 =−ζ mKEK mn  where .12 −≤≤ nm  

Proof. Since nm ≤+ 1  and ( ) ,,11 mmm KKEK =−+  

( ) ( ) ( ( )) ( ) .,1111 mmnmmmnmn KKKEKKKEK +=−+=− +−++−  

We know that ( ) =ζ mK m 2,1  by Proposition 1.5. Thus, ( ( ))mn KEK −ζ  

= m2  by Theorem 1.3.  

3. mK -pans 

Next, we consider ( ).pan-mn KEK −  We obtain the following result. 

Proposition 3.1. For a graph G with 2≥p  vertices and no isolated 

vertices, (( ) ) ( ) ,mGKKG nm +ζ≤+ζ ∪  where .1, ≥mn  

Proof. For a graph G, let GP  be a poset such that ( ) =~sDB GP  

( ).GKG ζ∪  For the poset ,GP  we construct the poset GP′  such that (1) 

( ) ( )GG PVPV =′  and (2) vu GP′≤  if (a) ( )GPVvu ∈,  and vu GP≤  or (b) 

( )GPu Min∈  and ( ).Max GPv ∈  Then ( ) ( ).sDBsDB GG PP =′  

For the poset ,GP′  we construct the poset HP  such that (1) ( ) =HPV  

( ) { } { } ( )nmmG KVwwwPV ∪∪∪ ααα′ ...,,,...,,, 2121  and (2-1) vu HP≤  

if (a) ( )GPVvu ′∈,  and ,vu GP′≤  (b) ( )nKVu ∈  and ( )GPv ′∈ Max  or (c) 

( )GPu ′∈ Min  and ( ),nKVu ∈  (2-2) ipHu α≤  for all ( )nKVu ∈  and for 

all ,...,,2,1 mi =  (2-3) iPi Hw α≤  for each ,...,,2,1 mi =  (2-4) iP wu H≤  

for some ( )GPu ′∈ Min  and all .iw  
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Then ( ) (( ) ) { } ( )....,,,~sDB 21 GmnmH KKKGP ζααα+= ∪∪∪  Thus, 

(( ) ) ( ) .mGKKG nm +ζ≤+ζ ∪   

( ) 111,1 KKK m +− ∪ ( )3≥m  is a graph as follows: (( ) +− 11,1 KKV m ∪  

) { } { },,...,,, 111 zwvvuK m ∪−=  (( ) ) { }{ ≤≤=+− iuvKKKE im 1;,111,1 ∪  

} { }{ } { }{ } { }{ }zwzumizvm i ,,11;,1 ∪∪∪ −≤≤−  (see Figure 2). 

 

Figure 2. ( ) .111,1 KKK m +− ∪  

Proposition 3.2. ( )( ) ,112pan- +−=−ζ mKEK mn  where m≤2  

.2−≤ n  

Proof. Since nm ≤+ 2  and ( ) ( ) ,pan- 111,12 KKKKEK mmm +=− −+ ∪  

( ) ( ) ( )( )pan-pan- 22 mmmnmn KEKKKEK −+=− ++−  

( ) (( ) ).111,12 KKKK mmn ++= −+− ∪  

By Proposition 3.1, (( ) ) ( ) .11,1111,1 +ζ≤+ζ −− mm KKKK ∪  By Proposition 

1.5, ( ) .121,1 −=ζ − mK m  Thus, (( ) ) .112111,1 +−≤+ζ − mKKK m ∪  

Let P be a poset such that 

( ) (( ) ) (( ) ),~sDB 111,1111,1 KKKm mKKKKP +ζ− −
+= ∪∪∪  

( ) ( ) (( ) )111,1MinMax KKKPP m +ζ= − ∪∪  

and { } ( )( ).sDB...,,,, 121 PVvvvuS m ⊆= −  Let Q be the subposet of P such 

that 
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( ) ( ){ }α≤∈∃∈α= PyxSyxPSQV ,,,;Max∪  

( ){ }yxSyxP P ,,,;Min ≤β∈∃∈β∪  

and for ( ),, QVba ∈  ba Q≤  if .ba P≤  Then ( ) qm KKQ ∪1,1
~sDB −=  and 

(( ) ),12 111,1 KKKqm m +ζ≤≤− − ∪  because ( ) .121,1 −=ζ − mK m  

We consider the case .12 −= mq  Since u is adjacent to all ( =ivi  

),1...,,2,1 −m  each iv  is not adjacent to other ( )ijv j ≠  and ( )1,1 −ζ mK  

,12 −= m  α≤Pu  for all ( )QMax∈σ  and uP≤β  for all ( ).Min Q∈β  

Thus, there exists ( ) ( )( ) ( ) ( )( ),MinMaxMinMax QQPP ∪∪ −∈γ  because 

w is not adjacent to u and ( ) 111,1 KKK m +− ∪  is connected. Hence, 

(( ) ) .1121111,1 +−=+≥+ζ − mqKKK m ∪  In the case ,12 −> mq  

(( ) ) .112111,1 +−≥≥+ζ − mqKKK m ∪  

Therefore, 

(( ) ) 112111,1 +−=+ζ − mKKK m ∪  

and 

(( )) 112pan- +−=−ζ mKEK mn  

by Theorem 1.3.  
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