Advances and Applications in Discrete Mathematics

© 2015 Pushpa Publishing House, Allahabad, India Published Online: October 2015

http://dx.doi.org/10.17654/AADMOct2015_125_133 Volume 16, Number 2, 2015, Pages 125-133

ISSN: 0974-1658

ON STRICT-DOUBLE-BOUND NUMBERS OF COMPLETE GRAPHS WITHOUT EDGES OF STARS AND PANS

Keisuke Kanada, Kanosa Kushima, Kenjiro Ogawa, Satoshi Tagusari and Morimasa Tsuchiya*

Department of Mathematical Sciences Tokai University Hiratsuka 259-1292, Japan e-mail: morimasa@keyaki.cc.u-tokai.ac.jp

Abstract

For a poset $P = (X, \leq_P)$, the strict-double-bound graph of P is the graph sDB(P) on V(sDB(P)) = X for which vertices u and v of sDB(P) are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_P u \leq_P y$ and $x \leq_P v \leq_P y$. The strict-double-bound number $\zeta(G)$ of a graph G is defined as $\min\{n; sDB(P) \cong G \cup \overline{K}_n \text{ for some poset } P\}$. We obtain that

$$\zeta(K_n - E(K_m)) = \lceil 2\sqrt{m} \rceil \ (2 \le m \le n - 1),$$

$$\zeta(K_n - E(K_m - pan)) = \lceil 2\sqrt{m - 1} \rceil + 1 \ (2 \le m \le n - 2)$$
 and
$$\zeta(K_n - E(K_{1,m})) = 3 \ (1 \le m \le n - 2).$$

Received: April 26, 2015; Accepted: June 27, 2015

2010 Mathematics Subject Classification: 05C62.

Keywords and phrases: strict-double-bound graph, strict-double-bound number, poset, star graph.

*Corresponding author

Communicated by K. K. Azad

1. Introduction

In this paper, we deal with $K_n - E(K_m)$, $K_n - E(K_m$ -pan) and $K_n - E(K_{1,m})$. As we note below, previous work had considered the two types of graphs. One is a typical graph of Graph Theory such as a path, a cycle, a wheel and so on. The other is a complete graph without some edges. In the latter case, we considered complete graphs from a point of view of the number of removing edges. In this paper, we deal with complete graphs without the edges of some typical graphs such as K_m , K_m -pan and $K_{1,m}$.

In this paper, we consider finite graphs without loops and multiple edges. For a graph G and a subgraph H of G, the graph G - E(H) is the graph with the vertex set V(G - E(H)) = V(G) and the edge set E(G - E(H)) = E(G) - E(H).

The *union* $G \cup I$ of two graphs G and I is the graph with the vertex set $V(G \cup I) = V(G) \cup V(I)$ and the edge set $E(G \cup I) = E(G) \cup E(I)$. The *sum* G + I of two graphs G and I is the graph with the vertex set $V(G + I) = V(G) \cup V(I)$ and the edge set $E(G + I) = E(G) \cup E(I) \cup \{uv; u \in V(G), v \in V(I)\}$.

For a graph G and $S \subseteq V(G)$, $\langle S \rangle_V$ is the induced subgraph of S. The graph \overline{K}_n is a graph with n vertices and no edges.

A *clique* in a graph G is the vertex set of a maximal complete subgraph of G. A family $\mathcal{Q} = \{Q_1, Q_2, ..., Q_l\}$ is an *edge clique cover* of G if each Q_i is a clique of G, and for each $uv \in E(G)$, there exists $Q_i \in \mathcal{Q}$ such that $u, v \in Q_i$.

For a poset P, let Max(P) be the set of all maximal elements of P and Min(P) be the set of all minimal elements of P. For a poset P and elements u and v, $u \parallel v$ denotes that u is incomparable with v.

McMorris and Zaslavsky [5] introduced concepts of some classes of bound graphs, that is, upper bound graphs, double bound graphs, strict double graphs and so on. Scott [8] dealt with double bound graphs in terms of forbidden subgraphs. Langley et al. [4] considered interval strict upper bound graphs and chordal strict upper bound graphs. From the point of view of algorithms, Cheston and Jap [1] dealt with upper bound graphs.

We consider strict-double-bound graphs and strict-double-bound numbers. For a poset $P = (X, \leq_P)$, the *strict-double-bound graph* (sDB-graph) of P is the graph sDB(P) on V(sDB(P)) = X for which vertices u and v of sDB(P) are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_P u \leq_P y$ and $x \leq_P v \leq_P y$. We say that a graph G is a *strict-double-bound graph* if there exists a poset whose strict-double-bound graph is isomorphic to G. McMorris and Zaslavsky [5] introduced a concept of strict-double-bound graphs. Note that maximal elements and minimal elements of a poset P are isolated vertices of sDB(P). So a connected graph with $p \geq 2$ vertices is not a strict-double-bound graph. Scott [9] showed as follows: any graph that is the disjoint union of a non-trivial component and enough number of isolated vertices is a strict-double-bound graph.

Thus, we introduced the strict-double-bound number of a graph in [7]. The *strict-double-bound number* $\zeta(G)$ of a graph G is defined as $\min\{n; \operatorname{sDB}(P) \cong G \cup \overline{K}_n \text{ for some poset } P\}$.

Scott [9] obtained the following result, using a concept of transitive double competition numbers.

Theorem 1.1 (Scott [9]). For a non-trivial connected graph G and a minimal edge clique cover Q of G, $\lceil 2\sqrt{|Q|} \rceil \le \zeta(G) \le |Q| + 1$.

We obtain the following result.

Proposition 1.2. Let G be a connected graph with $p \ge 2$ vertices and P be a poset with $sDB(P) \cong G \cup \overline{K}_{\zeta(G)}$. Then $|\operatorname{Max}(P) \cup \operatorname{Min}(P)| = \zeta(G)$.

Proof. Since maximal elements and minimal elements of P are isolated vertices of $\mathrm{sDB}(P)$, $|\operatorname{Max}(P) \cup \operatorname{Min}(P)| \leq \zeta(G)$ and $V(G) \subseteq V(P) - \operatorname{Max}(P) \cup \operatorname{Min}(P)$. We assume that $|\operatorname{Max}(P) \cup \operatorname{Min}(P)| < \zeta(G)$. Then there exists an isolated vertex $x \notin \operatorname{Max}(P) \cup \operatorname{Min}(P)$ of $\mathrm{sDB}(P)$. For an edge uv of G, if $u, v \leq_P x$, then there exists a maximal element $\alpha \neq x$ such that $u, v \leq_P \alpha$, because $x \notin \operatorname{Max}(P)$, and if $x \leq_P u, v$, then there exists a minimal element $\beta \neq x$ such that $\beta \leq_P u, v$, because $\alpha \notin \operatorname{Min}(P)$. We construct the poset $\alpha \in \operatorname{Min}(P)$ and $\alpha \in \operatorname{Min}(P)$ if $\alpha \in$

By Theorem 1.1, $\zeta(K_n)=2$ for $n\geq 2$. Ogawa et al. [7] and Konishi et al. [3] gave strict-double-bound numbers of $K_{1,n}$, P_n , C_n and W_n . Ogawa et al. [7] also gave an upper bound of strict-double-bound numbers of non-trivial trees. These results discuss some graphs with small number of edges. In [6], Ogawa et al. discussed some graphs with large number of edges, that is, complete graphs missing one, two or three edges. In [2], Kanada et al. dealt with strict-double-bound numbers of complete graphs missing four edges. In this paper, we consider complete graphs without the edges of some typical graphs, that is, $K_n - E(K_m)$, $K_n - E(K_m$ -pan) and $K_n - E(K_{1,m})$.

We use the following result. This result is a key result of this paper. Using this theorem, we estimate strict-double-bound numbers of complete graphs without edges of some typical graphs.

Theorem 1.3 (Konishi et al. [3]). For a graph G with $p \ge 2$ vertices and no isolated vertices, $\zeta(K_n + G) = \zeta(G)$ for $n \ge 1$.

We also knew the following results.

Theorem 1.4 (Ogawa et al. [7]). Let G be a graph. If G has a minimal edge clique cover $Q = \{Q_1, Q_2, ..., Q_l\}$ such that there exists a non-maximal

complete subgraph $H \neq \emptyset$ satisfying

(1)
$$Q_i \cap Q_j = V(H)$$
 for each pair $Q_i, Q_j \in Q$ and

(2)
$$Q_i - V(H) \neq \emptyset$$
 for all $Q_i \in Q$,

then
$$\zeta(G) = \lceil 2\sqrt{|Q|} \rceil$$
.

Proposition 1.5 (Ogawa et al. [7]). For a star graph $K_{1,n}$ $(n \ge 2)$, $\zeta(K_{1,n}) = \lceil 2\sqrt{n} \rceil$.

2. Star Graphs and Complete Graphs

First, we deal with K_m -pan. The graph K_m -pan $(m \ge 2)$ is a graph as follows: $V(K_m$ -pan) = $\{w, v_1, v_2, ..., v_{m-1}\} \cup \{u\}, E(K_m$ -pan) = $\{\{v_i, v_j\}; 1 \le i \le m-1\} \cup \{\{v_i, w\}; 1 \le i \le m-1\} \cup \{\{w, u\}\}$ (see Figure 1).

Figure 1. K_3 -pan and K_4 -pan.

Then $Q = \{\{w, v_1, ..., v_{m-1}\}, \{w, u\}\}$ is an edge clique cover of K_m -pan satisfying the condition of Theorem 1.4. So we have the following result by Theorem 1.4.

Proposition 2.1. For a K_m -pan $(m \ge 2)$, $\zeta(K_m$ -pan) = 3.

Using this result and Theorem 1.3, we have the next result.

Proposition 2.2.
$$\zeta(K_n - E(K_{1,m})) = 3$$
, where $1 \le m \le n - 2$.

Proof. Since $m+2 \le n$ and $K_{m+2} - E(K_{1,m}) = K_{m+1}$ -pan,

$$K_n - E(K_{1,m}) = K_{n-(m+2)} + (K_{m+2} - E(K_{1,m})) = K_{n-(m+2)} + K_{m+1}$$
-pan.

By Proposition 2.1,
$$\zeta(K_{m+1}\text{-pan}) = 3$$
. Thus, $\zeta(K_n - E(K_{1,m})) = 3$ by Theorem 1.3.

We also obtain the next result.

Proposition 2.3.
$$\zeta(K_n - E(K_m)) = \lceil 2\sqrt{m} \rceil$$
, where $2 \le m \le n-1$.

Proof. Since $m + 1 \le n$ and $K_{m+1} - E(K_m) = K_{1,m}$,

$$K_n - E(K_m) = K_{n-(m+1)} + (K_{m+1} - E(K_m)) = K_{n-(m+1)} + K_{1, m}.$$

We know that $\zeta(K_{1,m}) = \lceil 2\sqrt{m} \rceil$ by Proposition 1.5. Thus, $\zeta(K_n - E(K_m)) = \lceil 2\sqrt{m} \rceil$ by Theorem 1.3.

3. K_m -pans

Next, we consider $K_n - E(K_m$ -pan). We obtain the following result.

Proposition 3.1. For a graph G with $p \ge 2$ vertices and no isolated vertices, $\zeta((G \cup \overline{K}_m) + K_n) \le \zeta(G) + m$, where $n, m \ge 1$.

Proof. For a graph G, let P_G be a poset such that $\mathrm{sDB}(P_G) \cong G \cup \overline{K}_{\zeta(G)}$. For the poset P_G , we construct the poset P_G' such that (1) $V(P_G') = V(P_G)$ and (2) $u \leq_{P_G'} v$ if (a) $u, v \in V(P_G)$ and $u \leq_{P_G} v$ or (b) $u \in \mathrm{Min}(P_G)$ and $v \in \mathrm{Max}(P_G)$. Then $\mathrm{sDB}(P_G') = \mathrm{sDB}(P_G)$.

For the poset P'_G , we construct the poset P_H such that (1) $V(P_H) = V(P'_G) \cup \{w_1, w_2, ..., w_m\} \cup \{\alpha_1, \alpha_2, ..., \alpha_m\} \cup V(K_n)$ and (2-1) $u \leq_{P_H} v$ if (a) $u, v \in V(P'_G)$ and $u \leq_{P'_G} v$, (b) $u \in V(K_n)$ and $v \in \text{Max}(P'_G)$ or (c) $u \in \text{Min}(P'_G)$ and $u \in V(K_n)$, (2-2) $u \leq_{P_H} \alpha_i$ for all $u \in V(K_n)$ and for all i = 1, 2, ..., m, (2-3) $w_i \leq_{P_H} \alpha_i$ for each i = 1, 2, ..., m, (2-4) $u \leq_{P_H} w_i$ for some $u \in \text{Min}(P'_G)$ and all w_i .

Then
$$\mathrm{sDB}(P_H)\cong ((G\cup \overline{K}_m)+K_n)\cup \{\alpha_1,\,\alpha_2,\,...,\,\alpha_m\}\cup \overline{K}_{\zeta(G)}.$$
 Thus,
$$\zeta((G\cup \overline{K}_m)+K_n)\leq \zeta(G)+m.$$

 $(K_{1, m-1} \cup K_1) + K_1 \ (m \ge 3)$ is a graph as follows: $V((K_{1, m-1} \cup K_1) + K_1) = \{u, v_1, ..., v_{m-1}\} \cup \{w, z\}, \ E((K_{1, m-1} \cup K_1) + K_1) = \{\{v_i, u\}; 1 \le i \le m-1\} \cup \{\{v_i, z\}; 1 \le i \le m-1\} \cup \{\{u, z\}\} \cup \{\{w, z\}\} \ (\text{see Figure 2}).$

Figure 2. $(K_{1,m-1} \cup K_1) + K_1$.

Proposition 3.2. $\zeta(K_n - E(K_m - \text{pan})) = \lceil 2\sqrt{m-1} \rceil + 1$, where $2 \le m \le n-2$.

Proof. Since $m + 2 \le n$ and $K_{m+2} - E(K_m - pan) = (K_{1,m-1} \cup K_1) + K_1$,

$$K_n - E(K_m - \text{pan}) = K_{n-(m+2)} + (K_{m+2} - E(K_m - \text{pan}))$$

= $K_{n-(m+2)} + ((K_{1,m-1} \cup K_1) + K_1).$

By Proposition 3.1, $\zeta((K_{1,m-1} \cup K_1) + K_1) \le \zeta(K_{1,m-1}) + 1$. By Proposition 1.5, $\zeta(K_{1,m-1}) = \lceil 2\sqrt{m-1} \rceil$. Thus, $\zeta((K_{1,m-1} \cup K_1) + K_1) \le \lceil 2\sqrt{m-1} \rceil + 1$.

Let *P* be a poset such that

$$sDB(P) \cong ((K_{1, m-1} \cup K_1) + K_1) \cup \overline{K}_{\zeta((K_{1, m-1} \cup K_1) + K_1)},$$
$$|Max(P) \cup Min(P)| = \zeta((K_{1, m-1} \cup K_1) + K_1)$$

and $S = \{u, v_1, v_2, ..., v_{m-1}\} \subseteq V(\text{sDB}(P))$. Let Q be the subposet of P such that

$$V(Q) = S \cup \{\alpha \in \operatorname{Max}(P); \exists x, y \in S, x, y \leq_P \alpha\}$$
$$\cup \{\beta \in \operatorname{Min}(P); \exists x, y \in S, \beta \leq_P x, y\}$$

and for $a, b \in V(Q)$, $a \leq_Q b$ if $a \leq_P b$. Then $\mathrm{sDB}(Q) \cong K_{1,m-1} \cup \overline{K}_q$ and $\lceil 2\sqrt{m-1} \rceil \leq q \leq \zeta((K_{1,m-1} \cup K_1) + K_1)$, because $\zeta(K_{1,m-1}) = \lceil 2\sqrt{m-1} \rceil$. We consider the case $q = \lceil 2\sqrt{m-1} \rceil$. Since u is adjacent to all v_i (i = 1, 2, ..., m-1), each v_i is not adjacent to other v_j ($j \neq i$) and $\zeta(K_{1,m-1}) = \lceil 2\sqrt{m-1} \rceil$, $u \leq_P \alpha$ for all $\sigma \in \mathrm{Max}(Q)$ and $\beta \leq_P u$ for all $\beta \in \mathrm{Min}(Q)$. Thus, there exists $\gamma \in (\mathrm{Max}(P) \cup \mathrm{Min}(P)) - (\mathrm{Max}(Q) \cup \mathrm{Min}(Q))$, because w is not adjacent to u and $(K_{1,m-1} \cup K_1) + K_1$ is connected. Hence, $\zeta((K_{1,m-1} \cup K_1) + K_1) \geq q + 1 = \lceil 2\sqrt{m-1} \rceil + 1$. In the case $q > \lceil 2\sqrt{m-1} \rceil$, $\zeta((K_{1,m-1} \cup K_1) + K_1) \geq q \geq \lceil 2\sqrt{m-1} \rceil + 1$.

Therefore,

$$\zeta((K_{1,m-1} \cup K_1) + K_1) = \lceil 2\sqrt{m-1} \rceil + 1$$

and

$$\zeta(K_n - E(K_m - \text{pan})) = \lceil 2\sqrt{m-1} \rceil + 1$$

by Theorem 1.3.

References

- [1] G. A. Cheston and T. S. Jap, A survey of the algorithmic properties of simplicial, upper bound and middle graphs, J. Graph Algorithms Appl. 10 (2006), 159-190.
- [2] K. Kanada, K. Kushima, K. Ogawa, S. Tagusari and M. Tsuchiya, On strict-double-bound numbers of complete graphs missing four edges, Bulletin of the ICA 68 (2013), 79-89.
- [3] S. Konishi, K. Ogawa, S. Tagusari and M. Tsuchiya, Note on strict-double-bound numbers of paths, cycles, and wheels, JCMCC 83 (2012), 205-210.

- [4] L. Langley, S. K. Merz, J. R. Lundgren and C. W. Rasmussen, Posets with interval or chordal strict upper and lower bound graphs, Congr. Numer. 125 (1997), 153-160.
- [5] F. R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set, J. Combin. Inform. System Sci. 7 (1982), 134-138.
- [6] K. Ogawa, R. Soejima, S. Tagusari and M. Tsuchiya, Note on strict-double-bound numbers of nearly complete graphs missing some edges, Discrete Math. 312 (2012), 584-587.
- [7] K. Ogawa, S. Tagusari and M. Tsuchiya, Note on strict-double-bound graphs and numbers, AKCE Int. J. Graphs Comb. 11 (2014), 127-132.
- [8] D. D. Scott, Posets with interval upper bound graphs, Order 3 (1986), 269-281.
- [9] D. D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987), 269-280.