Advances and Applications in Discrete Mathematics
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: October 2015
http://dx.doi.org/10.17654/AADMOct2015_089_109
Volume 16, Number 2, 2015, Pages 89-109
ISSN: 0974-1658

DIMENSION OF VERTEX LABELING OF k-UNIFORM dcsl PATH

K. Nageswararao and K. A. Germina
Department of Mathematics
School of Mathematical and Physical Sciences
Central University of Kerala
Kasaragode, India
e-mail: karreynageswararao@gmail.com
PG and Research Department of Mathematics
Mary Matha Arts and Science College
Kannur University
Mananthavady, India
e-mail: srgerminaka@gmail.com

Abstract

Let an injective function $f: V(G) \rightarrow 2^{X}$, where $V(G)$ is the vertex set of a graph G and 2^{X} is the power set of a non-empty set X, be given. Consider the induced function $f^{\oplus}: V(G) \times V(G) \rightarrow 2^{X} \backslash\{\phi\}$ defined by $f^{\oplus}(u, v)=f(u) \oplus f(v)$, where $f(u) \oplus f(v)$ denotes the symmetric difference of the two sets. The function f is called a k-uniform dcsl (and X a k-uniform dcsl-set) of the graph G, if there

[^0]exists a constant k such that $\left|f^{\oplus}(u, v)\right|=k d_{G}(u, v)$, where $d_{G}(u, v)$ is the length of a shortest path between u and v in G. If a graph G admits a k-uniform dcsl, then G is called a k-uniform dcsl graph. The k-uniform dcsl index of a graph G, denoted by $\delta_{k}(G)$, is the minimum of the cardinalities of X, as X varies over all k-uniform dcsl-sets of G. A linear extension \mathcal{L} of a partial order \mathcal{P} is a linear order on the elements of \mathcal{P}, such that $x \preceq y$ in \mathcal{P} implies $x \preceq y$ in \mathcal{L} for all $x, y \in \mathcal{P}$. A set $\mathcal{R}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{K}\right\}$ of linear extensions of \mathcal{P} is a realizer of \mathcal{P} if, for every incomparable pair $x, y \in \mathcal{P}$, there are $\mathcal{L}_{i}, \mathcal{L}_{j} \in \mathcal{R}$ with $x \preceq y$ in \mathcal{L}_{i} and $x \succeq y$ in \mathcal{L}_{j}. The dimension of \mathcal{P}, denoted by $\operatorname{dim}(\mathcal{P})$, is the minimum of the cardinalities of realizers of \mathcal{P}. Let \mathscr{F} be the range of a k-uniform dcsl of the path P_{n} on $n>2$ vertices. The purpose of this paper is to prove that $\operatorname{dim}(\mathscr{F}) \leq \delta_{k}\left(P_{n}\right)$, whether or not \mathscr{F} forms a lattice with respect to set inclusion ' \subseteq '.

1. Introduction

Acharya [1] introduced the notion of vertex set-valuation as a setanalogue of number valuation. For a graph $G=(V, E)$ and a non-empty set X, Acharya defined a set-valuation of G as an injective set-valued function $f: V(G) \rightarrow 2^{X}$, and he defined a set-indexer $f^{\oplus}: E(G) \rightarrow 2^{X} \backslash\{\phi\}$ as a set-valuation such that the function given by $f^{\oplus}(u v)=f(u) \oplus f(v)$ for every $u v \in E(G)$ is also injective, where 2^{X} is the set of all the subsets of X and ' \oplus ’ is the binary operation of taking the symmetric difference of subsets of X.

Acharya and Germina [2], who has been studying topological setvaluation, introduced the particular kind of set-valuation for which a metric, especially the cardinality of the symmetric difference, is associated with each pair of vertices is k (where k is a constant) times that of the distance between them in the graph [2]. In other words, the question is whether one can
determine those graphs $G=(V, E)$ that admit an injective set-valued function $f: V(G) \rightarrow 2^{X}$, where 2^{X} is the power set of a non-empty set X, such that, for each pair of distinct vertices u and v in G, the cardinality of the symmetric difference $f(u) \oplus f(v)$ is k times of the usual distance $d_{G}(u, v)$ between u and v in G, where k is a constant. They [2] called such a setvaluation f of G a k-uniform distance-compatible set-labeling (k-uniform $d c s l)$ of G, and the graph G which admits k-uniform dcsl a k-uniform distance-compatible set-labeled graph (k-uniform dcsl graph) and the nonempty set X corresponding to f a k-uniform dcsl-set.

The following universal theorem has been established.
Theorem 1 [2]. Every graph admits a dcsl.
The 1-uniform dcsl index of a graph G, denoted by $\delta_{d}(G)$, is the minimum of the cardinalities of X, as X varies over all 1-uniform dcsl-sets of G.

The k-uniform dcsl index [4] of a graph G, denoted by $\delta_{k}(G)$, is the minimum of the cardinalities of X, as X varies over all k-uniform dcsl-sets of G.

One may recall a partially ordered set (or a poset, in short) \mathcal{P} as a structure (P, \preceq), where P is a non-empty set and ' \preceq ' is a partial order relation on P such that ' \preceq ' is reflexive, antisymmetric and transitive. We denote $(x, y) \in \mathcal{P}$ by $x \preceq y$. By standard notation, we usually identify the ground set of a poset with the whole poset.

Two elements of \mathcal{P} standing in the relation of \mathcal{P} are called comparable, otherwise they are incomparable. A poset is a chain if it contains no incomparable pair of elements. In this case, the partial order is a linear order. A poset is an antichain if all of its pairs are incomparable. The size of a largest chain in a poset \mathcal{P} is called the height of the poset, denoted by height (\mathcal{P}) (or $h(\mathcal{P})$), and that of a largest antichain is called its width, denoted by width (\mathcal{P}) (or $w(\mathcal{P})$).

We say that z covers y if and only if $y \prec z$ and $y \preceq x \preceq z$ implies either $x=y$ or $x=z$. A Hasse diagram of a poset (P, \preceq) is a drawing in which the points of P are placed so that if y covers x, then y is placed at a higher level than x and joined to x by a line segment. A poset \mathcal{P} is connected, if its Hasse diagram is connected as a graph. A cover graph of a poset (P, \preceq) is the graph with vertex set P such that $x, y \in P$ are adjacent if and only if one of them covers the other. All posets depicted in this paper are shown by their Hasse diagrams.

A planar drawing of a poset \mathcal{P} is a representation of the Hasse diagram of \mathcal{P} such that no edges of the Hasse diagram cross each other. A planar poset is a poset that has a planar drawing, otherwise it is called non-planar poset.

A poset \mathcal{Q} is a subposet of \mathcal{P} if $Q \subseteq P$, and for each pair $x, y \in \mathcal{Q}$, $x \preceq y$ in \mathcal{Q} exactly if $x \preceq y$ in \mathcal{P}. Two posets \mathcal{P} and \mathcal{Q} are called isomorphic if there is a one-to-one correspondence $\Phi: P \rightarrow Q$ such that $x \preceq y$ in \mathcal{P} if and only if $\Phi(x) \preceq \Phi(y)$ in \mathcal{Q}. The poset \mathcal{Q} is said to be embedded in \mathcal{P}, denoted by $\mathcal{Q} \subseteq \mathcal{P}$, if \mathcal{Q} is isomorphic to a subposet of \mathcal{P}.

A linear extension \mathcal{L} of \mathcal{P} is a linear order on the elements of \mathcal{P}, such that $x \preceq y$ in \mathcal{P} implies $x \preceq y$ in \mathcal{L} for all $x, y \in \mathcal{P}$. We write a linear extension as $\mathcal{L}:\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which stands for $x_{1} \preceq x_{2} \preceq \cdots \preceq x_{n}$ in \mathcal{L}.

Definition 1 [8]. A set $\mathcal{R}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{K}\right\}$ of linear extensions of \mathcal{P} is a realizer of \mathcal{P} if for every incomparable pair $x, y \in \mathcal{P}$, there are \mathcal{L}_{i}, $\mathcal{L}_{j} \in \mathcal{R}$ with $x \preceq y$ in \mathcal{L}_{i} and $x \succeq y$ in \mathcal{L}_{j} for $1 \leq i \neq j \leq k$. The dimension of \mathcal{P} (denoted by $\operatorname{dim}(\mathcal{P})$) is the minimum cardinality of a realizer.

Equivalently, $\operatorname{dim}(\mathcal{P})$ can be defined as the minimum k for which there are linear extensions $\mathcal{L}_{1}, \ldots, \mathcal{L}_{k}$ such that $\mathcal{P}=\mathcal{L}_{1} \cap \mathcal{L}_{2} \cap \cdots \cap \mathcal{L}_{k}$, where the intersection is taken over the sets of relations of the \mathcal{L}, for $1 \leq i \leq k$.

Another characterization of dimension, in terms of coordinates, can be obtained by using an embedding of \mathcal{P} into R^{t} (called t-dimensional poset) and it was given by Ore [13]. Let R^{t} denote the poset of all t-tuples of real numbers, partially ordered by inequality in each coordinate, i.e., $\left(a_{1}, a_{2}, \ldots, a_{t}\right) \leq\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ if and only if $a_{i} \leq b_{i}$, for $i=1,2, \ldots, t$. Then the dimension of a poset \mathcal{P} is the minimum number t such that \mathcal{P} has an embedding into R^{t}.

One should note that, a planar poset \mathcal{P} having a greatest and least element has dimension at most 2 [10]. Trotter and Moore [7] proved that a planar poset having either a greatest or least element has dimension at most 3. Hiraguchi [16] proved that the dimension cannot exceed the width, and antichains show that the dimension can be much less than the width, and also he proved that the dimension cannot exceed half of the number of points. Kelly [15] then constructed planar posets of arbitrary dimension.

A poset (L, \preceq) is a lattice if every pair of elements $x, y \in L$; has a least upper bound (lub, for short), denoted by $x \vee y$ (called join), and a greatest lower bound (glb, for short), denoted by $x \wedge y$ (called meet). In general, a lattice is denoted by (L, \preceq).

Throughout this paper, lattice (and poset) means lattice (and poset) under set inclusion \subseteq. Unless otherwise mentioned, for all the terminology in graph theory and lattice theory, the reader is referred, respectively to $[6,5]$.

In this paper, when we speak of the dimension of vertex labeling of k-uniform dcsl graph, we usually mean a dimension of a poset whose elements are the vertex labeling of k-uniform dcsl graph, and also, whenever we consider the vertex labeling of k-uniform dcsl of G by \mathscr{F}, it means that \mathscr{F} is a poset, whose elements are vertex labeling of k-uniform dcsl of G. In particular, we consider only planar posets (connected), and we prove that $\operatorname{dim}(\mathscr{F}) \leq \delta_{k}\left(P_{n}\right)$, where \mathscr{F} is a set of vertex labeling of the k-uniform dcsl path $P_{n}(n>2)$ whether or not forms a lattice with respect to set inclusion ' \subseteq '.

2. Preliminaries

In this section, we provide some basic results of partial orders and k-uniform dcsl index $\delta_{k}(G)$ of G that are relevant to research. Most of the results discussed here can be found in Dilworth, Mirsky and in Trotter and Moore.

The most classical theorems of posets are given by Dilworth and Mirsky.
Theorem 2 [12]. Suppose that the largest antichain in the poset \mathcal{P} has size r. Then \mathcal{P} can be partitioned into r chains, but not fewer.

Theorem 3 [14]. Suppose that the largest chain in the poset \mathcal{P} has size r. Then \mathcal{P} can be partitioned into r antichains, but not fewer.

The following theorem is one of an important result which was given by Trotter and Moore.

Theorem 4 [7]. If the Hasse diagram of \mathcal{P} is a tree, then $\operatorname{dim}(\mathcal{P}) \leq 3$.
In [4, 3] and [11], the following results are established.
Proposition 1 [4]. For a k-uniform dcsl graph $G, \delta_{k}(G) \geq k \operatorname{diam}(G)$.
Theorem 5 [4]. If G is k-uniform dcsl, and m is a positive integer, then G is mk-uniform dcsl.

Lemma 1 [3]. $\delta_{d}\left(P_{n}\right)=n-1$, for $n>2$.
Proposition 2 [11]. The set \mathscr{F} of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$ forms a lattice.

3. Main Results

Since, by Proposition 2, the set \mathscr{F} of vertex labeling of a 1 -uniform dcsl path $P_{n}(n>2)$ form a lattice, and also, all the members of \mathscr{F} are comparable, so that, $\operatorname{dim}(\mathscr{F})=1$. By Lemma $1, \delta_{d}\left(P_{n}\right)=n-1$, for $n>2$. Hence, we conclude the following:

Theorem 6. Let \mathscr{F} be the set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$ which form a lattice with respect to set inclusion ' \subseteq '. Then $\operatorname{dim}(\mathscr{F})<\delta_{d}\left(P_{n}\right)$.

Remark 1. One may observe that, every vertex labeling of a 1 -uniform dcsl path $P_{n}(n>2)$ need not form a lattice, they are some vertex labeling, which do not form a lattice, so depending on the poset of different height and width, one may get different dimensions. For, consider $\mathscr{F}=\{\{1\},\{1,2\}$, $\{1,2,3\}\}$ is the vertex labeling of 1-uniform dcsl path P_{3}, which is a lattice of $\operatorname{height}(\mathscr{F})=3$, $\operatorname{width}(\mathscr{F})=1$, and $\operatorname{dim}(\mathscr{F})=1$. Also, consider $\mathscr{H}=$ $\{\{1,3\},\{1\},\{1,2\}\}$ is the another vertex labeling of 1 -uniform dcsl path P_{3}, which is a poset but not lattice of $\operatorname{height}(\mathscr{F})=2$, \quad width $(\mathscr{F})=2$, and $\operatorname{dim}(\mathscr{F})=2$.

Let \mathscr{F} be a set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$ which form a poset. If $\operatorname{height}(\mathscr{F})=n$, then $\operatorname{dim}(\mathscr{F})=1$, and $\operatorname{width}(\mathscr{F})=1$, which is maximum, now, on words, we call it as maximum width (\mathscr{F}). However, when $\operatorname{height}(\mathscr{F}) \neq n$, then $\operatorname{dim}(\mathscr{F}) \neq 1$, and maximum width $(\mathscr{F}) \neq 1$, so calculating maximum $\operatorname{width}(\mathscr{F})$ and $\operatorname{dim}(\mathscr{F})$ is an interesting problem. We start with $\operatorname{height}(\mathscr{F})=2$, and calculate maximum width (\mathscr{F}) and $\operatorname{dim}(\mathscr{F})$. This observation leads us to construct a new definition, which we named as "height-2 poset".

Definition 2. The height-2 poset H_{n} on $2 n$ elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ is the poset of height two consisting of two antichains $A=\left\{a_{1}, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ such that $b_{i} \preceq a_{j}$ in H_{n} exactly if $i=j$, and $j=i-1$ (see Figure 1).

Figure 1. Height-2 poset H_{n}.
Proposition 3. For $n \geq 2, \operatorname{dim}\left(H_{n}\right)=2$.
Proof. Consider the set $\mathcal{R}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}\right\}$ of linear extensions of the height2 poset H_{n}, where

$$
\mathcal{L}_{1}:\left[b_{1}, b_{2}, a_{1}, b_{3}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}, b_{4}, b_{5}, \ldots, b_{n-1}, b_{n}\right]
$$

and

$$
\mathcal{L}_{2}:\left[b_{n}, b_{n-1}, \ldots, b_{4}, a_{n}, a_{n-1}, \ldots, a_{2}, b_{3}, b_{2}, b_{1}, a_{1}\right] .
$$

Then \mathcal{R} is a realizer of H_{n} (since for every incomparable pair $x, y \in H_{n}$, there are $\mathcal{L}_{i}, \mathcal{L}_{j} \in \mathcal{R}$ with $x \preceq y$ in \mathcal{L}_{i} and $x \succeq y$ in \mathcal{L}_{j} for $1 \leq i \neq j$ ≤ 2), and hence $\operatorname{dim}\left(H_{n}\right) \leq 2$. We claim that there is no proper subset \mathcal{S} of \mathcal{R} which realizes H_{n}. If possible, suppose there is a proper subset \mathcal{S} of \mathcal{R} which realizes H_{n}, which means the only one member in \mathcal{S} whose intersection equal to the poset H_{n}, thus all the elements of H_{n} are comparable, a contradiction. Hence $\operatorname{dim}\left(H_{n}\right)=2$.

Proposition 4. There exists a vertex labeling \mathscr{F} of a 1-uniform dcsl path $P_{n}(n>2)$ which does not form a lattice of width $(\mathscr{F})=\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$ and height $(\mathscr{F})=2$, and the poset \mathscr{F} is embedded in height- 2 poset H_{n}.

Proof. Let $V\left(P_{n}\right) \doteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Let $X=\{1,2, ., w, ., n-1\}$, where $w=\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$.

Define $f: V\left(P_{n}\right) \rightarrow 2^{X}$ by $f\left(v_{1}\right)=\{1,2, \ldots, w-1\}, f\left(v_{2}\right)=\{1,2, \ldots$, $w-1, w\}, \quad f\left(v_{3}\right)=\{2, ., w-1, w\}, f\left(v_{4}\right)=\{2, ., w-1, w, w+1\}, \quad f\left(v_{5}\right)$ $=\{3, ., w, w+1\}$.

Hence, in general, for $1 \leq i \leq n$,

$$
f\left(v_{i}\right)= \begin{cases}\left\{\frac{i+1}{2}, \frac{i+1}{2}+1, \ldots, w+\frac{i+1}{2}-3, w+\frac{i+1}{2}-2\right\}, & \text { if } i \text { is odd } \\ \left\{\frac{i}{2}, \frac{i}{2}+1, \ldots, w+\frac{i}{2}-2, w+\frac{i}{2}-1\right\}, & \text { otherwise. }\end{cases}
$$

Then

$$
\begin{aligned}
& \left|f\left(v_{1}\right) \Delta f\left(v_{3}\right)\right|=2=d\left(v_{1}, v_{3}\right),\left|f\left(v_{1}\right) \Delta f\left(v_{4}\right)\right|=3=d\left(v_{1}, v_{4}\right) \\
& \left|f\left(v_{2}\right) \Delta f\left(v_{3}\right)\right|=1=d\left(v_{2}, v_{3}\right)
\end{aligned}
$$

hence $\left|f\left(v_{i}\right) \Delta f\left(v_{j}\right)\right|=j-i=1 . d\left(v_{i}, v_{j}\right)$, for $1 \leq i<j \leq n$. Thus, f is a 1-uniform dcsl.

Without loss of generality, suppose n is even. For $1 \leq i \leq \frac{n}{2}$, choose $\mathcal{A}=\left\{f\left(v_{2}\right), f\left(v_{4}\right), \ldots, f\left(v_{2 i}\right)\right\}$ and $\mathcal{B}=\left\{f\left(v_{1}\right), f\left(v_{3}\right), \ldots, f\left(v_{2 i-1}\right)\right\}$. Then $\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}=\mathcal{A} \cup \mathcal{B}$ form a poset of height 2 and width w with respect to \subseteq, also \mathcal{A} and \mathcal{B} are antichains of same length $\frac{n}{2}$. Since, for each pair of elements $f\left(v_{i}\right), f\left(v_{j}\right)$ in \mathscr{F} for $1 \leq i<j \leq n$, which are comparable, both supremum and infimum exist, while for the incomparable elements $f\left(v_{i}\right), f\left(v_{j}\right)$ in \mathscr{F}, for $1 \leq i<j \leq n$, supremum $\left\{f\left(v_{i}\right), f\left(v_{j}\right)\right\}$ $=f\left(v_{i}\right) \bigcup f\left(v_{j}\right)$ when i and j are odd, but infimum does not exist, and when i and j are even, infimum $\left\{f\left(v_{i}\right), f\left(v_{j}\right)\right\}=f\left(v_{i}\right) \cap f\left(v_{j}\right)$, but supremum does not exist.

Hence, (\mathscr{F}, \subseteq) is not a lattice.
Finally, we prove that \mathscr{F} is embedded in H_{n}.

Define $\Phi: \mathscr{F} \rightarrow H_{\frac{n}{2}}$ by

$$
\Phi\left(f\left(v_{i}\right)\right)= \begin{cases}\frac{a_{i}}{2}, & \text { if } i \text { is even, } \\ b_{\left\lceil\frac{i}{2}\right\rceil}, & \text { otherwise, }\end{cases}
$$

where $f\left(v_{i}\right) \in \mathscr{F}$ for $1 \leq i \leq n$, and $H_{\frac{n}{2}}$ is a subposet of H_{n} on n elements $a_{1}, \ldots, a_{\frac{n}{2}}, b_{1}, \ldots, b_{\frac{n}{2}}$ with the same partial order of H_{n}. Since, for $1 \leq l \leq \frac{n}{2}, \quad f\left(v_{2 l-1}\right) \subseteq f\left(v_{2 l}\right)$ if and only if $b_{l} \preceq a_{l}$ in $H_{\frac{n}{2}}$, and for $1 \leq l \leq \frac{n}{2}-1, f\left(v_{2 l+1}\right) \subseteq f\left(v_{2 l}\right)$ in \mathscr{F} if and only if $b_{l+1} \preceq a_{l}$ in $H_{\frac{n}{2}}$. Hence, $\mathscr{F} \cong H_{\frac{n}{2}}$, and hence \mathscr{F} is embedded in H_{n}.

Proposition 5. Let \mathscr{F} be the set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$, which is embedded in H_{n}. Then $\operatorname{height}(\mathscr{F})=2$ if and only if width $(\mathscr{F})=\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$, and width (\mathscr{F}) is maximum.

Proof. Let $V\left(P_{n}\right) \doteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Let $X=\{1,2, ., w, ., n-1\}$, where $w=\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$, and let f be a 1-uniform dcsl of $P_{n}(n>2)$ which is given in Proposition 4, such that $\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}$ is embedded in H_{n}.

Suppose height $(\mathscr{F})=2$, then, by Mirsky's Theorem 3, \mathscr{F} can be partitioned into 2 antichains, but not fewer, say \hat{W}_{1}, and \hat{W}_{2}, and also one of \hat{W}_{1}, \hat{W}_{2} is of length $n-w$, and w, respectively. Thus, one of \hat{W}_{1}, \hat{W}_{2} is of maximum length w. Hence, $w(\mathscr{F})=\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil(=w)$, and hence $w(\mathscr{F})$ is
maximum, otherwise, there exists an antichain whose length is greater than w, which is a contradiction. Conversely, suppose width $(\mathscr{F})=\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$ ($=w$), then, by Dilworth's Theorem 2, \mathscr{F} can be partitioned into w chains, but not fewer, let it be L_{1}, L_{2}, \ldots, and L_{w}, and also, $\left|L_{i}\right| \leq 2$, for $1 \leq$ $i \leq w$. Hence, height $(\mathscr{F})=2$.

Proposition 6. Let \mathscr{F} be the set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$, which is embedded in H_{n}. Then $\operatorname{dim}(\mathscr{F})=2$.

Proof. Let f be a 1-uniform dcsl of $P_{n}(n>2)$ which is given in Proposition 4, such that $\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}$ is embedded in $H_{\frac{n}{2}}$. Since $H_{\frac{n}{2}}$ is embedded in H_{n}, and since by Proposition 3, $\operatorname{dim}\left(H_{n}\right)=2$, hence $\operatorname{dim}\left(H_{\frac{n}{2}}\right)=2$. Since, \mathscr{F} is embedded in $H_{\frac{n}{2}}$, hence $\operatorname{dim}(\mathscr{F})=2$.

Figure 2. The poset \mathscr{F} of vertex labeling of a 1-uniform dcsl path P_{5} of height 2, 3 and 4 are 1(a), 2(a) and 3(a), and its embedding in R^{2} are 1(b), 2(b) and 3 (b).

Remark 2. It is noticed that, when the height (other than n) of a poset \mathscr{F} of set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$ is increasing from 2 to $n-1$, then the corresponding maximum width is decreasing from $\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$ to 2 . Hence, it is of interest to find the formula for maximum width of \mathscr{F}, when \mathscr{F} has an arbitrary height. We have calculated the
maximum width of a poset \mathscr{F} of set of vertex labeling of a 1-uniform dcsl path P_{5} of height 2,3 and 4 , and they are 3,2 and 2 , respectively, and $\operatorname{dim}(\mathscr{F})=2$ (see Figure 2). However, in general, the calculation of the maximum width of \mathscr{F}, when \mathscr{F} has an arbitrary height other than 1 and n is under further investigation.

Remark 3. Let \mathscr{F} be a set of vertex labeling of a 1-uniform dcsl path $P_{n}(n \geq 2)$ which form a poset of $\operatorname{width}(\mathscr{F})=1$. Then $\operatorname{dim}(\mathscr{F})=1$, and $\operatorname{height}(\mathscr{F})$ is n. However, when width $(\mathscr{F})=2$, then $\operatorname{height}(\mathscr{F}) \neq n$, but it lies between $\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$ and $n-1$. Hence, calculating the $\operatorname{dim}(\mathscr{F})$, when $\operatorname{width}(\mathscr{F})=2$, and $\operatorname{height}(\mathscr{F})$ is minimum (we call it as minimum $\operatorname{height}(\mathscr{F})$), is an another interesting problem.

Definition 3. A width-2 poset W_{n} is the poset $\left(\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}, \preceq\right)$ of width two consisting of two chains $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ such that $a_{i} \preceq a_{i-1}$ for $2 \leq i \leq n, \quad b_{i} \preceq b_{i+1}$ for $1 \leq i \leq n, a_{n} \preceq b_{i}$ for $1 \leq i \leq n$, and for $1 \leq i \leq n-1$ and $1 \leq j \leq n, a_{i} \| b_{j}$ (see Figure 3).

Figure 3. Width-2 poset W_{n}.
Proposition 7. For $n \geq 2, \operatorname{dim}\left(W_{n}\right)=2$.

Proof. Consider $\mathcal{R}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}\right\}$ of linear extensions of W_{n}, where \mathcal{L}_{1} : $\left[a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, b_{1}, b_{2}, \ldots, b_{n-1}, b_{n}\right]$ and $\mathcal{L}_{2}:\left[b_{1}, b_{2}, \ldots, b_{n}, a_{n}, a_{n-1}\right.$, ..., a_{2}, a_{1}]. Then \mathcal{R} is a realizer of W_{n} (since for every incomparable pair $x, y \in H_{n}$, there are $\mathcal{L}_{i}, \mathcal{L}_{j} \in \mathcal{R}$ with $x \preceq y$ in \mathcal{L}_{i} and $x \succeq y$ in \mathcal{L}_{j} for $1 \leq i \neq j \leq 2$), hence $\operatorname{dim}\left(W_{n}\right) \leq 2$. We prove that there is no proper subset \mathcal{S} of \mathcal{R} which realizes W_{n}. If possible, suppose there is a proper subset \mathcal{S} of \mathcal{R} which realizes W_{n}, which means the only one member in \mathcal{S} whose intersection equal to the poset W_{n}, thus all the elements of W_{n} are comparable, a contradiction. Hence $\operatorname{dim}\left(W_{n}\right)=2$.

Remark 4. Let \mathscr{F} be a vertex labeling of a 1 -uniform dcsl path $P_{n}(n>2)$, which form a poset of $\operatorname{width}(\mathscr{F})=2$, and if \mathscr{F} is embedded in W_{n}, then height (\mathscr{F}) lies between $\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$ and $n-1$.

The following proposition shows the existence of one such embedding.
Proposition 8. There exists a vertex labeling \mathscr{F} of a 1-uniform dcsl path $P_{n}(n>2)$, which does not form a lattice of height $(\mathscr{F})=\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$ and width $(\mathscr{F})=2$, and the poset \mathscr{F} is embedded in W_{n}.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Let $X=\{1,2, ., h, ., n-1\}$, where $h=\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$.
Define $f: V\left(P_{n}\right) \rightarrow 2^{X}$ by

$$
\begin{aligned}
& f\left(v_{1}\right)=\{1,2, \ldots, h-1\}, f\left(v_{2}\right)=\{1,2, \ldots, h-1, h-2\}, \\
& f\left(v_{3}\right)=\{1,2, \ldots, h-2, h-3\}, \ldots, f\left(v_{h}\right)=\varnothing, f\left(v_{h+1}\right)=\{h\}, \\
& f\left(v_{h+2}\right)=\{h, h+1\}, \ldots, f\left(v_{n}\right)=\{h, h+1, \ldots, n-1\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|f\left(v_{1}\right) \Delta f\left(v_{h}\right)\right|=h-1=d\left(v_{1}, v_{h}\right), \\
& \left|f\left(v_{h}\right) \Delta f\left(v_{n}\right)\right|=n-h=d\left(v_{h}, v_{n}\right), \\
& \left|f\left(v_{1}\right) \Delta f\left(v_{n}\right)\right|=n-1=d\left(v_{1}, v_{n}\right),
\end{aligned}
$$

hence $\left|f\left(v_{i}\right) \Delta f\left(v_{j}\right)\right|=j-i=1 . d\left(v_{i}, v_{j}\right)$, for $1 \leq i<j \leq n$. Thus, f is a 1-uniform dcsl.

Choose $\mathcal{A}=\left\{f\left(v_{h}\right), f\left(v_{h-1}\right), \ldots, f\left(v_{1}\right)\right\}$ and $\mathcal{B}=\left\{f\left(v_{h+1}\right), f\left(v_{h+2}\right), \ldots\right.$, $\left.f\left(v_{n}\right)\right\}$. Then $\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}=\mathcal{A} \cup \mathcal{B}$ form a poset of height h and width 2 with respect to \subseteq, also \mathcal{A} and \mathcal{B} are chains of length h and $n-h$, respectively. Since, for each pair of elements $f\left(v_{i}\right), f\left(v_{j}\right)$ in \mathscr{F} for $1 \leq i$ $<j \leq n$, which are comparable, both supremum and infimum exist, while for the incomparable elements $f\left(v_{i}\right), f\left(v_{j}\right)$ in \mathscr{F}, for $1 \leq i<j \leq n$, infimum $\left\{f\left(v_{i}\right), f\left(v_{j}\right)\right\}=\varnothing$, but supremum does not exist. Hence, (\mathscr{F}, \subseteq) is not a lattice.

Finally, we prove that \mathscr{F} is embedded in W_{n}.

$$
\text { Define } \Phi: \mathscr{F} \rightarrow W^{\star} \text { by } \Phi\left(f\left(v_{i}\right)\right)= \begin{cases}a_{i}, & \text { if } i \leq i \leq h \\ b_{i-h}, & \text { if } h+1 \leq i \leq n\end{cases}
$$

where $f\left(v_{i}\right) \in \mathscr{F}$ for $1 \leq i \leq n$, and W^{\star} is a subposet of W_{n} on n elements $a_{1}, \ldots, a_{h}, b_{1}, b_{2}, \ldots, b_{n-h}$ with the same partial order of W_{n}. Since, for $2 \leq l \leq h, f\left(v_{l}\right) \subseteq f\left(v_{l-1}\right)$ if and only if $a_{l} \preceq a_{l-1}$ in W^{\star}, also, for $h+1 \leq l \leq n, f\left(v_{l-1}\right) \subseteq f\left(v_{l}\right)$ in \mathscr{F} if and only if $a_{h} \preceq b_{l-h}$ in W^{\star}, and for $h+2 \leq l \leq n, f\left(v_{l-1}\right) \subseteq f\left(v_{l}\right)$ in \mathscr{F} if and only if $b_{l-(h+1)} \preceq b_{l-h}$ in W^{\star}. Furthermore, by definition of Φ, for $1 \leq i \leq h-1$ and $1 \leq j \leq n-h$, $f\left(v_{i}\right) \| f\left(v_{j}\right)$ if and only if $a_{i} \| b_{j}$. Hence, $\mathscr{F} \cong W^{\star}$. Hence, \mathscr{F} is embedded in W_{n}.

Proposition 9. Let \mathscr{F} be the set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$, which is embedded in W^{\star}, where W^{\star} is a subposet of W_{n}. Then, width $(\mathscr{F})=2$ if and only if $\operatorname{height}(\mathscr{F})=\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$, and $\operatorname{height}(\mathscr{F})$ is minimum, for all embeddings \mathscr{F} in W_{n}.

Proof. Let $V\left(P_{n}\right) \doteq\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Let $X=\{1,2, ., h, ., n-1\}$, where $h=\left\lfloor\frac{V\left(P_{n}\right)}{2}\right\rfloor+1$, and let f be a 1-uniform dcsl of $P_{n}(n>2)$ which is given in Proposition 8, such that $\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}$ is embedded in W^{\star}.

Suppose width $(\mathscr{F})=2$, then, by Dilworth's Theorem 2, \mathscr{F} can be partitioned in to 2 chains, but not fewer, say L_{1}, and L_{2}. Without loss of generality, choose L_{1} is of length h, and L_{2} is of length $n-h$, so that $\operatorname{height}(\mathscr{F})=h$.

Claim. height (\mathscr{F}) is minimum, for the embedding \mathscr{F} in W^{\star}.
Choose two chains L^{*} and $L^{* *}$ in W^{\star}, such that there is exactly one element in common between L^{*} and $L^{* *}$. Suppose L^{*} is of maximum length, say h, so that $L^{* *}$ is of length $n-h+1$. If suppose, height (\mathscr{F}) is not minimum, that is height (\mathscr{F}) is less than h, let it be $h-1$, which implies L^{*} is of length $h-1$, and the other is of length $n-h+2$, which is greater than $h-1$, a contradiction to height (\mathscr{F}). Hence, $\operatorname{height}(\mathscr{F})$ in W^{\star}, is minimum.

Conversely, suppose $\operatorname{height}(\mathscr{F})=\left\lfloor\frac{V\left(P_{n}\right)}{2}\right\rfloor+1(=h)$, then, by Mirsky's Theorem 3, \mathscr{F} can be partitioned in to h antichains, but not fewer, let it be $\hat{W}_{1}, \hat{W}_{2}, \ldots$, and \hat{W}_{h}, and also $\left|\hat{W}_{i}\right| \leq 2$, for $1 \leq i \leq h$. Hence, width $(\mathscr{F})=$ 2.

Remark 5. In the above Proposition 9, the poset \mathscr{F} is embedded in W^{\star}, so that the height of poset \mathscr{F} is minimum. However, it is not true, when the poset \mathscr{F} is embedded in W_{n}, for, consider

$$
\begin{aligned}
\mathscr{F} & =\left\{f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right), \ldots, f\left(v_{n}\right)\right\} \\
& =\{\{1,2\},\{1\}, \varnothing,\{3\},\{3,4\}, \ldots,\{3,4,5, \ldots, n-1\}\},
\end{aligned}
$$

is the vertex labeling of 1-uniform dcsl path $P_{n}(n>2)$, which form a poset of $\operatorname{width}(\mathscr{F})=2$, and it is embedded in W_{n}, but the $\operatorname{height}(\mathscr{F})=n-2>$ $\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$, which means, it is not minimum.

Proposition 10. Let \mathscr{F} be the set of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$, which is embedded in W_{n}, then $\operatorname{dim}(\mathscr{F})=2$.

Proof. Let f be a 1-uniform dcsl of $P_{n}(n>2)$ which is given in Proposition 8, such that $\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}$ is embedded in W^{\star}. Since W^{\star} is embedded in W_{n}, and since by Proposition $7, \operatorname{dim}\left(W_{n}\right)=2$, hence $\operatorname{dim}\left(W^{\star}\right)=2$. Since, \mathscr{F} is embedded in W^{\star}, hence $\operatorname{dim}(\mathscr{F})=2$.

Remark 6. We observed that, when the width (other than 1) of the poset \mathscr{F} of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$, is increasing from 2 to $\left\lceil\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rceil$, then the corresponding minimum height is decreasing from $\left\lfloor\frac{\left|V\left(P_{n}\right)\right|}{2}\right\rfloor+1$ to 2 . We calculated the minimum height of the poset \mathscr{F} of set of vertex labeling of a 1 -uniform dcsl path P_{7} of width 2,3 , and 4 , and they are 4,3 , and 2 , respectively, and $\operatorname{dim}(\mathscr{F})=2$ (see Figure 4). However, the calculation of the minimum height of \mathscr{F}, when \mathscr{F} has an arbitrary width other than 1 , is under further investigation.

Figure 4. The poset \mathscr{F} of vertex labeling of a 1-uniform dcsl path P_{7} of width 2, 3 and 4 are 1(a), 2(a) and 3(a), respectively, and its embedding in R^{2} are 1(b), 2(b) and 3(b), respectively.

Theorem 7. If there exists any vertex labeling \mathscr{F} of a 1-uniform dcsl path $P_{n}(n>2)$, which form a poset. Then, $\operatorname{dim}(\mathscr{F}) \leq 3$.

Proof. Since the Hasse diagram of a poset \mathscr{F} of vertex labeling of a 1-uniform dcsl path $P_{n}(n>2)$ is a tree, hence, by Theorem $4, \operatorname{dim}(\mathscr{F}) \leq 3$.

Theorem 8. Let \mathscr{F} be a set of vertex labeling of 1-uniform dcsl path $P_{n}(n>2)$ which does not form a lattice with respect to set inclusion ' \subseteq '. Then $\operatorname{dim}(\mathscr{F}) \leq \delta_{d}\left(P_{n}\right)$.

Proof. Let f be a 1-uniform dcsl of $P_{n}(n>2)$, such that

$$
\mathscr{F}=\left\{f(v) / v \in V\left(P_{n}\right)\right\}
$$

does not form a lattice with respect to set inclusion ' \subseteq '. We prove this Theorem in two cases.

Case 1. When $3 \leq n \leq 4$, if we prove that \mathscr{F} is embedded in H_{n} or W_{n}, then $\operatorname{dim}(\mathscr{F}) \leq \delta_{d}\left(P_{n}\right)$.

When $n=3$, the poset \mathscr{F} has $\operatorname{height}(\mathscr{F})=2$ and $\operatorname{width}(\mathscr{F})=2$, and since by Proposition $8, \mathscr{F}$ is embedded in W_{n}, also by Proposition 7, $\operatorname{dim}\left(W_{n}\right)=2$, hence $\operatorname{dim}(\mathscr{F})=2$. Since, by Lemma $1, \delta_{d}\left(P_{n}\right)=n-1$, thus $\operatorname{dim}(\mathscr{F})=\delta_{d}\left(P_{n}\right)$.

When $n=4$, the poset \mathscr{F} has either $\operatorname{height}(\mathscr{F})=2$ and width $(\mathscr{F})=2$ or $\operatorname{height}(\mathscr{F})=3$ and $\operatorname{width}(\mathscr{F})=2$.

Suppose, \mathscr{F} has $\operatorname{height}(\mathscr{F})=2$ and $\operatorname{width}(\mathscr{F})=2$, then by Proposition 4, \mathscr{F} is embedded in H_{n}, also by Proposition 3, $\operatorname{dim}\left(H_{n}\right)=2$, hence $\operatorname{dim}(\mathscr{F})=2$. Since, by Lemma $1, \delta_{d}\left(P_{n}\right)=n-1$, thus $\operatorname{dim}(\mathscr{F})<$ $\delta_{d}\left(P_{n}\right)$.

Now, suppose \mathscr{F} has $\operatorname{height}(\mathscr{F})=3$ and width $(\mathscr{F})=2$, then by Proposition $8, \mathscr{F}$ is embedded in W_{n}, also by Proposition $7, \operatorname{dim}\left(W_{n}\right)=2$, hence $\operatorname{dim}(\mathscr{F})=2$. Since, by Lemma $1, \delta_{d}\left(P_{n}\right)=n-1$, thus $\operatorname{dim}(\mathscr{F})<$ $\delta_{d}\left(P_{n}\right)$.

Hence, when $3 \leq n \leq 4, \operatorname{dim}(\mathscr{F}) \leq \delta_{d}\left(P_{n}\right)$.
Case 2. When $n>4$, if we prove that $\operatorname{dim}(\mathscr{F}) \leq 3$, then $\operatorname{dim}(\mathscr{F})$ $\leq \delta_{d}\left(P_{n}\right)$.

When $n>4$, by Theorem 7, $\operatorname{dim}(\mathscr{F}) \leq 3$, also by Lemma $1, \delta_{d}\left(P_{n}\right)=$ $n-1$, hence $\operatorname{dim}(\mathscr{F}) \leq \delta_{d}\left(P_{n}\right)$.

The following theorem is obtained as its analogous result of Theorem 6, and Theorem 8.

Theorem 9. Let \mathscr{F} be a set of vertex labeling of 1-uniform dcsl path $P_{n}(n>2)$ whether or not form a lattice with respect to set inclusion ' \subseteq '. Then, $\operatorname{dim}(\mathscr{F}) \leq \delta_{d}\left(P_{n}\right)$.

Now, it is of interest to find the dimension of vertex labeling of k-uniform dcsl path $P_{n}(n>2)$. Since all paths are 1-uniform dcsl graphs, and by Theorem 5, paths are k-uniform dcsl graphs. So that all the structural properties of 1-uniform dcsl paths holds good for k-uniform dcsl paths, and k-uniform dcsl index of path $P_{n}(n>2)$ is k times that of 1-uniform dcsl index.

Lemma 2. $\delta_{k}\left(P_{n}\right)=k(n-1)$, for $n>2$.
Proof. By Proposition 1, for a k-uniform dcsl graph $G, \delta_{k}(G) \geq k$ $\operatorname{diam}(G)$. Hence, $\delta_{k}\left(P_{n}\right) \geq k \operatorname{diam}\left(P_{n}\right)=k(n-1)$, i.e., $\delta_{k}\left(P_{n}\right) \geq k(n-1)$.

We claim that there exists k-uniform dcsl path $P_{n}(n>2)$ with underlying set X of cardinality $k(n-1)$. Let $X=\{1,2, \ldots, k(n-1)\}$. Consider the dcsl labeling $f: V\left(P_{n}\right) \rightarrow 2^{X}$ defined by $f\left(v_{1}\right)=\varnothing$, and $f\left(v_{i}\right)=$ $\{1,2, \ldots, k(i-1)\}$, for $2 \leq i \leq n$. Thus, for

$$
2 \leq i \leq n,\left|f\left(v_{1}\right) \Delta f\left(v_{i}\right)\right|=k(i-1)=k d\left(v_{1}, v_{i}\right)
$$

and $\left|f\left(v_{i}\right) \Delta f\left(v_{j}\right)\right|=(j-i) k=k d\left(v_{i}, v_{j}\right)$, for $2 \leq i<j \leq n$. Hence, there exists a k-uniform dcsl path $P_{n}(n>2)$ with $|X|=k(n-1)$. Therefore $\delta_{k}\left(P_{n}\right)=k(n-1)$.

By Theorem 5, note that every 1-uniform dcsl of $P_{n}(n>2)$, also accept a k-uniform dcsl, also, every vertex labeling of a k-uniform dcsl path $P_{n}(n>2)$, need not form a poset. However, there always exists a k-uniform dcsl of $P_{n}(n>2)$, which form a connected poset. Hence, the Hasse diagram (poset) which embeds the vertex labeling of the 1-uniform dcsl path, could also embeds the vertex labeling of the k-uniform dcsl.

The following theorem is a consequence of Theorem 5, Lemma 2, and Theorem 9.

Theorem 10. Let \mathscr{F} be a set of vertex labeling of the k-uniform dcsl path $P_{n}(n>2)$ whether or not form a lattice with respect to set inclusion $' \subseteq$ '

Then $\operatorname{dim}(\mathscr{F}) \leq \delta_{k}\left(P_{n}\right)$.

Acknowledgments

The work reported in this note is a part of the research work done under
the Major Research Project No. SR/S4/MS : 760/12 funded by Department of Science and Technology, Government of India, New Delhi. The authors express their sincere gratitude to P. Shaini for her incisive suggestions and encouragement. They also thank the anonymous referee for some helpful comments and corrections.

References

[1] B. D. Acharya, Set-valuations of graphs and their applications, MRI Lecture Notes in Applied Mathematics, No. 2, Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad, 1983.
[2] B. D. Acharya and K. A. Germina, Distance compatible set-labeling of graphs, Indian J. Math. Comp. Sci. Jhs. 1 (2011), 49-54.
[3] K. Thomas Bindhu and K. A. Germina, Distance compatible set-labeling index of graphs, Int. J. Contemp. Math. Sci. 5(19) (2010), 911-919.
[4] K. A. Germina, Uniform distance-compatible set-labelings of graphs, J. Combinatorics, Information and System Sciences 37 (2012), 169-178.
[5] G. Birkhoff, Lattice Theory, Third ed., Amer. Math. Soc. Colloq. Publ., Vol. XXV, Providence, R. I., 1967.
[6] F. Harary, Graph theory, Addison Wesley Publ. Comp. Reading, Massachusetts, 1969.
[7] W. T. Trotter and J. Moore, The dimension of planar posets, J. Combin. Theory B 22 (1977), 54-67.
[8] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
[9] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fundamenta Mathematicae 16 (1930), 386-389.
[10] K. Baker, P. Fishburn and F. Roberts, Partial orders of dimension 2, interval orders and interval graphs, Networks 2 (1971), 11-28.
[11] K. A. Germina and K. Nageswararao, Characterization of vertex labeling of 1-uniform dcsl graph which form a lattice, J. Fuzzy Set Valued Anal., 2015, to appear.
[12] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51(2) (1950), 161-166.
[13] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38. Providence, R. I., 1962.
[14] L. Mirsky, A dual of Dilworth’s decomposition theorem, Amer. Math Monthly. 78 (1971), 876-877.
[15] D. Kelly, On the dimension of partially ordered sets, Discrete Math. 35 (1981), 135-156.
[16] T. Hiraguchi, On the Dimension of Orders, Sci. Rep. Kanazawa Univ., Vol. 4, No. 1, 1955, pp. 1-20.

[^0]: Received: January 22, 2015; Revised: May 14, 2015; Accepted: June 2, 2015
 2010 Mathematics Subject Classification: 05C78, 05C60.
 Keywords and phrases: 1-uniform distance-compatible set-labeling, k-uniform distancecompatible set-labeling, dcsl index, k-uniform dcsl index, dimension of the poset, partition of the poset, lattice.

 Communicated by Cong X. Kang

