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Abstract

Let an injective function f :V(G) —» 2% where V(G) is the vertex
set of a graph G and 2% is the power set of a non-empty set X, be
given. Consider the induced function f® :V(G)xV(G) - 2% \{¢}
defined by f®(u, v)= f(u)@® f(v), where f(u)® f(v) denotes

the symmetric difference of the two sets. The function f is called a
k-uniform dcsl (and X a k-uniform dcsl-set) of the graph G, if there
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exists a constant k such that| 9, v) | = kdg (u, v), where dg(u, v)

is the length of a shortest path between u and v in G. If a graph G
admits a k-uniform dcsl, then G is called a k-uniform dcsl graph. The
k-uniform dcsl index of a graph G, denoted by 8 (G), is the minimum

of the cardinalities of X, as X varies over all k-uniform dcsl-sets of G.
A linear extension £ of a partial order P is a linear order on the
elements of P, such that x <y in P implies x <y in £ for all

X, yeP. Aset R ={Ly, Lo, ..., Lk} Of linear extensions of P is
a realizer of P if, for every incomparable pair x, y € P, there are
Lj, Lj e R with x <y in £j and x = y in £;. The dimension
of P, denoted by dim(P), is the minimum of the cardinalities of

realizers of P. Let # be the range of a k-uniform dcsl of the path
P, on n> 2 vertices. The purpose of this paper is to prove that

dim(£) < 8¢(R,), whether or not £ forms a lattice with respect to

set inclusion ‘<.

1. Introduction

Acharya [1] introduced the notion of vertex set-valuation as a set-
analogue of number valuation. For a graph G = (V, E) and a non-empty set

X, Acharya defined a set-valuation of G as an injective set-valued function
f :V(G) - 2%, and he defined a set-indexer f® : E(G) —» 2X\{¢} as a

set-valuation such that the function given by f®(uv)= f(u)® f(v) for

every uv € E(G) is also injective, where 2% is the set of all the subsets of X

and ‘@’ is the binary operation of taking the symmetric difference of subsets
of X.

Acharya and Germina [2], who has been studying topological set-
valuation, introduced the particular kind of set-valuation for which a metric,
especially the cardinality of the symmetric difference, is associated with each
pair of vertices is k (where k is a constant) times that of the distance between
them in the graph [2]. In other words, the question is whether one can
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determine those graphs G = (V, E) that admit an injective set-valued

function f :V(G) — 2% where 2% is the power set of a hon-empty set X,
such that, for each pair of distinct vertices u and v in G, the cardinality of the
symmetric difference f(u) @ f(v) is k times of the usual distance dg(u, v)

between u and v in G, where k is a constant. They [2] called such a set-
valuation f of G a k-uniform distance-compatible set-labeling (k-uniform
desl) of G, and the graph G which admits k-uniform dcsl a k-uniform
distance-compatible set-labeled graph (k-uniform dcsl graph) and the non-
empty set X corresponding to f a k-uniform dcsl-set.

The following universal theorem has been established.
Theorem 1 [2]. Every graph admits a dcsl.

The 1-uniform dcsl index of a graph G, denoted by 84(G), is the

minimum of the cardinalities of X, as X varies over all 1-uniform dcsl-sets
of G.

The k-uniform dcsl index [4] of a graph G, denoted by §,(G), is the

minimum of the cardinalities of X, as X varies over all k-uniform dcsl-sets
of G.

One may recall a partially ordered set (or a poset, in short) P as a
structure (P, <), where P is a non-empty set and ‘=<’ is a partial order
relation on P such that ‘=<’ is reflexive, antisymmetric and transitive. We
denote (x, y) € P by x < y. By standard notation, we usually identify the
ground set of a poset with the whole poset.

Two elements of P standing in the relation of P are called comparable,
otherwise they are incomparable. A poset is a chain if it contains no
incomparable pair of elements. In this case, the partial order is a linear order.
A poset is an antichain if all of its pairs are incomparable. The size of a
largest chain in a poset P is called the height of the poset, denoted by
height(?) (orh(P)), and that of a largest antichain is called its width,

denoted by width(?) (or w(P)).
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We say that z covers y if and only if y <z and y < x <z implies
either x =y or x = z. A Hasse diagram of a poset (P, <) is a drawing in

which the points of P are placed so that if y covers x, then y is placed at a
higher level than x and joined to x by a line segment. A poset P is
connected, if its Hasse diagram is connected as a graph. A cover graph of a
poset (P, <) is the graph with vertex set P such that x, y € P are adjacent if
and only if one of them covers the other. All posets depicted in this paper are
shown by their Hasse diagrams.

A planar drawing of a poset P is a representation of the Hasse diagram
of P such that no edges of the Hasse diagram cross each other. A planar
poset is a poset that has a planar drawing, otherwise it is called non-planar
poset.

A poset Q is a subposet of P if Q < P, and for each pair x, y € Q,
X=Xy in Q exactly if x <y in P. Two posets P and Q are called
isomorphic if there is a one-to-one correspondence ® : P — Q such that
x <y in P if and only if ®(x) < ®(y) in Q. The poset Q is said to be
embedded in P, denoted by Q < P, if Q is isomorphic to a subposet of
P.

A linear extension £ of P is a linear order on the elements of P, such
that x <y in P implies x <y in £ forall x, y € P. We write a linear

extension as L : [Xg, Xp, ..., X5] Which stands for x < x, <---= X, in L.

Definition 1 [8]. Aset R = {L4, Ly, ..., Lk } of linear extensions of P
is a realizer of P if for every incomparable pair X, y € P, there are L;j,
LieR with x <y in Lij and x =y in £; for 1<i= j<k. The
dimension of P (denoted by dim(7)) is the minimum cardinality of a
realizer.

Equivalently, dim(7) can be defined as the minimum k for which there
are linear extensions Ly, ..., £ such that P = L1 L, N--- N L, where
the intersection is taken over the sets of relations of the £;, for 1 <i < k.
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Another characterization of dimension, in terms of coordinates, can be
obtained by using an embedding of P into R (called t-dimensional poset)

and it was given by Ore [13]. Let R! denote the poset of all t-tuples of
real numbers, partially ordered by inequality in each coordinate, i.e.,
(a1, @, ..., &) < (by, by, ..., by) if and only if a <bj, for i=1 2, .., t
Then the dimension of a poset P is the minimum number t such that 7P has

an embedding into R'.

One should note that, a planar poset P having a greatest and least
element has dimension at most 2 [10]. Trotter and Moore [7] proved that a
planar poset having either a greatest or least element has dimension at most
3. Hiraguchi [16] proved that the dimension cannot exceed the width, and
antichains show that the dimension can be much less than the width, and also
he proved that the dimension cannot exceed half of the number of points.
Kelly [15] then constructed planar posets of arbitrary dimension.

A poset (L, <) is a lattice if every pair of elements x, y € L; has a least
upper bound (lub, for short), denoted by x v y (called join), and a greatest
lower bound (glb, for short), denoted by x A y (called meet). In general, a
lattice is denoted by (L, <).

Throughout this paper, lattice (and poset) means lattice (and poset) under
set inclusion <. Unless otherwise mentioned, for all the terminology in graph

theory and lattice theory, the reader is referred, respectively to [6, 5].
In this paper, when we speak of the dimension of vertex labeling of
k-uniform dcsl graph, we usually mean a dimension of a poset whose

elements are the vertex labeling of k-uniform dcsl graph, and also, whenever
we consider the vertex labeling of k-uniform dcsl of G by %, it means that

& is a poset, whose elements are vertex labeling of k-uniform dcsl of G. In
particular, we consider only planar posets (connected), and we prove that
dim(&£) < 8¢ (P,), where £ is a set of vertex labeling of the k-uniform
dcsl path P, (n > 2) whether or not forms a lattice with respect to set
inclusion ‘<’.
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2. Preliminaries

In this section, we provide some basic results of partial orders and
k-uniform dcsl index 8, (G) of G that are relevant to research. Most of the

results discussed here can be found in Dilworth, Mirsky and in Trotter and
Moore.

The most classical theorems of posets are given by Dilworth and Mirsky.

Theorem 2 [12]. Suppose that the largest antichain in the poset P has
size r. Then P can be partitioned into r chains, but not fewer.

Theorem 3 [14]. Suppose that the largest chain in the poset P has size
r. Then P can be partitioned into r antichains, but not fewer.

The following theorem is one of an important result which was given by
Trotter and Moore.

Theorem 4 [7]. If the Hasse diagram of P is a tree, then dim(P) < 3.
In [4, 3] and [11], the following results are established.
Proposition 1 [4]. For a k-uniform dcsl graph G, 8, (G) > k diam(G).

Theorem 5 [4]. If G is k-uniform dcsl, and m is a positive integer, then G
is mk-uniform dcsl.

Lemmal[3]. 84(Py) =n-1, for n > 2.

Proposition 2 [11]. The set # of vertex labeling of a 1-uniform dcsl

path B, (n > 2) forms a lattice.

3. Main Results

Since, by Proposition 2, the set # of vertex labeling of a 1-uniform dcsl
path P, (n >2) form a lattice, and also, all the members of £ are

comparable, so that, dim(#) =1. By Lemma 1, 84(P,)=n-1, for n > 2.

Hence, we conclude the following:
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Theorem 6. Let # be the set of vertex labeling of a 1-uniform dcsl path

P, (n > 2) which form a lattice with respect to set inclusion ‘<’. Then
dlm(y) < Sd (Pn )

Remark 1. One may observe that, every vertex labeling of a 1-uniform

dcsl path P,(n > 2) need not form a lattice, they are some vertex labeling,

which do not form a lattice, so depending on the poset of different height and
width, one may get different dimensions. For, consider # = {{1}, {1, 2},

{1, 2, 3}} is the vertex labeling of 1-uniform dcsl path P;, which is a lattice
of height(#) =3, width(%#) =1, and dim(#) =1. Also, consider J# =
{1, 3}, {1}, {1, 2}} is the another vertex labeling of 1-uniform dcsl path
P3, which is a poset but not lattice of height(#) = 2, width(&#) =2, and
dim(Z) = 2.

Let Z be a set of vertex labeling of a 1-uniform dcsl path R, (n > 2)
which form a poset. If height(#) = n, then dim(%#)=1, and width(%) =1,
which is maximum, now, on words, we call it as maximum width(.%#).
However, when height(#)=n, then dim(£)=1 and maximum
width(Z) =1, so calculating maximum width(#) and dim(&#) is an
interesting problem. We start with height(#) =2, and calculate maximum
width(#) and dim(&). This observation leads us to construct a new

definition, which we named as “height-2 poset”.

Definition 2. The height-2 poset Hj, on 2n elements &, ..., a,, by, ..., by,
is the poset of height two consisting of two antichains A = {a, a,} and
B ={b, .., by} such that by <'aj in Hy exactly if i = j, and j=i-1
(see Figure 1).
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Figure 1. Height-2 poset H,,.
Proposition 3. For n > 2, dim(H,,) = 2.

Proof. Consider the set R = {£;, L5} of linear extensions of the height-
2 poset Hy, where
£y :[by, by, ag, by, ap, 83, ..., 8n_1, 8n, by, by, ..., by_g, by]
and
Ly : by, b1, - bs, @y, @n_g, - a2, bg, by, by, ]

Then R is a realizer of H,, (since for every incomparable pair X, y € H,,
there are £i, £Lj e R with x <y in £ and x = y in L for 1<i = j
< 2), and hence dim(Hp) < 2. We claim that there is no proper subset S
of R which realizes H,. If possible, suppose there is a proper subset S of
R which realizes H,, which means the only one member in & whose
intersection equal to the poset H,, thus all the elements of H, are

comparable, a contradiction. Hence dim(H,) = 2. O
Proposition 4. There exists a vertex labeling # of a 1-uniform dcsl
path P,(n > 2) which does not form a lattice of width(#) = [W—‘ and

height(#) = 2, and the poset Z is embedded in height-2 poset H,,.

Proof. Let V(P,) = {v, Vo, ..., Vp}.

Let X ={1, 2, ., w, ., n—1}, where w = ['V(;”)l—l,
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Define f :V(P,) > 2% by f(y)=1{ 2, ... w=1}, f(v,)={L 2, ...,
w-1w}, f(vg)=1{2,.,w-1w}, f(vg)=1{2, ., w-1 w, w+1}, f(vg)
={3,., w, w+1}.

Hence, in general, for 1 <i <n,

ﬂ,ﬂ+1,...,w+ﬂ—3,w+ﬂ—z}, if i is odd,
fu)=4L.2 2 2 2
| | | | .
{E’ §+1. W+§—2, W+§—1}, otherwise.
Then

| f(v) A f(v3)|=2=d(vy, v3) [ F(v1) A f(vg)|=3=d(v, vy),
| f(v2) A f(v3)[ =1=d(va, v3),
hence | f(v;)A f(vj)|=j—i=21d(v, vj), for 1<i< j<n Thus, fisa

1-uniform dcsl.

Without loss of generality, suppose n is even. For 1<i < choose

n
2 1l
A = {f(Vz), f(V4), . f(VZi)} and B = {f(Vl), f(V3), ey f(VZi—l)}' Then
Z ={f(v)/veV(R,)}=AUB form a poset of height 2 and width w with
n
2
each pair of elements f(v;), f(vj) in & for 1<i< j<n, which are

respect to <, also A and B are antichains of same length . Since, for

comparable, both supremum and infimum exist, while for the incomparable
elements f(v;), f(vj) in &, for 1<i < j<n, supremum {f(v;), f(vj)}

= f(vj) U f(vj) wheniand j are odd, but infimum does not exist, and when
i and j are even, infimum {f(v;), f(vj)} = f(v)N f(vj), but supremum
does not exist.

Hence, (&, <) is not a lattice.

Finally, we prove that Z# is embedded in H,.
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Define @ : & — H,, by

2
aj, if i is even,
Wl 2
(F(vi) = br ,  otherwise,

2

where f(vj)e & for 1<i<n, and H, is a subposet of H, on n
2
elements ay, ..., a,, by, ..., b, with the same partial order of H,,. Since, for
2 2
1< sg, f(vg_1) < f(vy) if and only if by <a in H,, and for
2

1< s%—l, f(vai11) € f(v1) in Z if and only if b,y <a in H,.
2
Hence, # = H,,, and hence .# is embedded in H. O

2

Proposition 5. Let # be the set of vertex labeling of a 1-uniform dcsl
path P, (n > 2), which is embedded in H,. Then height(#) = 2 if and

only if width(%#) = (W] and width(Z) is maximum.
Proof. Let V(P,) = {v, Vo, ..., Vp }.

Let X =1{,2,.,w,.n-1, where w= {L;”)'—‘ and let f be a
1-uniform dcsl of B, (n > 2) which is given in Proposition 4, such that
Z = {f(v)/veV(R,)} isembedded in H,.

Suppose height(#) = 2, then, by Mirsky’s Theorem 3, % can be
partitioned into 2 antichains, but not fewer, say Wl, and V\72, and also one of

Wy, W, is of length n —w, and w, respectively. Thus, one of W;, W, is of

maximum length w. Hence, W(Z) = [WW (= w), and hence W(Z) is
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maximum, otherwise, there exists an antichain whose length is greater than

w, which is a contradiction. Conversely, suppose width(.#) = [W-‘

(= w), then, by Dilworth’s Theorem 2, # can be partitioned into w chains,
but not fewer, let it be Ly, Ly, .., and L, and also, |Lj|<2, for 1<
i <w. Hence, height(Z) = 2.

Proposition 6. Let .# be the set of vertex labeling of a 1-uniform dcsl
path B,(n > 2), which is embedded in H,,. Then dim(%) = 2.

Proof. Let f be a 1-uniform dcsl of P, (n >2) which is given in
Proposition 4, such that & = {f(v)/v e V(P,)} is embedded in H,. Since
2

H, is embedded in H,, and since by Proposition 3, dim(H,) = 2, hence
2

dim(H,) = 2. Since, & isembedded in H,, hence dim(Z) = 2. O
2 2

234567 (6. 8) 2335678 (23
12345 23456 (2.5) vass ss | 234567 (2.4
N/ A @2 1B TS| (1) Shse @)

/2345 (153} AVA (3 : . 23,2

o (A R A P S L I eatl (~2) R
1(a) 1(b) 2(a)  2(b) 3@  3(b)

Figure 2. The poset # of vertex labeling of a 1-uniform dcsl path P; of

height 2, 3 and 4 are 1(a), 2(a) and 3(a), and its embedding in R? are 1(b),
2(b) and 3(b).

Remark 2. It is noticed that, when the height (other than n) of a poset
Z of set of vertex labeling of a 1-uniform dcsl path P, (n > 2) is increasing

from 2 to n —1, then the corresponding maximum width is decreasing from
PV(—;”)W to 2. Hence, it is of interest to find the formula for maximum

width of #, when & has an arbitrary height. We have calculated the
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maximum width of a poset & of set of vertex labeling of a 1-uniform dcsl
path P of height 2, 3 and 4, and they are 3, 2 and 2, respectively, and
dim(&#) =2 (see Figure 2). However, in general, the calculation of the
maximum width of Z, when £ has an arbitrary height other than 1 and n
is under further investigation.

Remark 3. Let Z be a set of vertex labeling of a 1-uniform dcsl path
P,(n > 2) which form a poset of width(#)=1. Then dim(#)=1, and
height(#) is n. However, when width(#) = 2, then height(&#) = n, but

it lies between [WJ +1 and n —1. Hence, calculating the dim(%),

when width(&) = 2, and height(&#) is minimum (we call it as minimum

height(#)), is an another interesting problem.

Definition 3. A width-2 poset W,, is the poset ({a, ..., a5, by, ..., by}, <)
of width two consisting of two chains A = {a, ..., a,} and B = {by, ..., by}
such that aj < aj_q for 2<i<n, bj b, for 1<i<n, a, b for
l<i<n andforl<is<n-landl< j<n, allbj (seeFigure3).

a
o ’b]1

l K
‘ dy H
| )
*' 33 .lll
I

 2b
*.I'

a.l:l.
Figure 3. Width-2 poset W,,.

Proposition 7. For n > 2, dim(W,,) = 2.
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Proof. Consider R = {£;, L5} of linear extensions of W, where L; :
[a, @p_1, - @2, 37, by, by, oy by_q, by] and £, :[by, by, ..., by, @y, @n_1,
., @9, a1]. Then R is a realizer of W,, (since for every incomparable pair
X,y € Hy, thereare £;, £j € R with x 2y in £j and x = y in L; for
1<i# j<2), hence dim(W,) < 2. We prove that there is no proper subset
S of R which realizes W,,. If possible, suppose there is a proper subset S
of R which realizes W,,, which means the only one member in S whose
intersection equal to the poset W,, thus all the elements of W, are

comparable, a contradiction. Hence dim(W,) = 2. O

Remark 4. Let Z be a vertex labeling of a 1l-uniform dcsl path
P, (n > 2), which form a poset of width(#) = 2, and if # is embedded

in W,,, then height(#) lies between {WJ +1and n-1

The following proposition shows the existence of one such embedding.

Proposition 8. There exists a vertex labeling # of a 1-uniform dcsl
path P, (n > 2), which does not form a lattice of height(.#) = LL;”)'J +1
and width(Z) = 2, and the poset Z is embedded in W,,.

Proof. Let V(P,) = {w, Vo, ..., Vp}.

Let X ={L 2,., h,,, n-1}, where h = UV(;””JH_

Define f :V(R,) > 2% by
f(v)=1{ 2 ... h=1}, f(vp)={,2 ..., h=1 h-2},
f(v3)={1, 2,..,h—=2,h=-3}, ..., f(vy) =9, f(vhy1) = {h},

f(Vhyo) ={h, h+1}, .., f(vy)=<{h,h+1 .., n-1.
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Then
| f(v)A f(vp)|=h-1=d(v, vp),

| f(vh)A (V)| =n—h=d(v, vpy),
| F(v)A f(vy) | =n-1=d(v, vp),

hence | f(vi)A f(vj)[=j—i=21d(v, vj), for 1<i<j<n Thus fisa
1-uniform dcsl.

Choose A ={f(vy), f(Vh_1), ..., F(v)} and B ={f(Vhs1), f(Vhi2), ry
f(vy)}. Then & = {f(v)/v e V(R,)} = AU B form a poset of height h and

width 2 with respect to <, also A and B are chains of length hand n — h,
respectively. Since, for each pair of elements f(v;), f(vj) in F for 1<i

< j < n, which are comparable, both supremum and infimum exist, while
for the incomparable elements f(v;), f(v;) in &, for 1<i<j<n,
infimum {f(v;), f(v;)} =<, but supremum does not exist. Hence, (#, <)
is not a lattice.

Finally, we prove that .Z is embedded in W,,.
aj, if i <i<h,

Define @ : & —» W™ by ®(f(vj)) =
efine — W by &(f(v;)) {bi_h, if h+1<i<n,

where f(v;) e & for 1<i<n, and W* is a subposet of W,, on n elements

&y, ..., an, by, by, ..., by_p with the same partial order of W,. Since, for
2<1<h, f(v)c f(vy_q) if and only if a <a_; in W*, also, for
h+1<l<n, f(vy1) < f(v)in & ifandonly if a, < b_p in W*, and
for h+2<1l<n, f(v_y)c f(y) in & if and only if bj_h, 1)< bj_p in
W ™. Furthermore, by definition of &, for 1<i<h-land1< j< n-h,
f(vi)|| f(vj) if and only if a|/bj. Hence, & =W?". Hence, & is
embedded in W,,. O
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Proposition 9. Let # be the set of vertex labeling of a 1-uniform dcsl

path P,(n > 2), which is embedded in W*, where W™ is a subposet of
W,. Then, width(&#) = 2 if and only if height(#) = LWJ +1, and
height(#) is minimum, for all embeddings # in W,,.

Proof. Let V(P,) = {v{, Vo, ..., Vp }.

Let X ={12,.,h,.,n-1}, where h= {@J +1, and let f be a

1-uniform dcsl of B, (n > 2) which is given in Proposition 8, such that
Z = {f(v)/veV(P,)} is embedded in W*.

Suppose width(#) = 2, then, by Dilworth’s Theorem 2, % can be
partitioned in to 2 chains, but not fewer, say L;, and L,. Without loss of

generality, choose L; is of length h, and L, is of length n —h, so that
height(#) = h.

Claim. height(%#) is minimum, for the embedding Z in W *.

Choose two chains L* and L™ in W*, such that there is exactly one
element in common between L* and L™. Suppose L* is of maximum length,
say h, so that L™ is of length n—h+1. If suppose, height(Z#) is not

minimum, that is height(%#) is less than h, let it be h —1, which implies L
is of length h —1, and the other is of length n — h + 2, which is greater than

h — 1, a contradiction to height(#). Hence, height(#) in W*, is minimum.

Conversely, suppose height(Z) = L@J +1(= h), then, by Mirsky’s

Theorem 3, # can be partitioned in to h antichains, but not fewer, let it be
Wy, Wy, ..., and Wi, and also |W; | < 2, for 1< i < h. Hence, width(Z) =
2. O
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Remark 5. In the above Proposition 9, the poset .Z is embedded in W ™,
so that the height of poset # is minimum. However, it is not true, when the
poset Z is embedded in W,,, for, consider

Z = {f(w), f(v2), f(v3), ... Fvp)}
={{, 2}, {1}, D, {3}, {3, 4}, ..., {3, 4,5, ..., n =1},
is the vertex labeling of 1-uniform dcsl path B, (n > 2), which form a poset

of width(#) = 2, and it is embedded in W,,, but the height(#)=n-2 >

UV(—;”)'J +1, which means, it is not minimum.

Proposition 10. Let # be the set of vertex labeling of a 1-uniform dcsl
path P, (n > 2), which is embedded in W,,, then dim(#) = 2.

Proof. Let f be a 1-uniform dcsl of R, (n>2) which is given in
Proposition 8, such that & = {f(v)/v e V(P,)} is embedded in W*. Since
W™ is embedded in W,, and since by Proposition 7, dim(W,) = 2, hence
dim(W*) = 2. Since, Z is embedded in W*, hence dim(Z) = 2. O

Remark 6. We observed that, when the width (other than 1) of the poset
Z of vertex labeling of a 1-uniform dcsl path P, (n > 2), is increasing

from 2 to [LE”)W then the corresponding minimum height is decreasing

from LWJ +1 to 2. We calculated the minimum height of the poset #

of set of vertex labeling of a 1-uniform dcsl path P, of width 2, 3, and 4, and
they are 4, 3, and 2, respectively, and dim(#) = 2 (see Figure 4). However,

the calculation of the minimum height of #, when # has an arbitrary
width other than 1, is under further investigation.
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(4,79 $4.9)

233 1567 (4, 1234 1256 4% 8) 1234 3456 (S‘F)
(] 7 4 6.6 » (6,4)
T v/ 4’% ) 12§ 4 H : L’&ﬂ“’*‘)‘/ﬁ 5
E’lil% /16 3 1 .2 s/s) L{ﬁli js6 (5,“%)‘(/} 2)
(< 2) )/ 26 l 6.2) 1334 5 (6bl)4,|
12 s6 (43) (61) " (7.0)
1(a) 1(b) 2(a) 2(b) 3(a) 3(b)

Figure 4. The poset # of vertex labeling of a 1-uniform dcsl path P, of
width 2, 3 and 4 are 1(a), 2(a) and 3(a), respectively, and its embedding in
2 are 1(b), 2(b) and 3(b), respectively.
Theorem 7. If there exists any vertex labeling & of a 1-uniform dcsl
path P, (n > 2), which form a poset. Then, dim(Z#) < 3.

Proof. Since the Hasse diagram of a poset # of vertex labeling of a
1-uniform dcsl path P,(n > 2) is a tree, hence, by Theorem 4, dim(%#) < 3.

O

Theorem 8. Let # be a set of vertex labeling of 1-uniform dcsl path
P, (n > 2) which does not form a lattice with respect to set inclusion ‘<’

Then dim(&#) < 84(R,).
Proof. Let f be a 1-uniform dcsl of P, (n > 2), such that
F ={f(v)/veV(R)}
does not form a lattice with respect to set inclusion ‘<’. We prove this
Theorem in two cases.
Case 1. When 3 < n < 4, if we prove that # is embedded in H, or
W,,, then dim(%) < 84(P,).

When n = 3, the poset # has height(#) = 2 and width(%#) = 2, and
since by Proposition 8, # is embedded in W,, also by Proposition 7,
dim(W,) =2, hence dim(&#) = 2. Since, by Lemma 1, 84(P,)=n-1,
thus dim(Z) = 84(Py).
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When n = 4, the poset Z has either height(#)=2 and width(#)=2
or height(#) = 3 and width(%) = 2.

Suppose, & has height(#)=2 and width(Z#)=2, then by
Proposition 4, Z is embedded in H,,, also by Proposition 3, dim(H,,) = 2,
hence dim(&) = 2. Since, by Lemma 1, 84(P,) = n—1, thus dim(&) <
S (Pn)-

Now, suppose & has height(#) =3 and width(&#) =2, then by
Proposition 8, # is embedded in W,,, also by Proposition 7, dim(W,,) = 2,
hence dim(Z) = 2. Since, by Lemma 1, 84(P,) = n -1, thus dim(&) <
S (Pn)-

Hence, when 3 < n < 4, dim(£) < 84(R,).

Case 2. When n > 4, if we prove that dim(#) < 3, then dim(%)
< 8q (Pn)-

When n > 4, by Theorem 7, dim(£#) < 3, also by Lemma 1, 84(R,) =
n —1, hence dim(Z) < 84(P,).

The following theorem is obtained as its analogous result of Theorem 6,
and Theorem 8.

Theorem 9. Let Z be a set of vertex labeling of 1-uniform dcsl path
P, (n > 2) whether or not form a lattice with respect to set inclusion ‘<’

Then, dim(Z) < 84(R,).

Now, it is of interest to find the dimension of vertex labeling of
k-uniform dcsl path B, (n > 2). Since all paths are 1-uniform dcsl graphs,
and by Theorem 5, paths are k-uniform dcsl graphs. So that all the structural
properties of 1-uniform dcsl paths holds good for k-uniform dcsl paths, and
k-uniform dcsl index of path P, (n > 2) is k times that of 1-uniform dcsl

index.
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Lemma 2. 8, (P,) = k(n —1), for n > 2.

Proof. By Proposition 1, for a k-uniform dcsl graph G, §,(G) > k
diam(G). Hence, 8 (P,) > k diam(R,) = k(n =1), i.e., 8y (P,) = k(n —1).

We claim that there exists k-uniform dcsl path P, (n>2) with
underlying set X of cardinality k(n —1). Let X ={1, 2,..., k(n—1)}. Consider
the dcsl labeling f :V(P,) —> 2% defined by f(y)=@, and f(v,)=
{,2,....k(i-1)}, for 2 <i < n. Thus, for

2<i<n | f(v)Af(vi)|=k(i —1) = kd(v, v),

and | f(v;)A f(vj)|=(j—i)k=kd(vj,vj), for 2 <i < j < n. Hence, there
exists a k-uniform dcsl path B, (n > 2) with | X | = k(n —1). Therefore
8k (P,) = k(n -1). O

By Theorem 5, note that every 1-uniform dcsl of P, (n > 2), also accept

a k-uniform dcsl, also, every vertex labeling of a k-uniform dcsl path
P, (n > 2), need not form a poset. However, there always exists a k-uniform

dcsl of B, (n > 2), which form a connected poset. Hence, the Hasse diagram

(poset) which embeds the vertex labeling of the 1-uniform dcsl path, could
also embeds the vertex labeling of the k-uniform dcsl.

The following theorem is a consequence of Theorem 5, Lemma 2, and
Theorem 9.

Theorem 10. Let # be a set of vertex labeling of the k-uniform dcsl
path P, (n > 2) whether or not form a lattice with respect to set inclusion

.

Then dim(Z#) <8y (Py).
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