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Abstract 

A mapping σ which assigns to every n-ary cooperation symbol if  an 

in -ary coterm of type ( ) Iiin ∈=τ  is said to be a cohypersubstitution 

of type τ. The concepts of cohypersubstitutions were introduced in [4]. 
Every cohypersubstitution σ of type τ induces a mapping σ̂  on the        
set of all coterms of type τ. The set of all cohypersubstitutions of      
type τ under the binary operation ˆ  which is defined by =σσ :ˆ 21  

21ˆ σσ  for all ( )τ∈σσ Cohyp21,  forms a monoid which is called 

the monoid of cohypersubstitution of type τ. In [7], it was shown that 
the order of a cohypersubstitution of type ( )2=τ  is 1, 2 or infinite. In 

this paper, we characterize orders of ( ),τCohyp  where ( ).3=τ  

1. Introduction 

Let A be a non-empty set and n be a positive integer. The nth copower 
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nA  of A is the union of n disjoint copies of A; formally, we define nA  as 

the Cartesian product ,: AnA n ×=  where { }....,,1: nn =  An element ( )ai,  

in this copower corresponds to the element a in the ith copy of A, for 

.1 ni ≤≤  A co-operation on A is a mapping nA AAf →:  for some ;1≥n  

the natural number n is called the arity of the co-operation .Af  We also 

need to recall that any n-ary co-operation Af  on set A can be uniquely 

expressed as a pair ( )AA ff 21 ,  of mappings, nAf A →:1  and ;:2 AAf A →  

the first mapping gives the labelling used by Af  in mapping elements to 

copies of A, and the second mapping tells us what element of A that any 
element is mapped to. 

We shall denote by ( ) { }nAn
A AAfcO →= :  the set of all n-ary           

co-operations defined on A, and by ( )n
AnA cOcO 1: ≥= ∪  the set of all finitary 

co-operations defined on A. An indexed coalgebra is a pair ( ( ) ),; Ii
A

ifA ∈  

where A
if  is an in -ary cooperation defined on A, and ( ) Iiin ∈=τ  for 1≥in  

is called the type of the coalgebra. Coalgebras were studied by Drbohlav    
[5]. In [2], the following superposition of cooperations was introduced.                

If ( )n
A

A cOf ∈  and ( ),...,, 10
k

A
A
n

A cOgg ∈−  then the k-ary co-operation 

[ ] kA
n

AA AAggf →− :...,, 10  is defined by 

((
( )

) ( ( )) (
( )

) ( ( )))afgafga AA
af

AA
af AA 2221

11
,  

for all .Aa ∈  The co-operation [ ]A
n

AA ggf 10 ...,, −  is called the superposition 

of Af  and ....,, 10
A
n

A gg −  It will also be denoted by 

( )....,,, 10
A
n

AAn
k ggfcomp −  

The injection co-operations kAn
i AA →:,ı  are special cooperations 
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which are defined for each 10 −≤≤ ni  by kAn
i AA →:,ı  with 

( )aia ,  for all .Aa ∈  Then we get a multi-based algebra 

(( ( ) ) ( ) ( ) ),, 10
,

1,1 −≤≤≥≥ ni
An

ink
n
kn

n
AC compO ı  

called the clone of co-operations on A. In [2], it is mentioned that this algebra 
is a clone, i.e., it satisfies the three clone axioms (C1), (C2) and (C3). In [3], 
Denecke and Saengsura gave a full proof of this fact. In [3], the following 
coterms of type ( ) Iiin ∈=τ  were introduced. Let ( ) Iiif ∈  be an indexed           

set of co-operation symbols such that for each ,Ii ∈  if  has arity .in  Let 

{ }10,,1 −≤≤∈≥| njnnen
j N∪  be a set of symbols which is disjoint 

from the set { }Iifi ∈|  such that for each n
jenj ,10 −≤≤  has arity n. 

Then coterms of type τ are defined as follows: 

  (i) For every ,Ii ∈  the co-operation symbol if  is an in -ary coterm of 

type τ. 

 (ii) For every 1≥n  and ,10 −≤≤ nj  the symbol n
je  is an n-ary 

coterm of type τ. 

(iii) If intt ...,,1  are n-ary coterms of type τ, then [ ]ini ttf ...,,1  is an      

n-ary coterm of type τ for every ,Ii ∈  and if 10 ...,, −ntt  are m-ary coterms 

of type τ, then [ ]10 ...,, −n
n
j tte  is an m-ary coterm of type τ for every 1≥n  

and .10 −≤≤ nj  

Let ( )ncTτ  be the set of all n-ary coterms of type τ and let =τ :cT  
( )∪ 1≥ τn
ncT  be the set of all (finitary) coterms of type τ. 

The superposition of coterms was introduced in [4] as follows: the 

operation ( ) ( ( ) ) ( )mnmnn
m cTcTcTS τττ →×:  is defined by induction on the 

complexity of coterm definition as follows: 
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(i) ( ) in
n
i

n
m ttteS =− :...,,, 10  for .10 −≤≤ ni  

 (ii) ( ) i
n
n

n
i

n
n feefS i

i
ii

i
=− :...,,, 10  for an in -ary co-operation symbol .if  

(iii) ( ) [ ]jj
j

njnj
n
m ttgttgS ...,,:...,,, 11 =  if jg  is an jn -ary co-

operation symbol. 

(iv) ( [ ] ) [ ( ) ( )],...,,,...,,...,,,:...,,,...,, 11111 nn
n
mn

n
minni

n
m ttsSttsSfttssfS ii =  

where if  is an in -ary co-operation symbol, inss ...,,1  are n-ary coterms of 

type τ and ntt ...,,1  are m-ary coterms of type τ. 

These operations give us a heterogeneous algebra 

(( ( ) ) ( ) ( ) ).,: 11,1 nj
n
jnm

n
mn

n eScTc ≤≤≥≥ττ =T  

We shall show that it is a clone, i.e., it satisfies the clone axioms (C1), 
(C2) and (C3). 

Theorem 1.1 [4]. The heterogeneous algebra τTc  satisfies the following 

identities: 

(C1) ( ( ) ( ))np
n
mn

n
m

p
m xxySxxySzS ...,,,ˆ...,,...,,,ˆ,ˆ

111  

( ( ) ) ( ),,,...,,,...,,,ˆˆ
11

+∈≈ NpnmxxyyzSS np
p
n

n
m  

(C2) ( ) ( ),1,...,,,ˆ
1 nimxxxeS in

n
i

n
m ≤≤∈≈ +N  

(C3) ( ) ( )....,,,ˆ
1

+∈≈ NnyeeyS n
n

nn
n  

(Here n
i

n
m eS ,ˆ  are operation symbols corresponding to the clone type). 

A cohypersubstitution of type τ was introduced in [4] as a mapping 
{ } τ→∈|σ CTIifi:  from the set of all cooperation symbols to the set of 

all coterms which preserves the arities. The extension of σ is a mapping 

ττ →σ CTCT:ˆ  which is inductively defined by the following steps: 
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  (i) [ ] n
j

n
j ee =σ :ˆ  for every 1≥n  and ,10 −≤≤ nj  

 (ii) [ ] ( )ii ff σ=σ :ˆ  for every ,Ii ∈  

(iii) [ [ ]] ( ( ) [ ] [ ])i
i

i ni
n
nni ttfSttf σσσ=σ ˆ...,,ˆ,:...,,ˆ 11  for ( )....,,1

n
n cTtt i τ∈  

Let ( )τCohyp  be the set of all cohypersubstitutions of type τ. On the set 

( )τCohyp  of all cohypersubstitutions of type τ, we may define a binary 

operation ˆ  by ,ˆ:ˆ 2121 σσ=σσ  where  is the usual composition of 

mappings. Let idσ  be the cohypersubstitution defined by ( ) iiid ff =σ :  for 

all .Ii ∈  Then we have 

Lemma 1.1 [4]. For any two cohypersubstitutions ( ),, 21 τ∈σσ Cohyp  

we have ( ) .ˆˆ 2121 σσ=σσ ∧  The cohypersubstitution idσ  satisfies the 

equation [ ] ttid =σ̂  for all .τ∈ cTt  

Theorem 1.2 [4]. ( )( )idCohyp στ ˆ;  is a monoid. 

2. The Order of Cohypersubstitutions of Type ( )3=τ  

Here we recall that an element a of a semigroup S is called an idempotent 

if .2 aa =  The order of a is the cardinal number of the set { }∗∈| Nnan  and 

denoted .a  For any ( )τ∈σ Cohyp  and ( ),n=τ  if ( ) ,tf =σ  we denote     

σ by .tσ  For any positive integer n, we call the symbol n
je  the injection 

symbol, for all 10 −≤≤ nj  and for each coterm t, let ( )tE  be the set of all 

injection symbols which occur in t. In this section, we have to consider the 
order of elements of the semigroup ( ).3Cohyp  First of all, we start with the 

order of idempotent cohypersubstitutions. In [1], Boonchari and Saengsura 
had characterized all idempotents of ( )3Cohyp  as the following proposition: 

Proposition 2.1 [1]. Let ( )3CTt ∈  and [ ].,, 321 tttft =  If ( )tEei ∈3  for 

some { },2,1,0∈i  then tσ  is an idempotent if and only if .3
1 ii et =+  
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There follow the elements of ( )3Cohyp  in Proposition 2.1 are of order 1. 

Next, we have to consider the order of cohypersubstitution ( ),3Cohypt ∈σ  

where ( ) { }.3
0etE =  

Lemma 2.1. Let ( )3CTt∈  and ( ) { }.3
0etE =  If ( )3321 ,, CTsss ∈  such that 

,3
01 es ≠  then [ ] .,, 321 tssst ≠  

Proof. We give a proof by induction on the complexity of the coterm t.       

If ,3
0et =  then 

[ ] ,,, 1321
3
0 sssse =  

.3
0e≠  

If [ ]321 ,, tttft =  and assume that [ ] 13211 ,, tssst ≠  and [ ] ≠3212 ,, ssst  2t  

and [ ] ,,, 33213 tssst ≠  then 

[ ] [ ]( ) [ ]321321321 ,,,,,, ssstttfssst =  

[ ] [ ] [ ][ ]321332123211 ,,,,,,,, ssstssstssstf=  

[ ].,, 321 tttf≠  

Therefore, [ ] .,, 321 tssst ≠   

Lemma 2.2. Let ( )3CTt ∈  and ( ) { }.3
0etE =  If [ ]321 ,, tttft =  and 

,3
01 et ≠  then n

t
m
t σ≠σ  for all ., N∈nm  

Proof. Let N∈nm,  such that .nm >  Then there is N∈k  such that 

.knm +=  

If ,1=k  then 

( ) ( )ff n
t

m
t

1+σ=σ  
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[ ]( )321 ,,ˆ tttfn
tσ=  

( ) [ ( ) ( ) ( )].ˆ,ˆ,ˆ 321 tttf n
t

n
t

n
t

n
t σσσσ=  

Since ,3
01 et ≠  ( ) .ˆ 3

01 etn
t ≠σ  By Lemma 2.1, we get that 

( ) [ ( ) ( ) ( )] ( ).ˆ,ˆ,ˆ 321 ftttf n
t

n
t

n
t

n
t

n
t σ≠σσσσ  

This means that ( ) ( ).1 ff n
t

n
t σ≠σ +  Assume that ,1>k  let ( ) =σ − fk

t
1ˆ  

[ ]321 ,, wwwf  for some ( ).,, 3321 CTwww ∈  Since ( ) { }3
0etE =  and { }3

0ˆ etσ  

,3
0e=  ( ( )) { }.ˆ 3

0
1 efE k

t =σ −  This implies that ( ) { },3
01 ewE =  ( ) { }3

02 ewE =  

and ( ) { }.3
03 ewE =  Since ,3

01 et ≠  ( ) ,3
01

1 etk
t ≠σ −  so [ ( ) ( ),ˆ,ˆ 2

1
1

1
1 ttw k

t
k
t

−− σσ  

( )] .ˆ 3
03

1 etk
t ≠σ −  By Lemma 2.1, we get that 

( ) ( )ff kn
t

m
t

+σ=σ  

( ( ))fk
t

n
t σσ= ˆ  

( [ ]( ))321
1 ,,ˆˆ tttfk

t
n
t

−σσ=  

( ( ) [ ( ) ( ) ( )])3
1

2
1

1
11 ˆ,ˆ,ˆˆ tttf k

t
k
t

k
t

k
t

n
t

−−−− σσσσσ=  

( [ ]( ) [ ( ) ( ) ( )])3
1

2
1

1
1

321 ˆ,ˆ,ˆ,,ˆ tttwwwf k
t

k
t

k
t

n
t

−−− σσσσ=  

( ) [ ( [ ( ) ( ) ( )]),ˆ,ˆ,ˆˆ 3
1

2
1

1
1

1 tttwf k
t

k
t

k
t

n
t

n
t

−−− σσσσσ=  

( [ ( ) ( ) ( )]),ˆ,ˆ,ˆˆ 3
1

2
1

1
1

2 tttw k
t

k
t

k
t

n
t

−−− σσσσ  

( [ ( ) ( ) ( )])]3
1

2
1

1
1

3 ˆ,ˆ,ˆˆ tttw k
t

k
t

k
t

n
t

−−− σσσσ  

( ).fn
tσ≠  

Therefore, n
t

m
t σ≠σ  for all ., N∈nm  ~ 
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Theorem 2.1. Let ( )3CTt ∈  and ( ) { }.3
0etE =  If [ ]321 ,, tttft =  and 

,3
01 et ≠  then tσ  is infinite. 

Proof. Clearly, by Lemma 2.2, the cyclic subsemigroup of ( )3Cohyp  

generated by tσ  is infinite. ~ 

If we use the same procedures as Lemma 2.1 and Lemma 2.2 for ∈σt  

,)3(Cohyp  where ( ) { }3
1etE =  and ( ) { },3

2etE =  we obtain the following 

results: 

Theorem 2.2. Let ( )3CTt ∈  and ( ) { }.3
1etE =  If [ ]321 ,, tttft =  and 

,3
12 et ≠  then tσ  is infinite. 

Theorem 2.3. Let ( )3CTt ∈  and ( ) { }.3
2etE =  If [ ]321 ,, tttft =  and 

,3
23 et ≠  then tσ  is infinite. 

For any cohypersubstitution ,)3(Cohypt ∈σ  where [ ]321 ,, tttft =  and 

{ },,,,, 3
2

3
1

3
0321 eeettt ∈  we have the following results of the order of 

cohypersubstitutions which are not idempotents: 

Proposition 2.2. Let )3(Cohypt ∈σ  and [ ].,, 321 tttft =  Then 

  (i) If [ ],,, 3
1

3
0

3
0 eeeft =  then tσ  is two. 

 (ii) If [ ],,, 3
0

3
0

3
1 eeeft =  then tσ  is two. 

(iii) If [ ],,, 3
1

3
0

3
1 eeeft =  then tσ  is two. 

(iv) If [ ],,, 3
0

3
1

3
1 eeeft =  then tσ  is two. 

Proof. (i) If [ ],,, 3
1

3
0

3
0 eeeft =  then 

( ) ( [ ])3
1

3
0

3
0

2 ,,ˆ eeeff tt σ=σ  

( [ ])3
1

3
0

3
0 ,, eeeftσ=  
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( [ ]) [ ]3
1

3
0

3
0

3
1

3
0

3
0 ,,,, eeeeeef=  

[ ].,, 3
0

3
0

3
0 eeef=  

Therefore, ( ) ( [ ]) ( [ ])[ ] [ ,,,,,,,ˆ 3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3 efeeeeeefeeeff tt ==σ=σ  

]., 3
0

3
0 ee  Since [ ]3

0
3
0

3
0 ,, eeef  is an idempotent, { }., 2

ttt σσ=σ  This means 

that tσ  is two. 

For the proofs of (ii), (iii) and (iv), the procedures are similar to the proof 
of (i). ~ 

Similarly, we obtain the following results: 

Proposition 2.3. Let )3(Cohypt ∈σ  and [ ].,, 321 tttft =  Then 

  (i) If [ ],,, 3
0

3
2

3
0 eeeft =  then tσ  is two. 

 (ii) If [ ],,, 3
0

3
0

3
2 eeeft =  then tσ  is two. 

(iii) If [ ],,, 3
0

3
2

3
2 eeeft =  then tσ  is two. 

(iv) If [ ]3
0

3
0

3
2 ,, eeeft =  then tσ  is two. 

Proposition 2.4. Let )3(Cohypt ∈σ  and [ ].,, 321 tttft =  Then 

  (i) If [ ],,, 3
1

3
1

3
2 eeeft =  then tσ  is two. 

 (ii) If [ ],,, 3
2

3
2

3
1 eeeft =  then tσ  is two. 

(iii) If [ ],,, 3
1

3
2

3
2 eeeft =  then tσ  is two. 

(iv) If [ ],,, 3
1

3
2

3
1 eeeft =  then tσ  is two. 

And also for the case that )3(Cohypt ∈σ  where [ ]321 ,, tttft =  and 

{ }3
2

3
1

3
0321 ,,,, eeettt ∈  being all different, we obtain the following results. 
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Proposition 2.5. Let )3(Cohypt ∈σ  and [ ].,, 321 tttft =  Then 

  (i) If [ ],,, 3
1

3
2

3
0 eeeft =  then tσ  is two. 

 (ii) If [ ],,, 3
2

3
0

3
1 eeeft =  then tσ  is two. 

(iii) If [ ],,, 3
0

3
2

3
1 eeeft =  then tσ  is three. 

(iv) If [ ],,, 3
1

3
0

3
2 eeeft =  then tσ  is three. 

 (v) If [ ],,, 3
0

3
1

3
2 eeeft =  then tσ  is two. 

Now, we have to consider )3(Cohypt ∈σ  such that [ ]321 ,, tttft =  and 

( )tEt j ∉  for some { }.3,2,1∈j  

Proposition 2.6. Let ( )3CTt ∈  such that ( ) { }., 3
1

3
0 eetE =  Then the 

following hold: 

  (i) If [ ]3
3
0

3
1 ,, teeft =  such that { },, 3

1
3
03 eet ∉  then tσ  is two. 

 (ii) If [ ]3
3
1

3
1 ,, teeft =  such that { },, 3

1
3
03 eet ∉  then tσ  is two. 

(iii) If [ ]3
3
0

3
0 ,, teeft =  such that { },, 3

1
3
03 eet ∉  then tσ  is two. 

Proof. (i) Since ( ) tft =σ  and [ ],,, 3
3
0

3
1 teeft =   

( ) ( [ ])3
3
0

3
1

2 ,,ˆ teeff tt σ=σ  

( ) [ ( ) ( ) ( )]3
3
0

3
1 ˆ,ˆ,ˆ teef tttt σσσσ=  

( [ ]) [ ( )]3
3
0

3
13

3
0

3
1 ˆ,,,, teeteef tσ=  

[ [ ( )] [ ( )] [ ( )]]3
3
0

3
133

3
0

3
1

3
03

3
0

3
1

3
1 ˆ,,,ˆ,,,ˆ,, teetteeeteeef ttt σσσ=  

[ [ ( )]].ˆ,,,, 3
3
0

3
13

3
1

3
0 teeteef tσ=  
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Since ( ) { },, 3
1

3
0 eetE =  by Proposition 2.1, we get that 2

tσ  is an idempotent, 

so the subsemigroup { },, 2
ttt σσ=σ  i.e., tσ  is two. 

(ii) Since ( ) tft =σ  and [ ],,, 3
3
1

3
1 teeft =   

( ) ( [ ])3
3
1

3
1

2 ,,ˆ teeff tt σ=σ  

( ) [ ( ) ( ) ( )]3
3
1

3
1 ˆ,ˆ,ˆ teef tttt σσσσ=  

( [ ]) [ ( )]3
3
1

3
13

3
1

3
1 ˆ,,,, teeteef tσ=  

[ [ ( )] [ ( )] [ ( )]]3
3
1

3
133

3
1

3
1

3
13

3
1

3
1

3
1 ˆ,,,ˆ,,,ˆ,, teetteeeteeef ttt σσσ=  

[ [ ( )]],ˆ,,,, 3
3
1

3
13

3
1

3
1 teeteef tσ=  

so 

( ) ( [ ])3
3
1

3
1

23 ,,ˆ teeff tt σ=σ  

( ) [ ( ) ( ) ( )]3
3
1

3
1

2 ˆ,ˆ,ˆ teef tttt σσσσ=  

( ) [ ( )].ˆ,, 3
3
1

3
1

2 teef tt σσ=  

Since ( ) { },, 3
1

3
0 eetE =  also ( ) { },, 3

1
3
03 eetE ⊆  so ( [ ( )])3

3
1

3
13 ˆ,, teetE tσ  

{ }.3
1e=  Therefore, ( ( )) { }.3

1
2 efE t =σ  This implies that ( )[ ( )]3

3
1

3
1

2 ˆ,, teef tt σσ  

( ).2 ftσ=  Then .23
tt σ=σ  Therefore, { },, 2

ttt σσ=σ  i.e., tσ  is two. 

(iii) Since ( ) tft =σ  and [ ],,, 3
3
0

3
0 teeft =   

( ) ( [ ])3
3
0

3
0

2 ,,ˆ teeff tt σ=σ  

( ) [ ( ) ( ) ( )]3
3
0

3
0 ˆ,ˆ,ˆ teef tttt σσσσ=  

( [ ]) [ ( )]3
3
0

3
03

3
0

3
0 ˆ,,,, teeteef tσ=  

[ [ ( )] [ ( )] [ ( )]]3
3
0

3
033

3
0

3
0

3
03

3
0

3
0

3
0 ˆ,,,ˆ,,,ˆ,, teetteeeteeef ttt σσσ=  

[ [ ( )]],ˆ,,,, 3
3
0

3
03

3
0

3
0 teeteef tσ=  
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so 

( ) ( [ ])3
3
0

3
0

23 ,,ˆ teeff tt σ=σ  

( ) [ ( ) ( ) ( )]3
3
0

3
0

2 ˆ,ˆ,ˆ teef tttt σσσσ=  

( ) [ ( )].ˆ,, 3
3
0

3
0

2 teef tt σσ=  

Since ( ) { },, 3
1

3
0 eetE =  also ( ) { },, 3

1
3
03 eetE ⊆  so ( [ ( )]) =σ 3

3
0

3
03 ˆ,, teetE t  

{ }.3
0e  Therefore, ( ( )) { }.3

0
2 efE t =σ  This gives us that ( )[ ( )]3

3
0

3
0

2 ˆ,, teef tt σσ  

( ).2 ftσ=  Then .23
tt σ=σ  Therefore, { },, 2

ttt σσ=σ  i.e., tσ  is two. ~ 

Similarly, we obtain the following results: 

Proposition 2.7. Let ( )3CTt ∈  such that ( ) { }., 3
2

3
0 eetE =  Then the 

following hold: 

  (i) If [ ]3
02

3
2 ,, eteft =  such that { },, 3

2
3
02 eet ∉  then tσ  is two. 

 (ii) If [ ]3
22

3
2 ,, eteft =  such that { },, 3

2
3
02 eet ∉  then tσ  is two. 

(iii) If [ ]3
02

3
0 ,, eteft =  such that { },, 3

2
3
02 eet ∉  then tσ  is two. 

Proposition 2.8. Let ( )3CTt ∈  such that ( ) { }., 3
2

3
1 eetE =  Then the 

following hold: 

  (i) If [ ]3
1

3
21 ,, eetft =  such that { },, 3

2
3
11 eet ∉  then tσ  is two. 

 (ii) If [ ]3
2

3
21 ,, eetft =  such that { },, 3

2
3
11 eet ∉  then tσ  is two. 

(iii) If [ ]3
1

3
11 ,, eetft =  such that { },, 3

2
3
11 eet ∉  then tσ  is two. 

Lemma 2.3. Let ( )3CTt ∈  and ( ) { }., 3
1

3
0 eetE =  If ( )3321 ,, CTsss ∈  

and ( )tEs ∉1  or ( ),2 tEs ∉  then [ ] .,, 321 tssst ≠  
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Proof. Let ( ).1 tEs ∉  We give a proof by induction on the complexity of 

the coterm t. 

If [ ]321 ,, tttft =  such that { }3
1

3
0321 ,,, eettt ∈  and ( ) ∪1

3
1

3
1 , tEee ∈  

( ) ( ),32 tEtE ∪  then 

[ ] [ ]( ) [ ]321321321 ,,,,,, ssstttfssst =  

[ ] [ ] [ ][ ].,,,,,,,, 321332123211 ssstssstssstf=  

Since { },,,, 3
1

3
0321 eettt ∈  [ ] 1321 ,, sssst j =  for some { },3,2,1∈j  so =t  

[ ] [ ].,,,, 321321 sssttttf ≠  If [ ]321 ,, tttft =  and assume that [ ]321 ,, sssti  

it≠  for some { },3,2,1∈i  then 

[ ] [ ]( ) [ ]321321321 ,,,,,, ssstttfssst =  

[ ] [ ] [ ][ ]321332123211 ,,,,,,,, ssstssstssstf=  

[ ] .,, 321 ttttf =≠   

Then we obtain that 

Theorem 2.4. Let ( )3CTt ∈  and ( ) { }., 3
1

3
0 eetE =  If [ ]321 ,, tttft =  

and ( )tEt ∉1  or ( ),2 tEt ∉  then n
t

m
t σ≠σ  for all N∈nm,  and .nm ≠  

Proof. Let ( )tEt ∉1  and N∈nm,  such that .nm >  Then there is 

N∈k  such that .knm +=  

If ,1=k  then 

( ) ( )ff n
t

m
t

1+σ=σ  

[ ]( )321 ,,ˆ tttfn
tσ=  

( ) [ ( ) ( ) ( )].ˆ,ˆ,ˆ 321 tttf n
t

n
t

n
t

n
t σσσσ=  
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Since ( ),1 tEt ∉  ( ) 3
01ˆ etn

t ≠σ  and ( ) .ˆ 3
11 etn

t ≠σ  By Lemma 2.3, we get that 

( ) [ ( ) ( ) ( )] ( ).ˆ,ˆ,ˆ 321 ftttf n
t

n
t

n
t

n
t

n
t σ≠σσσσ  This means that ( ) ( ).1 ff n

t
n
t σ≠σ +  

Assuming that ,1>k  let ( ) [ ]321
1 ,,ˆ wwwffk

t =σ −  for some 321 ,, www  

( ).3CT∈  Since ( ) { },, 3
1

3
0 eetE =  ( ) 3

0
3
0ˆ eet =σ  and ( ) ,ˆ 3

1
3
1 eet =σ  ( ( ))fE k

t
1ˆ −σ  

{ }., 3
1

3
0 ee=  This implies that ( ) { },, 3

1
3
01 eewE ⊆  ( ) { }3

1
3
02 , eewE ⊆  and 

( ) { }., 3
1

3
03 eewE ⊆  Since ( ),1 tEt ∉  ( ) 3

01
1 etk

t ≠σ −  and ( ) ,3
11

1 etk
t ≠σ −  so 

( )tEw ∉1  and [ ( ) ( ) ( )] 3
03

1
2

1
1

1
1 ˆ,ˆ,ˆ etttw k

t
k
t

k
t ≠σσσ −−−  and [ ( ),ˆ 1

1
1 tw k

t
−σ  

( ) ( )] .ˆ,ˆ 3
13

1
2

1 ett k
t

k
t ≠σσ −−  By Lemma 2.3, we get that 

( ) ( )ff kn
t

m
t

+σ=σ  

( ( ))fk
t

n
t σσ= ˆ  

( [ ]( ))321
1 ,,ˆˆ tttfk

t
n
t

−σσ=  

( ( ) [ ( ) ( ) ( )])3
1

2
1

1
11 ˆ,ˆ,ˆˆ tttf k

t
k
t

k
t

k
t

n
t

−−−− σσσσσ=  

(( [ ]) [ ( ) ( ) ( )])3
1

2
1

1
1

321 ˆ,ˆ,ˆ,,ˆ tttwwwf k
t

k
t

k
t

n
t

−−− σσσσ=  

( ) [ ( [ ( ) ( ) ( )]),ˆ,ˆ,ˆˆ 3
1

2
1

1
1

1 tttwf k
t

k
t

k
t

n
t

n
t

−−− σσσσσ=  

( [ ( ) ( ) ( )]),ˆ,ˆ,ˆˆ 3
1

2
1

1
1

2 tttw k
t

k
t

k
t

n
t

−−− σσσσ  

( [ ( ) ( ) ( )])]3
1

2
1

1
1

3 ˆ,ˆ,ˆˆ tttw k
t

k
t

k
t

n
t

−−− σσσσ  

( ).fn
tσ≠  

Therefore, n
t

m
t σ≠σ  for all ., N∈nm  ~ 

These give us that 

Corollary 2.1. Let ( )3CTt ∈  and ( ) { }., 3
1

3
0 eetE =  If [ ]321 ,, tttft =  

and ( )tEt ∉1  or ( ),2 tEt ∉  then tσ  has infinite order. 
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For any ( )3CTt∈  such that [ ],,, 321 tttft =  if we use the same procedure 

as Lemma 2.3 and Theorem 2.4 for the following cases: 

  (i) ( ) { } ( )tEteetE ∉= 1
3
2

3
0 ,,  or ( ),3 tEt ∉  

 (ii) ( ) { } ( )tEteetE ∉= 2
3
2

3
1 ,,  or ( )tEt ∉3  and 

(iii) ( ) { } ( )tEteeetE i ∉= ,,, 3
2

3
1

3
0  for some { },3,2,1∈i  

then we obtain the following results: 

Corollary 2.2. Let ( )3CTt ∈  and ( ) { }., 3
2

3
0 eetE =  If [ ]321 ,, tttft =  

and ( )tEt ∉1  or ( ),3 tEt ∉  then tσ  has infinite order. 

Corollary 2.3. Let ( )3CTt ∈  and ( ) { }., 3
2

3
1 eetE =  If [ ]321 ,, tttft =  

and ( )tEt ∉2  or ( ),3 tEt ∉  then tσ  has infinite order. 

Corollary 2.4. Let ( )3CTt ∈  and ( ) { }.,, 3
2

3
2

3
1 eeetE =  If [ ]321 ,, tttft =  

and ( )tEti ∉  for some { },3,2,1∈i  then tσ  has infinite order. 

We summarize all results of the order of )3(Cohyp  as follow: 

Theorem 2.5. The order of ,)3(Cohypt ∈σ  where ( )3CTt ∈  is 1, 2, 3 

or infinite. 
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