Far East Journal of Mathematical Sciences (FJMS)
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: September 2015
http://dx.doi.org/10.17654/FJMSOct2015_495_510

ON THE ORDER OF MONOID COHYPERSUBSTITUTIONS OF SOME TYPE

K. Khamthong, S. Jermjitpornchai and K. Saengsura
Department of Mathematics
Faculty of Science
Mahasarakham University
Mahasarakham 44150, Thailand
e-mail: kittisak.s@msu.ac.th

Abstract

A mapping σ which assigns to every n-ary cooperation symbol f_{i} an n_{i}-ary coterm of type $\tau=\left(n_{i}\right)_{i \in I}$ is said to be a cohypersubstitution of type τ. The concepts of cohypersubstitutions were introduced in [4]. Every cohypersubstitution σ of type τ induces a mapping $\hat{\sigma}$ on the set of all coterms of type τ. The set of all cohypersubstitutions of type τ under the binary operation $\hat{\circ}$ which is defined by $\sigma_{1} \hat{\circ} \sigma_{2}:=$ $\hat{\sigma}_{1} \circ \sigma_{2}$ for all $\sigma_{1}, \sigma_{2} \in \operatorname{Cohyp}(\tau)$ forms a monoid which is called the monoid of cohypersubstitution of type τ. In [7], it was shown that the order of a cohypersubstitution of type $\tau=(2)$ is 1,2 or infinite. In this paper, we characterize orders of $\operatorname{Cohyp}(\tau)$, where $\tau=(3)$.

1. Introduction

Let A be a non-empty set and n be a positive integer. The nth copower
Received: May 7, 2015; Revised: June 18, 2015; Accepted: July 11, 2015
2010 Mathematics Subject Classification: 20M14, 20F50.
Keywords and phrases: cohypersubstitutions, coterms, superpositions, idempotent elements, regular elements.
Communicated by K. K. Azad
$A^{\sqcup n}$ of A is the union of n disjoint copies of A; formally, we define $A^{\sqcup n}$ as the Cartesian product $A^{\sqcup n}:=\underline{n} \times A$, where $\underline{n}:=\{1, \ldots, n\}$. An element (i, a) in this copower corresponds to the element a in the i th copy of A, for $1 \leq i \leq n$. A co-operation on A is a mapping $f^{A}: A \rightarrow A^{\sqcup n}$ for some $n \geq 1$; the natural number n is called the arity of the co-operation f^{A}. We also need to recall that any n-ary co-operation f^{A} on set A can be uniquely expressed as a pair $\left(f_{1}^{A}, f_{2}^{A}\right)$ of mappings, $f_{1}^{A}: A \rightarrow \underline{n}$ and $f_{2}^{A}: A \rightarrow A$; the first mapping gives the labelling used by f^{A} in mapping elements to copies of A, and the second mapping tells us what element of A that any element is mapped to.

We shall denote by $c O_{A}^{(n)}=\left\{f^{A}: A \rightarrow A^{\sqcup n}\right\}$ the set of all n-ary co-operations defined on A, and by $c O_{A}:=\cup_{n \geq 1} c O_{A}^{(n)}$ the set of all finitary co-operations defined on A. An indexed coalgebra is a pair $\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$, where f_{i}^{A} is an n_{i}-ary cooperation defined on A, and $\tau=\left(n_{i}\right)_{i \in I}$ for $n_{i} \geq 1$ is called the type of the coalgebra. Coalgebras were studied by Drbohlav [5]. In [2], the following superposition of cooperations was introduced. If $f^{A} \in c O_{A}^{(n)}$ and $g_{0}^{A}, \ldots, g_{n-1}^{A} \in c O_{A}^{(k)}$, then the k-ary co-operation $f^{A}\left[g_{0}^{A}, \ldots, g_{n-1}^{A}\right]: A \rightarrow A^{\sqcup k}$ is defined by

$$
a \mapsto\left(\left(g_{f_{1}^{A}(a)}^{A}\right)_{1}\left(f_{2}^{A}(a)\right),\left(g_{f_{1}^{A}(a)}^{A}\right)_{2}\left(f_{2}^{A}(a)\right)\right)
$$

for all $a \in A$. The co-operation $f^{A}\left[g_{0}^{A}, \ldots, g_{n-1}^{A}\right]$ is called the superposition of f^{A} and $g_{0}^{A}, \ldots, g_{n-1}^{A}$. It will also be denoted by

$$
\operatorname{comp}_{k}^{n}\left(f^{A}, g_{0}^{A}, \ldots, g_{n-1}^{A}\right)
$$

The injection co-operations $\imath_{i}^{n, A}: A \rightarrow A^{\sqcup k}$ are special cooperations
which are defined for each $0 \leq i \leq n-1$ by $\imath_{i}^{n, A}: A \rightarrow A^{\llcorner k}$ with $a \mapsto(i, a)$ for all $a \in A$. Then we get a multi-based algebra

$$
\left(\left({ }_{c} O_{A}^{(n)}\right)_{n \geq 1}\left(\operatorname{comp}_{k}^{n}\right)_{k, n \geq 1},\left(\imath_{i}^{n, A}\right)_{0 \leq i \leq n-1}\right),
$$

called the clone of co-operations on A. In [2], it is mentioned that this algebra is a clone, i.e., it satisfies the three clone axioms (C1), (C2) and (C3). In [3], Denecke and Saengsura gave a full proof of this fact. In [3], the following coterms of type $\tau=\left(n_{i}\right)_{i \in I}$ were introduced. Let $\left(f_{i}\right)_{i \in I}$ be an indexed set of co-operation symbols such that for each $i \in I, f_{i}$ has arity n_{i}. Let $\bigcup\left\{e_{j}^{n} \mid n \geq 1, n \in \mathbb{N}, 0 \leq j \leq n-1\right\}$ be a set of symbols which is disjoint from the set $\left\{f_{i} \mid i \in I\right\}$ such that for each $0 \leq j \leq n-1, e_{j}^{n}$ has arity n. Then coterms of type τ are defined as follows:
(i) For every $i \in I$, the co-operation symbol f_{i} is an n_{i}-ary coterm of type τ.
(ii) For every $n \geq 1$ and $0 \leq j \leq n-1$, the symbol e_{j}^{n} is an n-ary coterm of type τ.
(iii) If $t_{1}, \ldots, t_{n_{i}}$ are n-ary coterms of type τ, then $f_{i}\left[t_{1}, \ldots, t_{n_{i}}\right]$ is an n-ary coterm of type τ for every $i \in I$, and if t_{0}, \ldots, t_{n-1} are m-ary coterms of type τ, then $e_{j}^{n}\left[t_{0}, \ldots, t_{n-1}\right]$ is an m-ary coterm of type τ for every $n \geq 1$ and $0 \leq j \leq n-1$.

Let $c T_{\tau}^{(n)}$ be the set of all n-ary coterms of type τ and let $c T_{\tau}:=$ $\bigcup_{n \geq 1} c T_{\tau}^{(n)}$ be the set of all (finitary) coterms of type τ.

The superposition of coterms was introduced in [4] as follows: the operation $S_{m}^{n}: c T_{\tau}^{(n)} \times\left(c T_{\tau}^{(m)}\right)^{n} \rightarrow c T_{\tau}^{(m)}$ is defined by induction on the complexity of coterm definition as follows:
(i) $S_{m}^{n}\left(e_{i}^{n}, t_{0}, \ldots, t_{n-1}\right):=t_{i}$ for $0 \leq i \leq n-1$.
(ii) $S_{n_{i}}^{n_{i}}\left(f_{i}, e_{0}^{n_{i}}, \ldots, e_{n_{i}-1}^{n_{i}}\right):=f_{i}$ for an n_{i}-ary co-operation symbol f_{i}.
(iii) $S_{m}^{n_{j}}\left(g_{j}, t_{1}, \ldots, t_{n_{j}}\right):=g_{j}\left[t_{1}, \ldots, t_{n_{j}}\right]$ if g_{j} is an n_{j}-ary cooperation symbol.
(iv) $S_{m}^{n}\left(f_{i}\left[s_{1}, \ldots, s_{n_{i}}\right], t_{1}, \ldots, t_{n}\right):=f_{i}\left[S_{m}^{n}\left(s_{1}, t_{1}, \ldots, t_{n}\right), \ldots, S_{m}^{n}\left(s_{n_{i}}, t_{1}, \ldots, t_{n}\right)\right]$, where f_{i} is an n_{i}-ary co-operation symbol, $s_{1}, \ldots, s_{n_{i}}$ are n-ary coterms of type τ and t_{1}, \ldots, t_{n} are m-ary coterms of type τ.

These operations give us a heterogeneous algebra

$$
c \mathcal{T}_{\tau}:=\left(\left(c T_{\tau}^{(n)}\right)_{n \geq 1}\left(S_{m}^{n}\right)_{m, n \geq 1},\left(e_{j}^{n}\right)_{1 \leq j \leq n}\right) .
$$

We shall show that it is a clone, i.e., it satisfies the clone axioms ($C 1$), (C2) and (C3).

Theorem 1.1 [4]. The heterogeneous algebra $c \mathcal{T}_{\tau}$ satisfies the following identities:
(C1) $\hat{S}_{m}^{p}\left(z, \hat{S}_{m}^{n}\left(y_{1}, x_{1}, \ldots, x_{n}\right), \ldots, \hat{S}_{m}^{n}\left(y_{p}, x_{1}, \ldots, x_{n}\right)\right)$

$$
\approx \hat{S}_{m}^{n}\left(\hat{S}_{n}^{p}\left(z, y_{1}, \ldots, y_{p}\right), x_{1}, \ldots, x_{n}\right)\left(m, n, p \in \mathbb{N}^{+}\right)
$$

(C2) $\hat{S}_{m}^{n}\left(e_{i}^{n}, x_{1}, \ldots, x_{n}\right) \approx x_{i}\left(m \in \mathbb{N}^{+}, 1 \leq i \leq n\right)$,
(C3) $\hat{S}_{n}^{n}\left(y, e_{1}^{n}, \ldots, e_{n}^{n}\right) \approx y\left(n \in \mathbb{N}^{+}\right)$.
(Here $\hat{S}_{m}^{n}, e_{i}^{n}$ are operation symbols corresponding to the clone type).
A cohypersubstitution of type τ was introduced in [4] as a mapping $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow C T_{\tau}$ from the set of all cooperation symbols to the set of all coterms which preserves the arities. The extension of σ is a mapping $\hat{\sigma}: C T_{\tau} \rightarrow C T_{\tau}$ which is inductively defined by the following steps:
(i) $\hat{\sigma}\left[e_{j}^{n}\right]:=e_{j}^{n}$ for every $n \geq 1$ and $0 \leq j \leq n-1$,
(ii) $\hat{\sigma}\left[f_{i}\right]:=\sigma\left(f_{i}\right)$ for every $i \in I$,
(iii) $\hat{\sigma}\left[f_{i}\left[t_{1}, \ldots, t_{n_{i}}\right]\right]:=S_{n}^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$ for $t_{1}, \ldots, t_{n_{i}} \in c T_{\tau}^{(n)}$.

Let Cohyp (τ) be the set of all cohypersubstitutions of type τ. On the set $\operatorname{Cohyp}(\tau)$ of all cohypersubstitutions of type τ, we may define a binary operation $\hat{\circ}$ by $\sigma_{1} \hat{\circ} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$, where \circ is the usual composition of mappings. Let $\sigma_{i d}$ be the cohypersubstitution defined by $\sigma_{i d}\left(f_{i}\right):=f_{i}$ for all $i \in I$. Then we have

Lemma 1.1 [4]. For any two cohypersubstitutions $\sigma_{1}, \sigma_{2} \in \operatorname{Cohyp}(\tau)$, we have $\left(\sigma_{1} \circ \sigma_{2}\right)^{\wedge}=\hat{\sigma}_{1} \circ \sigma_{2}$. The cohypersubstitution $\sigma_{i d}$ satisfies the equation $\hat{\sigma}_{i d}[t]=t$ for all $t \in c T_{\tau}$.

Theorem 1.2 [4]. $\left(\operatorname{Cohyp}(\tau)\right.$; o $\left.\sigma_{i d}\right)$ is a monoid.

2. The Order of Cohypersubstitutions of Type $\tau=(3)$

Here we recall that an element a of a semigroup S is called an idempotent if $a^{2}=a$. The order of a is the cardinal number of the set $\left\{a^{n} \mid n \in \mathbb{N}^{*}\right\}$ and denoted $|a|$. For any $\sigma \in \operatorname{Cohyp}(\tau)$ and $\tau=(n)$, if $\sigma(f)=t$, we denote σ by σ_{t}. For any positive integer n, we call the symbol e_{j}^{n} the injection symbol, for all $0 \leq j \leq n-1$ and for each coterm t, let $E(t)$ be the set of all injection symbols which occur in t. In this section, we have to consider the order of elements of the semigroup $\operatorname{Cohyp}(3)$. First of all, we start with the order of idempotent cohypersubstitutions. In [1], Boonchari and Saengsura had characterized all idempotents of $\operatorname{Cohyp}(3)$ as the following proposition:

Proposition 2.1 [1]. Let $t \in C T_{(3)}$ and $t=f\left[t_{1}, t_{2}, t_{3}\right]$. If $e_{i}^{3} \in E(t)$ for some $i \in\{0,1,2\}$, then σ_{t} is an idempotent if and only if $t_{i+1}=e_{i}^{3}$.

There follow the elements of Cohyp(3) in Proposition 2.1 are of order 1. Next, we have to consider the order of cohypersubstitution $\sigma_{t} \in \operatorname{Cohyp}(3)$, where $E(t)=\left\{e_{0}^{3}\right\}$.

Lemma 2.1. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}\right\}$. If $s_{1}, s_{2}, s_{3} \in C T_{(3)}$ such that $s_{1} \neq e_{0}^{3}$, then $t\left[s_{1}, s_{2}, s_{3}\right] \neq t$.

Proof. We give a proof by induction on the complexity of the coterm t. If $t=e_{0}^{3}$, then

$$
\begin{aligned}
e_{0}^{3}\left[s_{1}, s_{2}, s_{3}\right] & =s_{1}, \\
& \neq e_{0}^{3} .
\end{aligned}
$$

If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and assume that $t_{1}\left[s_{1}, s_{2}, s_{3}\right] \neq t_{1}$ and $t_{2}\left[s_{1}, s_{2}, s_{3}\right] \neq t_{2}$ and $t_{3}\left[s_{1}, s_{2}, s_{3}\right] \neq t_{3}$, then

$$
\begin{aligned}
t\left[s_{1}, s_{2}, s_{3}\right] & =\left(f\left[t_{1}, t_{2}, t_{3}\right]\right)\left[s_{1}, s_{2}, s_{3}\right] \\
& =f\left[t_{1}\left[s_{1}, s_{2}, s_{3}\right], t_{2}\left[s_{1}, s_{2}, s_{3}\right], t_{3}\left[s_{1}, s_{2}, s_{3}\right]\right] \\
& \neq f\left[t_{1}, t_{2}, t_{3}\right] .
\end{aligned}
$$

Therefore, $t\left[s_{1}, s_{2}, s_{3}\right] \neq t$.
Lemma 2.2. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1} \neq e_{0}^{3}$, then $\sigma_{t}^{m} \neq \sigma_{t}^{n}$ for all $m, n \in \mathbb{N}$.

Proof. Let $m, n \in \mathbb{N}$ such that $m>n$. Then there is $k \in \mathbb{N}$ such that $m=n+k$.

If $k=1$, then

$$
\sigma_{t}^{m}(f)=\sigma_{t}^{n+1}(f)
$$

$$
\begin{aligned}
& =\hat{\sigma}_{t}^{n}\left(f\left[t_{1}, t_{2}, t_{3}\right]\right) \\
& =\sigma_{t}^{n}(f)\left[\hat{\sigma}_{t}^{n}\left(t_{1}\right), \hat{\sigma}_{t}^{n}\left(t_{2}\right), \hat{\sigma}_{t}^{n}\left(t_{3}\right)\right] .
\end{aligned}
$$

Since $t_{1} \neq e_{0}^{3}, \quad \hat{\sigma}_{t}^{n}\left(t_{1}\right) \neq e_{0}^{3}$. By Lemma 2.1, we get that

$$
\sigma_{t}^{n}(f)\left[\hat{\sigma}_{t}^{n}\left(t_{1}\right), \hat{\sigma}_{t}^{n}\left(t_{2}\right), \hat{\sigma}_{t}^{n}\left(t_{3}\right)\right] \neq \sigma_{t}^{n}(f) .
$$

This means that $\sigma_{t}^{n+1}(f) \neq \sigma_{t}^{n}(f)$. Assume that $k>1$, let $\hat{\sigma}_{t}^{k-1}(f)=$ $f\left[w_{1}, w_{2}, w_{3}\right]$ for some $w_{1}, w_{2}, w_{3} \in C T_{(3)}$. Since $E(t)=\left\{e_{0}^{3}\right\}$ and $\hat{\sigma}_{t}\left\{e_{0}^{3}\right\}$ $=e_{0}^{3}, \quad E\left(\hat{\sigma}_{t}^{k-1}(f)\right)=\left\{e_{0}^{3}\right\}$. This implies that $E\left(w_{1}\right)=\left\{e_{0}^{3}\right\}, E\left(w_{2}\right)=\left\{e_{0}^{3}\right\}$ and $E\left(w_{3}\right)=\left\{e_{0}^{3}\right\}$. Since $t_{1} \neq e_{0}^{3}, \quad \sigma_{t}^{k-1}\left(t_{1}\right) \neq e_{0}^{3}$, so $w_{1}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right)\right.$, $\left.\hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right] \neq e_{0}^{3}$. By Lemma 2.1, we get that

$$
\begin{aligned}
\sigma_{t}^{m}(f)= & \sigma_{t}^{n+k}(f) \\
= & \hat{\sigma}_{t}^{n}\left(\sigma_{t}^{k}(f)\right) \\
= & \hat{\sigma}_{t}^{n}\left(\hat{\sigma}_{t}^{k-1}\left(f\left[t_{1}, t_{2}, t_{3}\right]\right)\right) \\
= & \hat{\sigma}_{t}^{n}\left(\sigma_{t}^{k-1}(f)\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right) \\
= & \hat{\sigma}_{t}^{n}\left(\left(f\left[w_{1}, w_{2}, w_{3}\right]\right)\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right) \\
= & \sigma_{t}^{n}(f)\left[\hat{\sigma}_{t}^{n}\left(w_{1}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right),\right. \\
& \hat{\sigma}_{t}^{n}\left(w_{2}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right), \\
& \left.\hat{\sigma}_{t}^{n}\left(w_{3}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right)\right] \\
\neq & \sigma_{t}^{n}(f) .
\end{aligned}
$$

Therefore, $\sigma_{t}^{m} \neq \sigma_{t}^{n}$ for all $m, n \in \mathbb{N}$.

Theorem 2.1. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1} \neq e_{0}^{3}$, then $\left|\sigma_{t}\right|$ is infinite.

Proof. Clearly, by Lemma 2.2, the cyclic subsemigroup of Cohyp(3) generated by σ_{t} is infinite.

If we use the same procedures as Lemma 2.1 and Lemma 2.2 for $\sigma_{t} \in$ $\operatorname{Cohyp}(3)$, where $E(t)=\left\{e_{1}^{3}\right\}$ and $E(t)=\left\{e_{2}^{3}\right\}$, we obtain the following results:

Theorem 2.2. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{1}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{2} \neq e_{1}^{3}$, then $\left|\sigma_{t}\right|$ is infinite.

Theorem 2.3. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{2}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{3} \neq e_{2}^{3}$, then $\left|\sigma_{t}\right|$ is infinite.

For any cohypersubstitution $\sigma_{t} \in \operatorname{Cohyp}(3)$, where $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1}, t_{2}, t_{3} \in\left\{e_{0}^{3}, e_{1}^{3}, e_{2}^{3}\right\}$, we have the following results of the order of cohypersubstitutions which are not idempotents:

Proposition 2.2. Let $\sigma_{t} \in \operatorname{Cohyp}(3)$ and $t=f\left[t_{1}, t_{2}, t_{3}\right]$. Then
(i) If $t=f\left[e_{0}^{3}, e_{0}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[e_{1}^{3}, e_{0}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[e_{1}^{3}, e_{0}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iv) If $t=f\left[e_{1}^{3}, e_{1}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.

Proof. (i) If $t=f\left[e_{0}^{3}, e_{0}^{3}, e_{1}^{3}\right]$, then

$$
\begin{aligned}
\sigma_{t}^{2}(f) & =\hat{\sigma}_{t}\left(f\left[e_{0}^{3}, e_{0}^{3}, e_{1}^{3}\right]\right) \\
& =\sigma_{t}\left(f\left[e_{0}^{3}, e_{0}^{3}, e_{1}^{3}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(f\left[e_{0}^{3}, e_{0}^{3}, e_{1}^{3}\right]\right)\left[e_{0}^{3}, e_{0}^{3}, e_{1}^{3}\right] \\
& =f\left[e_{0}^{3}, e_{0}^{3}, e_{0}^{3}\right] .
\end{aligned}
$$

Therefore, $\sigma_{t}^{3}(f)=\hat{\sigma}_{t}\left(f\left[e_{0}^{3}, e_{0}^{3}, e_{0}^{3}\right]\right)=\left(f\left[e_{0}^{3}, e_{0}^{3}, e_{0}^{3}\right]\right)\left[e_{0}^{3}, e_{0}^{3}, e_{0}^{3}\right]=f\left[e_{0}^{3}\right.$, $\left.e_{0}^{3}, e_{0}^{3}\right]$. Since $f\left[e_{0}^{3}, e_{0}^{3}, e_{0}^{3}\right]$ is an idempotent, $\left\langle\sigma_{t}\right\rangle=\left\{\sigma_{t}, \sigma_{t}^{2}\right\}$. This means that $\left|\sigma_{t}\right|$ is two.

For the proofs of (ii), (iii) and (iv), the procedures are similar to the proof of (i).

Similarly, we obtain the following results:
Proposition 2.3. Let $\sigma_{t} \in \operatorname{Cohyp}(3)$ and $t=f\left[t_{1}, t_{2}, t_{3}\right]$. Then
(i) If $t=f\left[e_{0}^{3}, e_{2}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[e_{2}^{3}, e_{0}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[e_{2}^{3}, e_{2}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iv) If $t=f\left[e_{2}^{3}, e_{0}^{3}, e_{0}^{3}\right]$ then $\left|\sigma_{t}\right|$ is two.

Proposition 2.4. Let $\sigma_{t} \in \operatorname{Cohyp}(3)$ and $t=f\left[t_{1}, t_{2}, t_{3}\right]$. Then
(i) If $t=f\left[e_{2}^{3}, e_{1}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[e_{1}^{3}, e_{2}^{3}, e_{2}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[e_{2}^{3}, e_{2}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iv) If $t=f\left[e_{1}^{3}, e_{2}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.

And also for the case that $\sigma_{t} \in \operatorname{Cohyp}(3)$ where $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1}, t_{2}, t_{3} \in\left\{e_{0}^{3}, e_{1}^{3}, e_{2}^{3}\right\}$ being all different, we obtain the following results.

Proposition 2.5. Let $\sigma_{t} \in \operatorname{Cohyp}(3)$ and $t=f\left[t_{1}, t_{2}, t_{3}\right]$. Then
(i) If $t=f\left[e_{0}^{3}, e_{2}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[e_{1}^{3}, e_{0}^{3}, e_{2}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[e_{1}^{3}, e_{2}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is three.
(iv) If $t=f\left[e_{2}^{3}, e_{0}^{3}, e_{1}^{3}\right]$, then $\left|\sigma_{t}\right|$ is three.
(v) If $t=f\left[e_{2}^{3}, e_{1}^{3}, e_{0}^{3}\right]$, then $\left|\sigma_{t}\right|$ is two.

Now, we have to consider $\sigma_{t} \in \operatorname{Cohyp}(3)$ such that $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{j} \notin E(t)$ for some $j \in\{1,2,3\}$.

Proposition 2.6. Let $t \in C T_{(3)}$ such that $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$. Then the following hold:
(i) If $t=f\left[e_{1}^{3}, e_{0}^{3}, t_{3}\right]$ such that $t_{3} \notin\left\{e_{0}^{3}, e_{1}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[e_{1}^{3}, e_{1}^{3}, t_{3}\right]$ such that $t_{3} \notin\left\{e_{0}^{3}, e_{1}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[e_{0}^{3}, e_{0}^{3}, t_{3}\right]$ such that $t_{3} \notin\left\{e_{0}^{3}, e_{1}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.

Proof. (i) Since $\sigma_{t}(f)=t$ and $t=f\left[e_{1}^{3}, e_{0}^{3}, t_{3}\right]$,

$$
\begin{aligned}
\sigma_{t}^{2}(f) & =\hat{\sigma}_{t}\left(f\left[e_{1}^{3}, e_{0}^{3}, t_{3}\right]\right) \\
& =\sigma_{t}(f)\left[\hat{\sigma}_{t}\left(e_{1}^{3}\right), \hat{\sigma}_{t}\left(e_{0}^{3}\right), \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =\left(f\left[e_{1}^{3}, e_{0}^{3}, t_{3}\right]\right)\left[e_{1}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =f\left[e_{1}^{3}\left[e_{1}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right], e_{0}^{3}\left[e_{1}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right], t_{3}\left[e_{1}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right] \\
& =f\left[e_{0}^{3}, e_{1}^{3}, t_{3}\left[e_{1}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right] .
\end{aligned}
$$

Since $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$, by Proposition 2.1, we get that σ_{t}^{2} is an idempotent, so the subsemigroup $\left\langle\sigma_{t}\right\rangle=\left\{\sigma_{t}, \sigma_{t}^{2}\right\}$, i.e., $\left|\sigma_{t}\right|$ is two.
(ii) Since $\sigma_{t}(f)=t$ and $t=f\left[e_{1}^{3}, e_{1}^{3}, t_{3}\right]$,

$$
\begin{aligned}
\sigma_{t}^{2}(f) & =\hat{\sigma}_{t}\left(f\left[e_{1}^{3}, e_{1}^{3}, t_{3}\right]\right) \\
& =\sigma_{t}(f)\left[\hat{\sigma}_{t}\left(e_{1}^{3}\right), \hat{\sigma}_{t}\left(e_{1}^{3}\right), \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =\left(f\left[e_{1}^{3}, e_{1}^{3}, t_{3}\right]\right)\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =f\left[e_{1}^{3}\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right], e_{1}^{3}\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right], t_{3}\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right] \\
& =f\left[e_{1}^{3}, e_{1}^{3}, t_{3}\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right],
\end{aligned}
$$

so

$$
\begin{aligned}
\sigma_{t}^{3}(f) & =\hat{\sigma}_{t}^{2}\left(f\left[e_{1}^{3}, e_{1}^{3}, t_{3}\right]\right) \\
& =\sigma_{t}^{2}(f)\left[\hat{\sigma}_{t}\left(e_{1}^{3}\right), \hat{\sigma}_{t}\left(e_{1}^{3}\right), \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =\sigma_{t}^{2}(f)\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]
\end{aligned}
$$

Since $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$, also $E\left(t_{3}\right) \subseteq\left\{e_{0}^{3}, e_{1}^{3}\right\}$, so $E\left(t_{3}\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right)$ $=\left\{e_{1}^{3}\right\}$. Therefore, $E\left(\sigma_{t}^{2}(f)\right)=\left\{e_{1}^{3}\right\}$. This implies that $\sigma_{t}^{2}(f)\left[e_{1}^{3}, e_{1}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]$ $=\sigma_{t}^{2}(f)$. Then $\sigma_{t}^{3}=\sigma_{t}^{2}$. Therefore, $\left\langle\sigma_{t}\right\rangle=\left\{\sigma_{t}, \sigma_{t}^{2}\right\}$, i.e., $\left|\sigma_{t}\right|$ is two.
(iii) Since $\sigma_{t}(f)=t$ and $t=f\left[e_{0}^{3}, e_{0}^{3}, t_{3}\right]$,

$$
\begin{aligned}
\sigma_{t}^{2}(f) & =\hat{\sigma}_{t}\left(f\left[e_{0}^{3}, e_{0}^{3}, t_{3}\right]\right) \\
& =\sigma_{t}(f)\left[\hat{\sigma}_{t}\left(e_{0}^{3}\right), \hat{\sigma}_{t}\left(e_{0}^{3}\right), \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =\left(f\left[e_{0}^{3}, e_{0}^{3}, t_{3}\right]\right)\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =f\left[e_{0}^{3}\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right], e_{0}^{3}\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right], t_{3}\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right] \\
& =f\left[e_{0}^{3}, e_{0}^{3}, t_{3}\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right],
\end{aligned}
$$

so

$$
\begin{aligned}
\sigma_{t}^{3}(f) & =\hat{\sigma}_{t}^{2}\left(f\left[e_{0}^{3}, e_{0}^{3}, t_{3}\right]\right) \\
& =\sigma_{t}^{2}(f)\left[\hat{\sigma}_{t}\left(e_{0}^{3}\right), \hat{\sigma}_{t}\left(e_{0}^{3}\right), \hat{\sigma}_{t}\left(t_{3}\right)\right] \\
& =\sigma_{t}^{2}(f)\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]
\end{aligned}
$$

Since $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$, also $E\left(t_{3}\right) \subseteq\left\{e_{0}^{3}, e_{1}^{3}\right\}$, so $E\left(t_{3}\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]\right)=$ $\left\{e_{0}^{3}\right\}$. Therefore, $E\left(\sigma_{t}^{2}(f)\right)=\left\{e_{0}^{3}\right\}$. This gives us that $\sigma_{t}^{2}(f)\left[e_{0}^{3}, e_{0}^{3}, \hat{\sigma}_{t}\left(t_{3}\right)\right]$ $=\sigma_{t}^{2}(f)$. Then $\sigma_{t}^{3}=\sigma_{t}^{2}$. Therefore, $\left\langle\sigma_{t}\right\rangle=\left\{\sigma_{t}, \sigma_{t}^{2}\right\}$, i.e., $\left|\sigma_{t}\right|$ is two.

Similarly, we obtain the following results:
Proposition 2.7. Let $t \in C T_{(3)}$ such that $E(t)=\left\{e_{0}^{3}, e_{2}^{3}\right\}$. Then the following hold:
(i) If $t=f\left[e_{2}^{3}, t_{2}, e_{0}^{3}\right]$ such that $t_{2} \notin\left\{e_{0}^{3}, e_{2}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[e_{2}^{3}, t_{2}, e_{2}^{3}\right]$ such that $t_{2} \notin\left\{e_{0}^{3}, e_{2}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[e_{0}^{3}, t_{2}, e_{0}^{3}\right]$ such that $t_{2} \notin\left\{e_{0}^{3}, e_{2}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.

Proposition 2.8. Let $t \in C T_{(3)}$ such that $E(t)=\left\{e_{1}^{3}, e_{2}^{3}\right\}$. Then the following hold:
(i) If $t=f\left[t_{1}, e_{2}^{3}, e_{1}^{3}\right]$ such that $t_{1} \notin\left\{e_{1}^{3}, e_{2}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.
(ii) If $t=f\left[t_{1}, e_{2}^{3}, e_{2}^{3}\right]$ such that $t_{1} \notin\left\{e_{1}^{3}, e_{2}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.
(iii) If $t=f\left[t_{1}, e_{1}^{3}, e_{1}^{3}\right]$ such that $t_{1} \notin\left\{e_{1}^{3}, e_{2}^{3}\right\}$, then $\left|\sigma_{t}\right|$ is two.

Lemma 2.3. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$. If $s_{1}, s_{2}, s_{3} \in C T_{(3)}$ and $s_{1} \notin E(t)$ or $s_{2} \notin E(t)$, then $t\left[s_{1}, s_{2}, s_{3}\right] \neq t$.

Proof. Let $s_{1} \notin E(t)$. We give a proof by induction on the complexity of the coterm t.

If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ such that $t_{1}, t_{2}, t_{3} \in\left\{e_{0}^{3}, e_{1}^{3}\right\}$ and $e_{1}^{3}, e_{1}^{3} \in E\left(t_{1}\right) \cup$ $E\left(t_{2}\right) \cup E\left(t_{3}\right)$, then

$$
\begin{aligned}
t\left[s_{1}, s_{2}, s_{3}\right] & =\left(f\left[t_{1}, t_{2}, t_{3}\right]\right)\left[s_{1}, s_{2}, s_{3}\right] \\
& =f\left[t_{1}\left[s_{1}, s_{2}, s_{3}\right], t_{2}\left[s_{1}, s_{2}, s_{3}\right], t_{3}\left[s_{1}, s_{2}, s_{3}\right]\right] .
\end{aligned}
$$

Since $t_{1}, t_{2}, t_{3} \in\left\{e_{0}^{3}, e_{1}^{3}\right\}, t_{j}\left[s_{1}, s_{2}, s_{3}\right]=s_{1}$ for some $j \in\{1,2,3\}$, so $t=$ $f\left[t_{1}, t_{2}, t_{3}\right] \neq t\left[s_{1}, s_{2}, s_{3}\right]$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and assume that $t_{i}\left[s_{1}, s_{2}, s_{3}\right]$ $\neq t_{i}$ for some $i \in\{1,2,3\}$, then

$$
\begin{aligned}
t\left[s_{1}, s_{2}, s_{3}\right] & =\left(f\left[t_{1}, t_{2}, t_{3}\right]\right)\left[s_{1}, s_{2}, s_{3}\right] \\
& =f\left[t_{1}\left[s_{1}, s_{2}, s_{3}\right], t_{2}\left[s_{1}, s_{2}, s_{3}\right], t_{3}\left[s_{1}, s_{2}, s_{3}\right]\right] \\
& \neq f\left[t_{1}, t_{2}, t_{3}\right]=t
\end{aligned}
$$

Then we obtain that
Theorem 2.4. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1} \notin E(t)$ or $t_{2} \notin E(t)$, then $\sigma_{t}^{m} \neq \sigma_{t}^{n}$ for all $m, n \in \mathbb{N}$ and $m \neq n$.

Proof. Let $t_{1} \notin E(t)$ and $m, n \in \mathbb{N}$ such that $m>n$. Then there is $k \in \mathbb{N}$ such that $m=n+k$.

If $k=1$, then

$$
\begin{aligned}
\sigma_{t}^{m}(f) & =\sigma_{t}^{n+1}(f) \\
& =\hat{\sigma}_{t}^{n}\left(f\left[t_{1}, t_{2}, t_{3}\right]\right) \\
& =\sigma_{t}^{n}(f)\left[\hat{\sigma}_{t}^{n}\left(t_{1}\right), \hat{\sigma}_{t}^{n}\left(t_{2}\right), \hat{\sigma}_{t}^{n}\left(t_{3}\right)\right] .
\end{aligned}
$$

Since $t_{1} \notin E(t), \quad \hat{\sigma}_{t}^{n}\left(t_{1}\right) \neq e_{0}^{3}$ and $\hat{\sigma}_{t}^{n}\left(t_{1}\right) \neq e_{1}^{3}$. By Lemma 2.3, we get that $\sigma_{t}^{n}(f)\left[\hat{\sigma}_{t}^{n}\left(t_{1}\right), \hat{\sigma}_{t}^{n}\left(t_{2}\right), \hat{\sigma}_{t}^{n}\left(t_{3}\right)\right] \neq \sigma_{t}^{n}(f)$. This means that $\sigma_{t}^{n+1}(f) \neq \sigma_{t}^{n}(f)$. Assuming that $k>1$, let $\hat{\sigma}_{t}^{k-1}(f)=f\left[w_{1}, w_{2}, w_{3}\right]$ for some w_{1}, w_{2}, w_{3} $\in C T_{(3)}$. Since $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}, \quad \hat{\sigma}_{t}\left(e_{0}^{3}\right)=e_{0}^{3}$ and $\hat{\sigma}_{t}\left(e_{1}^{3}\right)=e_{1}^{3}, E\left(\hat{\sigma}_{t}^{k-1}(f)\right)$ $=\left\{e_{0}^{3}, e_{1}^{3}\right\}$. This implies that $E\left(w_{1}\right) \subseteq\left\{e_{0}^{3}, e_{1}^{3}\right\}, \quad E\left(w_{2}\right) \subseteq\left\{e_{0}^{3}, e_{1}^{3}\right\}$ and $E\left(w_{3}\right) \subseteq\left\{e_{0}^{3}, e_{1}^{3}\right\}$. Since $t_{1} \notin E(t), \sigma_{t}^{k-1}\left(t_{1}\right) \neq e_{0}^{3}$ and $\sigma_{t}^{k-1}\left(t_{1}\right) \neq e_{1}^{3}$, so $w_{1} \notin E(t) \quad$ and $\quad w_{1}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right] \neq e_{0}^{3} \quad$ and $\quad w_{1}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right)\right.$, $\left.\hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right] \neq e_{1}^{3}$. By Lemma 2.3, we get that

$$
\begin{aligned}
\sigma_{t}^{m}(f)= & \sigma_{t}^{n+k}(f) \\
= & \hat{\sigma}_{t}^{n}\left(\sigma_{t}^{k}(f)\right) \\
= & \hat{\sigma}_{t}^{n}\left(\hat{\sigma}_{t}^{k-1}\left(f\left[t_{1}, t_{2}, t_{3}\right]\right)\right) \\
= & \hat{\sigma}_{t}^{n}\left(\sigma_{t}^{k-1}(f)\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right) \\
= & \hat{\sigma}_{t}^{n}\left(\left(f\left[w_{1}, w_{2}, w_{3}\right]\right)\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right) \\
= & \sigma_{t}^{n}(f)\left[\hat{\sigma}_{t}^{n}\left(w_{1}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right),\right. \\
& \hat{\sigma}_{t}^{n}\left(w_{2}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right), \\
& \left.\hat{\sigma}_{t}^{n}\left(w_{3}\left[\hat{\sigma}_{t}^{k-1}\left(t_{1}\right), \hat{\sigma}_{t}^{k-1}\left(t_{2}\right), \hat{\sigma}_{t}^{k-1}\left(t_{3}\right)\right]\right)\right] \\
\neq & \sigma_{t}^{n}(f) .
\end{aligned}
$$

Therefore, $\sigma_{t}^{m} \neq \sigma_{t}^{n}$ for all $m, n \in \mathbb{N}$.
These give us that
Corollary 2.1. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}, e_{1}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1} \notin E(t)$ or $t_{2} \notin E(t)$, then σ_{t} has infinite order.

For any $t \in C T_{(3)}$ such that $t=f\left[t_{1}, t_{2}, t_{3}\right]$, if we use the same procedure as Lemma 2.3 and Theorem 2.4 for the following cases:
(i) $E(t)=\left\{e_{0}^{3}, e_{2}^{3}\right\}, t_{1} \notin E(t)$ or $t_{3} \notin E(t)$,
(ii) $E(t)=\left\{e_{1}^{3}, e_{2}^{3}\right\}, t_{2} \notin E(t)$ or $t_{3} \notin E(t)$ and
(iii) $E(t)=\left\{e_{0}^{3}, e_{1}^{3}, e_{2}^{3}\right\}, t_{i} \notin E(t)$ for some $i \in\{1,2,3\}$,
then we obtain the following results:
Corollary 2.2. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{0}^{3}, e_{2}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{1} \notin E(t)$ or $t_{3} \notin E(t)$, then σ_{t} has infinite order.

Corollary 2.3. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{1}^{3}, e_{2}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{2} \notin E(t)$ or $t_{3} \notin E(t)$, then σ_{t} has infinite order.

Corollary 2.4. Let $t \in C T_{(3)}$ and $E(t)=\left\{e_{1}^{3}, e_{2}^{3}, e_{2}^{3}\right\}$. If $t=f\left[t_{1}, t_{2}, t_{3}\right]$ and $t_{i} \notin E(t)$ for some $i \in\{1,2,3\}$, then σ_{t} has infinite order.

We summarize all results of the order of $\operatorname{Cohyp}(3)$ as follow:
Theorem 2.5. The order of $\sigma_{t} \in \operatorname{Cohyp}(3)$, where $t \in C T_{(3)}$ is $1,2,3$ or infinite.

Acknowledgements

We would like to thank the referee for his/her helpful comments and suggestions. We would also like to thank the Centre of Excellence in Mathematics, Thailand for the financial support.

References

[1] K. Boonchari and K. Saengsura, Regular and idempotent of cohypersubstitutions of type $\tau=(3)$, Asian-European J. Math. 6(2) (2013), 10 pp.
[2] B. Csákány, Completeness in coalgebras, Acta Sci. Math. 48 (1985), 75-84.
[3] K. Denecke and K. Saengsura, Menger algebras and clones of cooperations, Algebra Colloq. 15(2) (2008), 223-234.
[4] K. Denecke and K. Saengsura, Cohyperidentities and M-solid classes of coalgebras, Discrete Math. 309(4) (2009), 772-783.
[5] K. Drbohlav, On quasicovarieties, Acta Fac. Rerum Natur. Univ. Comenian. Math. Mimoriadne Čislo, 1971, pp. 17-20.
[6] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, Clarendon Press, Oxford, 1995.
[7] K. Khamthong, S. Jermjitpornchai and K. Saengsura, The order of cohypersubstitutions of type $\tau=(2)$, Far East J. Math. Sci. (FJMS) 96(7) (2015), 879-886.
[8] M. Krapeedaeng and K. Saengsura, Idempotent and regular elements of cohypersubstitutions of type $\tau=(2)$, Far East J. Math. Sci. (FJMS) 75(2) (2013), 345-357.

