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Abstract

A mapping o which assigns to every n-ary cooperation symbol f; an
n; -ary coterm of type t = (n;);_, is said to be a cohypersubstitution

of type t. The concepts of cohypersubstitutions were introduced in [4].
Every cohypersubstitution ¢ of type t induces a mapping 6 on the
set of all coterms of type t. The set of all cohypersubstitutions of
type t under the binary operation & which is defined by oy ° o, :=
6100, forall 1, 5, € Cohyp(t) forms a monoid which is called
the monoid of cohypersubstitution of type t. In [7], it was shown that
the order of a cohypersubstitution of type t© = (2) is 1, 2 or infinite. In

this paper, we characterize orders of Cohyp(t), where 1 = (3).

1. Introduction

Let A be a non-empty set and n be a positive integer. The nth copower
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A" of 4 is the union of n disjoint copies of 4; formally, we define A" as
the Cartesian product 4™ := n x A, where n:={1, ..., n}. Anelement (i, a)
in this copower corresponds to the element a in the ith copy of A, for

1<i < n. A co-operation on 4 is a mapping fA :A— A" for some n > I
the natural number »n is called the arity of the co-operation f 4. We also
need to recall that any n-ary co-operation f 4 on set A can be uniquely
expressed as a pair ( flA, sz) of mappings, flA :4A—>n and sz A > A4

the first mapping gives the labelling used by f 4 in mapping elements to

copies of 4, and the second mapping tells us what element of A that any

element is mapped to.

We shall denote by cOgn) ={f1: 4> 4" the set of all n-ary
co-operations defined on 4, and by cO4 :=U nZICOﬁf) the set of all finitary
co-operations defined on 4. An indexed coalgebra is a pair (4; (/;* )ics )

where ;4 isan n; -ary cooperation defined on 4, and t = (n; )iey for m; >1

is called the type of the coalgebra. Coalgebras were studied by Drbohlav

[5]. In [2], the following superposition of cooperations was introduced.

If f 4 e 0054”) and g(f, ves g,‘f_l € cO(k), then the k-ary co-operation

fA[g(’)4, - g,f_l] : A4 — A% is defined by

a > ((gjflA (a))l(sz(a)), (ng (a))z(sz(a)))

for all a € A. The co-operation f A[g()4, ves g,fl_l] is called the superposition

of fA and g()q, e g,’f_l. It will also be denoted by

4 A 4
compp (f7,80 s wr &n—1)-

A

The injection co-operations z;l’ 4 — A% are special cooperations
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which are defined for each 0<i<n-1 by z;l’A 4 — A% with

a (i, a) forall a € A. Then we get a multi-based algebra

,A
(( COgln))nZl(compg )k,nzl’ (1> Docicn-1)»

called the clone of co-operations on A. In [2], it is mentioned that this algebra
is a clone, i.e., it satisfies the three clone axioms (C1), (C2) and (C3). In [3],
Denecke and Saengsura gave a full proof of this fact. In [3], the following

coterms of type T = (n;),_, were introduced. Let (f;),_, be an indexed

iel
set of co-operation symbols such that for each i € I, f; has arity n;. Let
U{e? In>1,neN,0< j<n-1} be a set of symbols which is disjoint
from the set {f;|i € I} such that for each 0 < j <n—1, ¢} has arity n.
Then coterms of type T are defined as follows:

(1) For every i € I, the co-operation symbol f; is an n; -ary coterm of
type t.

(i1)) For every n>1 and 0 < j <n -1, the symbol e;f is an n-ary
coterm of type T.

(ifi) If 4, ..., t, are n-ary coterms of type T, then fi[, ..., ¢, ] is an
n-ary coterm of type t for every i € I, and if ¢, ..., t,_; are m-ary coterms
of type 1, then ¢}[ty, ..., £,_1] is an m-ary coterm of type t for every n > 1

and 0 < j<n-1.

Let cTT(") be the set of all n-ary coterms of type t and let cT; =
Unzl cTT(” ) be the set of all (finitary) coterms of type t.
The superposition of coterms was introduced in [4] as follows: the

operation S” : ¢T\") x (cTT(m))” — ¢T™) is defined by induction on the

complexity of coterm definition as follows:
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() Sp(el, tg, s ty_1) =1t for 0 <i < n-—1.

(i) Snlf (fi> e’y oo enlf_l) = f; foran n; -ary co-operation symbol f;.

(i) S,/ (g ti - tnj) =gl - tnj] if g; is an n;-ary co-

operation symbol.

(V) S (fils1s s Sp b tts oo t0) = [ilSmu (15 81 s )y coes S (50,5 11 s 1)),
where f; is an n; -ary co-operation symbol, sy, ..., s, are n-ary coterms of

type T and 4, ..., ¢, are m-ary coterms of type T.
These operations give us a heterogeneous algebra
T = (Tt (S5 ot € hejen)

We shall show that it is a clone, i.e., it satisfies the clone axioms (C1),
(C2) and (C3).

Theorem 1.1 [4]. The heterogeneous algebra cT . satisfies the following

identities:
(C1) SE(z, SE(Vys X cons Xy )s ooos 3',’,11()/[,, X]s s X))
= Sp(SP (2 Y15 s ¥p)h X1y s ) (m, 1, p € NT),
(C2) 8" (e, x{, .., x,) = x; (me N*, 1<i<n),
(C3) S"(y, e, ... e") ~ y (ne NT).
(Here S’,’fl, el are operation symbols corresponding to the clone type).

A cohypersubstitution of type 1 was introduced in [4] as a mapping
o :{f;|li e I} > CT, from the set of all cooperation symbols to the set of
all coterms which preserves the arities. The extension of ¢ is a mapping

6 : CT, — CT, which is inductively defined by the following steps:
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(i) 6[ef] = €] forevery n > 1 and 0 < j < n—1,
(i) 6[f;] = o(f;) forevery i € I,
(iii) SLfi[t1s s 1, 1= Spi (0(f5), &1 e B[t ] fOr 11,1, € T,

Let Cohyp(t) be the set of all cohypersubstitutions of type t. On the set
Cohyp(t) of all cohypersubstitutions of type 1, we may define a binary
operation ¢ by oy %0, = 6] ©G,, where o is the usual composition of
mappings. Let o;; be the cohypersubstitution defined by c,4(f;) == f; for

all i € I. Then we have

Lemma 1.1 [4]. For any two cohypersubstitutions o1, 6, € Cohyp(t),
we have (c]306,)" = 6] 006,. The cohypersubstitution G;; satisfies the
equation &;4[t] =t forall t € cT,.

Theorem 1.2 [4]. (Cohyp(r); 4 6,4) is a monoid.
2. The Order of Cohypersubstitutions of Type t = (3)

Here we recall that an element a of a semigroup S is called an idempotent
if *> = a. The order of 4 is the cardinal number of the set {a" |n € N*} and

denoted |a|. For any ¢ € Cohyp(t) and t = (n), if o(f) =1¢, we denote

o by o;. For any positive integer n, we call the symbol e7 the injection

symbol, for all 0 < j < n—1 and for each coterm ¢, let E(z) be the set of all

injection symbols which occur in ¢. In this section, we have to consider the

order of elements of the semigroup Cohyp(3). First of all, we start with the

order of idempotent cohypersubstitutions. In [1], Boonchari and Saengsura

had characterized all idempotents of Cohyp(3) as the following proposition:

Proposition 2.1 [1]. Let t € CT(3) and t = f[4, tr, 3]. If & € E(1) for

some i € {0, 1, 2}, then o, is an idempotent if and only if t;,| = ;.
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There follow the elements of Cohyp(3) in Proposition 2.1 are of order 1.

Next, we have to consider the order of cohypersubstitution o, € Cohyp(3),
where E() = {ep .
Lemma 2.1. Let t € CT(3) and E(t)= {ed). If 51,59, 53 € CT{3) such that
s| # ey, then (s, sy, s3] # 1.
Proof. We give a proof by induction on the complexity of the coterm ¢.
Ift = eg, then
elst, 52, 53] = s1,
3

* €.

If t = f[tl, 1, l3] and assume that Zl[Sl, 57, S3] 4 and t2[S1,S2,S3]¢ i

and 5[sy, 59, s3] # 13, then
tls1, 52, s3] = (fln. t2, 3D [s1, 52 s3]
= flalst, 52, s3] tals1, 52, 531 31, 52, s3]]
= fln. 1, 3]
Therefore, #[s;, 55, 53] # £. O
Lemma 2.2. Let t € CT(3) and E(t) = {ed). If t = fl1, tr, 13] and
H# eg, then o' # o} forall m, n e N.

Proof. Let m, n € N such that m > n. Then there is £ € N such that

m=n+k.

If £ =1, then

o/ (f) = o/"(f)
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=67 (f. 12, 13])
= o/ (&7 (1), 67 (1), 67 (13)]
Since # # €3, 67(f) # 3. By Lemma 2.1, we get that
or (N6 (). 67 (2), 67 (13)] # o7 (/).

This means that o"*!(f)# ?(f). Assume that &k >1, let &*7!(f)=

S, wa, ws] for some wy, wy, wy € CT3). Since E(t) = {e3} and &,{ep}

= e}, E(*1(f)) ={e). This implies that E(w) = {e3}, E(w,) = {e3}

and E(ws) = {eg}. Since #; # €3, of (1) # ep, so w[657 (1)), 657 1(¢,),

5571(13)] # €j. By Lemma 2.1, we get that
o' (f) = o™ (f)
= &7 (1 (f))
= 6/(&f 7 (fTn 12, )
= &7 (o (I8¢ (), 85 (2), 85 (3))
= &7 ((fIw, wy, w3D[F (1), 877 (12), 617 (1))
= o7 ()67 (m[67 (). 31 (12), 617 (3))),
&7 (ml6f (), 8 (1), 817 (13)]),
&7 (wsl6F (), 68 (1), 61 (1))
XA

Therefore, 6} # o forall m, n € N. O
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Theorem 2.1. Let t € CT(3) and E(t) = {e3). If t = flt, ty, 3] and
t # €y, then | o, | is infinite.

Proof. Clearly, by Lemma 2.2, the cyclic subsemigroup of Cohyp(3)

generated by o; is infinite. OJ

If we use the same procedures as Lemma 2.1 and Lemma 2.2 for o; €

Cohyp(3), where E(f) = {¢{’} and E(t)={e3}, we obtain the following

results:

Theorem 2.2. Let t € CIj3) and E(t)={el}. If t = [, tr, 3] and
ty # 613, then | o, | is infinite.

Theorem 2.3. Let t € CT(3) and E(t) = &) If t = f[4, 1y, 3] and
ty + €, then | o, | is infinite.

For any cohypersubstitution 5, € Cohyp(3), where ¢ = f[1, t,, 3] and

H, by, 3 € {6(3), 613 ) e%}, we have the following results of the order of

cohypersubstitutions which are not idempotents:

Proposition 2.2. Let o, € Cohyp(3) and t = f|t, ty, t3]. Then
: _ 3 3 3 .
W) If t = flep, €, €' ], then | o, | is two.
. 3 03 3 .
() If ¢t = flel, e, €p), then | o, | is two.
3 3 3 .
(i) If t = flef, €y, € ), then | o | is two.
: _ 3 3 3 .
(i) If t = flej, e, ey, then | o, | is two.
: _ 3 3 3
Proof. (i) If = f|ep, €f, € |, then
2 A 3 3 3
G; (f) = Gt(f[eo’ €0, € ])

=o/(/le. . 1))
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3 3 3 3 3 3
= (flep. €. e Dleps eps ef']
3 3 3
= flep. b, eol.

3 A 3 3 3 3 3 3 3 3 3 3
Therefore, o;(f)=6,(fled, €. €9]) = (flep. €. ev])led. €v. en] = flep.
¢, 5] Since flej, €}, e3] is an idempotent, (,) = {o,, 6 }. This means

that | o; | is two.

For the proofs of (ii), (iii) and (iv), the procedures are similar to the proof
of (1). O

Similarly, we obtain the following results:

Proposition 2.3. Let 6, € Cohyp(3) and t = f[t), t5, t3]. Then
: _ 3 3 3 .

D) Ift = fley, &, €], then | o, | is two.
. 03 3 3 .

() If t = flez, €y, €y, then | o, | is two.

03 3 3 .

(i) If ¢t = fle3, 3, €], then | o | is two.

- 3 3 3 .

(iv) If t = fle3, €p, €y] then | o, | is two.

Proposition 2.4. Let c, € Cohyp(3) and t = f[4, ty, t3]. Then

WOIft= f[e%, 613, 613], then | o, | is two.

—_

(i) If t = f[e&}, &3, &3], then | o, | is two.
(i) If t = f[e%, eg, 613], then | o, | is two.

() If t = fle}, &3, &, then | o, | is two.

And also for the case that o, € Cohyp(3) where ¢t = f[t, t,, 3] and

f, 1, 1y € {ep, €, &3} being all different, we obtain the following results.
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Proposition 2.5. Let 6, € Cohyp(3) and t = f[t, to, 3]. Then

() Ift = fle}, &3, e, then | o, | is two.

[—

(i) If t = flef, ep. €3], then |, | is two.
(i) If t = f[el3, e%, 68], then | o; | is three.
iv)If't = f[e%, 68, 613], then | o, | is three.

WM Ift = fle3, &, ep), then | o, | is two.

Now, we have to consider o, € Cohyp(3) such that ¢ = f[¢, t5, 3] and
tj & E(t) forsome j € {1, 2, 3}.

Proposition 2.6. Let t € CT3) such that E(t)= {e3, & }. Then the
following hold:

() If t = fle}, &3, 13] such that t; & {¢3, e}, then | o, | is two.
(i) If t = fle}, e, 3] such that t; & {e}, &}, then | o; | is two.
(iii) If 1 = flep. €. t3] such that ty ¢ (€3, &}, then | o, | is two.
Proof. (i) Since o,(f) =t and ¢ = fle}, €5, 13],

o (/) = &,(/1¢}, &, 13])

o (f) [6t(e13 ) G (6(3) ), 6,(t3)]

(f[el3’ 6(3)’ t3]) [613’ 68, 6t(t3)]

3r3 3 4 3r3 3 4 3 3 4
= f[el [el > €05 Gt(t3)]: €0 [el > €05 Gt(t3)]’ I3 [el > €05 Gt(t3 )]]

3 3 303 .
= flep, e, t3]ef s e, 64(13)]].
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Since E(t) = {eg, ¢i }, by Proposition 2.1, we get that o7 is an idempotent,

so the subsemigroup (o) = {o,, o2}, i.e., | o, | is two.
(ii) Since o,(f) = and ¢ = fle}, ¢, 1],
&.(fle e, 13))

o/ ()[6:(e). 6,(ef ). 5:(13)]

(flef, &, De, e, 6,(5)]

3(3 3 A 313 3 . 303 .
= fleflef, e, 6,(13)], elef, ef, 6,(t3)], tslef, &, &,(13)]]

3 3 3 3 4
= f[el > €] t3[el > €] O_t(t3)]]a

57 (f)

50
o (f) =87 (f1ef, e, 13))
A CACIRACIREATN)
= i (e, e, 6,(3))
Since E(1) = {e, ¢f }, also E(t3) < {eg, &} }, so E(ts[ef, ef, 6,(t3)])
= {¢} }. Therefore, E(c>(f))={e}. This implies that c2(f)[e{, ¢, 6,(13)]

= 62(f). Then o; = 2. Therefore, (5,) = {o;, 62}, i.c., | 5, | is two.
(iii) Since o,(f) = ¢ and ¢ = f[e3, €3, 13],

&:(fles- @. )

JOIACHRACHEACY

= (f[€(3), 6(3): t3])[€8, 6(3)’ 6t(t3)]

57 (f)

3r3 3 A 3r3 3 A 3 3 .
= fleplen, €5, 6:(13)) eplens €y, 6:(13)), t3lep, €p, 64(23)]]

3 3 3 3 4
= f[eO’ €0> l3[€0, €0 Gt(t3)]],
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SO

5, (/) = 67(f1ed» e 13))

St (/)[6/(e)s 6:(e3). &,(t3)]
= o7 (). @, 6,(t3)]

Since E(t)={eg. e }, also E(3) {eg. ¢}, so E(t3[ep, eg, 5,(t3)]) =
{e3). Therefore, E(c2(f))={eg}. This gives us that c2(f)[eg, ep, &,(t3)]

—62(f). Then o = o7. Therefore, (o,) = {o,, 62}, i.e.,

o; | istwo. O

Similarly, we obtain the following results:

Proposition 2.7. Let t € CT(3) such that E(t)= {e3, ). Then the
following hold:

W Ift = f[e%, b, eg] such that t, ¢ {6(3), e%}, then | o, | is two.
(i) If t = fle3, 1y, &3] such that t, ¢ {e3, €3}, then | o, | is two.
(i) If t = fle, tp, €)] such that t, & {ej, €3}, then | o; | is two.

Proposition 2.8. Let t € CT(3) such that E(t)= (e, &). Then the
following hold:

W It = fly, e%, 613] such that t| ¢ {e13, eg}, then | o, | is two.
) Ift = fly, e%, e%] such that t| ¢ {613, e%}, then | o, | is two.
(i) If t = £, e & such that t, ¢ {&}, &3}, then | o, | is two.

Lemma 2.3. Let t € CT(3) and E(t) = (e3, & ). If 51, 59, 53 € CT3)

and sy & E(t) or sy ¢ E(t), then s, 55, s3] # ¢.
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Proof. Let s; ¢ E(¢). We give a proof by induction on the complexity of

the coterm ¢.

If t = f[t, ty, 3] such that 4, t2, 5 € {ep, &} and e, & € E(t;) U
E(t,)U E(#3), then

sy, 52, s3] = (f[, 1, 3] 51, 52, 53]
= flals1, 52, s3], tals1, 52, 83, 13051, 52, 83]].

Since #, 15, 13 € {€p, € } tilsi, 52, 53] = 51 forsome j e {l, 2, 3}, so ¢ =

f[ll, t, l3] # l[Sl, 59, S3]. If t = f[Zl, 1y, t3] and assume that ti[sl, 59, S3]
# t; for some i € {l, 2, 3}, then

s, 52, s3] = (f[t1, t2, 3] [51, 525 53]
= flalsi, 52, 53}, tals1, 52, s3], 3[s1, 52, s3]
= fly, tr, 3] = ¢. O
Then we obtain that
Theorem 2.4. Let t € CT(3y and E(t) = e, ¢f}. If t = fty, ta, 13]
and t; ¢ E(t) or ty ¢ E(t), then of' # o} forall m,n € N and m # n.

Proof. Let # ¢ E(¢) and m, n € N such that m > n. Then there is
k € N such that m = n + k.

If £ =1, then
of'(f) = o/ (/)
=6/ (flt, t, 13])

= o; (1)[6/ (1), 6/ (t2), 67 (13)].
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Since 1  E(t), 6"(1) # eg and 6"(1;) # ¢. By Lemma 2.3, we get that
N A A . 1
ot ()67 (1), &7 (1), 67 (63)] # o (f). This means that o/ (f) # o7 (/).
Assuming that & > 1, let 571(f) = f[w, wy, wy] for some wy, wy, ws
. ~ A A _1
€ CT(3). Since E(t) = {¢p, e }. 6,(eq) = ¢y and &,(¢f) = e, E(6} (1))
= {e3, ¢ }. This implies that E(wy) < {3, ¢}, E(w) < {eg, ¢f} and
E(ws) < {ep, €} Since # & E(1), of () = ¢ and o 7(1)) % ¢, so
~k—1 ~k—1 ~k—1 3 ~ k-1
wy g E(t) and w67 (1), 6/ (t2), 6 (13)] # g and  wi[677 (1),
5571(1,), 6°71(#3)] # ¢f. By Lemma 2.3, we get that
o' (/) = (/)
_ang k
=67 (07 (f))
_ angak-1
= 6767 (fln, 1, 13]))
o k-1 ~k—1 ~k—1 ~k—1
=6/ (o, (f)I6: (). 6/ (12). 6, (13)))
A ~k—1 ~k—1 ~ k-1
= 67 (fTwi, wa, w3D 677 (1), 677 (12), 67 (13)])
A ~k—1 ~k—1 ~k—1
= o (N)Is7 (mlsy ™ (1) 6/ (12). &7 (13)]),
A ~k—1 ~k—1 ~k—1
S (w6 (1), 6; (12), 61 (13)]),
A ~k—1 ~k—1 ~k—1
&7 (w3[6; (1), 6/ (1), & (3)])]
= o/ (f).
Therefore, 6} # o forall m, n € N. O

These give us that

Corollary 2.1. Let t € CT(3) and E(t) = (e, &) If t = flH, tr, 3]

and t; ¢ E(t) or t, ¢ E(t), then o, has infinite order.
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For any ¢ € CT(3) such that ¢ = f[t,1,, 3], if we use the same procedure

as Lemma 2.3 and Theorem 2.4 for the following cases:
(i) E(1) = {eg. €3}, 1y & E(1) or 13 ¢ E(0),
(ii) E(t) = {&}, &3}, 1o & E(t) or t3 ¢ E(t) and
(iii) E(t) = {3, e}, &3}, t; ¢ E(t) for some i € {1, 2, 3},
then we obtain the following results:
Corollary 2.2. Let t € CT(3) and E(t) = (e, &Y. If t = flH, tr, 3]
and t; ¢ E(t) or t3 ¢ E(t), then o, has infinite order.

Corollary 2.3. Let t € CT(3) and E(t) = (e, ). If t = flty, tr, 15]

and t, ¢ E(t) or t3 ¢ E(t), then o; has infinite order.

Corollary 2.4. Let t € CT(3) and E(t)={e},e3,e3). If t = [ty tp, 15]
and t; ¢ E(t) for some i € {1, 2, 3}, then o, has infinite order.

We summarize all results of the order of Cohyp(3) as follow:

Theorem 2.5. The order of o, € Cohyp(3), where t € CI(3y is 1,2, 3
or infinite.
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